К. Н. Халанский, Ю. С. Алексеенко^а, Б. С. Лукьянов*, Г. С. Бородкин, С. О. Безуглый^а

ФОТО- И ТЕРМОХРОМНЫЕ СПИРАНЫ

36*. СИНТЕЗ, СТРОЕНИЕ И ФОТОХРОМНЫЕ СВОЙСТВА ДИИОДИДА 7',7''-{1,4-ФЕНИЛЕНДИ(МЕТИЛЕН)БИС(1,3,3-ТРИМЕТИЛ-5-ХЛОР-1,3-ДИГИДРОСПИРО[ИНДОЛ-2,3'-ПИРАНО[3,2-*f*]ХИНОЛИНИЯ])}

Синтезирован новый фотохромный солевой бисспиропиран индолинового ряда, содержащий хинолиновый фрагмент. Полученное соединение существует в виде рацемической смеси. Изучены фотохромные свойства полученного симметричного бисспиропирана.

Ключевые слова: индолиновый бисспиропиран, хинолин, фотохром, 2*H*-хроменовый фрагмент.

Фотохромные свойства спиропиранов определяются структурой и заместителями гетареновой части молекулы и 2*H*-хроменового фрагмента [2]. Ранее нами были изучены строение и фотохимические свойства ряда полученных спиропиранов и их солевых аналогов, содержащих хинолиновый фрагмент [3].

Особый интерес вызывают спироциклические соединения, содержащие в своей структуре два 2*H*-хроменовых фрагмента. Облучение нефильтрованным светом их раствора приводит к раскрытию обоих пирановых циклов [4]. Спиропираны солевого типа [3], содержащие в качестве аниона хромоксалатный комплекс, обладают фотомагнитным эффектом в кристаллах [5].

На основе полученного нами ранее индолинового спиропирана 1 [6], содержащего в качестве заместителя атом хлора в положении 5 индолиновой части молекулы и конденсированный с 2*H*-пирановым кольцом хинолиновый фрагмент, мы синтезировали новый солевой симметричный бисспиропиран 2 посредством введения *пара*-ксиленового мостика, соединяющего две молекулы спиропирана через атомы хинолинового азота.

ИК спектр соединения **2** содержит полосы валентных колебаний ароматических углеродных связей при 1580, 1603 и 1645 см⁻¹, а также $v_{C=N}$ 2*H*-пиранового фрагмента при 1481 и 1537 см⁻¹, характерные для индолиновых спиропиранов [7]. Полосы валентных колебаний v_{C-N} индолиновой части молекулы и v_{C-O} 2*H*-пиранового кольца проявляются при 1261, 933 (С–О), 1049 и 1109 (С_{Аг}–О) см⁻¹ соответственно.

Сигналы протонов двух 3-Ме групп индолинового фрагмента в спектре ЯМР ¹Н соединения **2** отмечены при 1.16 и 1.21 м. д., что подтверждает наличие в молекуле асимметрического атома углерода, указывающего, в свою очередь, на спироциклическую структуру молекулы. Полученный спиро-

^{*} Сообщение 35 см. [1].

пиран **2**, содержащий асимметрический спироуглеродный атом, существует в виде рацемической смеси. Подобный факт подтверждён рентгеноструктурными исследованиями ранее полученного спиро[1,1,3-триметилбензо[*e*]индолино-2,3'-[3*H*]пирано[3,2-*f*]хинолина], в кристалле которого, по данным PCA, содержатся две независимые молекулы спиропирана [8].

Шестипротонный синглетный сигнал метильных групп 1-СН₃ проявляется при 2.65 м. д., а четырёхпротонный синглетный сигнал метиленовых групп у хинолинового атома азота N-7' находится при 6.27 м. д., что указывает на наличие солевого компонента в молекуле. Сигналы протонов H-1' и H-2' проявляются в виде однопротонных дублетов при 8.00 и 6.15 м. д. соответственно $(J = 10.7 \ \Gamma \mu)$, что говорит о *цис*-строении этого винильного фрагмента 2*H*пиранового цикла. Синглетный сигнал четырёх ароматических протонов *пара*-ксиленового мостика при 7.30 м. д. подтверждает симметричное расположение в молекуле двух спироциклических составляющих.

Для подтверждения корректности отнесения сигналов в одномерном спектре ЯМР ¹Н был применён двумерный корреляционный спектр COSY ¹H-¹H (рис. 1).

Также был зарегистрирован одномерный спектр ЯМР ¹³С, отнесения сигналов в котором сделаны на основании одноквантового гетероядерного корреляционного спектра HSQC ¹H–¹³C (рис. 2). Сигналы атомов углерода метильных групп в положении 3 проявляются в спектре ЯМР ¹³С при 19.5 и 25.1 м. д., сигналы атомов C-1' и C-2' – при 124.0 и 121.1 м. д., сигналы атомов углерода метиленовых мостиков при заряженном атоме азота и бензольного кольца, соединяющего спиропирановые фрагменты, – при 59.6 и 127.6 м. д. соответственно. Указанные сигналы полностью совпадают с сигналами соответствующих протонов при их экстраполяции на спектре HSQC ¹H–¹³C.

Рис. 1. Двумерный корреляционный спектр COSY ¹H-¹H соединения 2

Для определения химических сдвигов атомов углерода, не связанных с атомами водорода, и атомов азота были применены методы гетероядерной корреляции по дальним связям: HMBC $^{1}H^{-13}C$ (рис. 3) и HMBC $^{1}H^{-15}N$ (рис. 4). Корреляционные спектры по дальним связям полностью подтвердили строение полученного бис-соединения, с помощью которых были соотнесены все атомы спиропирана, не связанные с атомами водорода. Так, было установлено, что спироатом C-2,3', проявляющийся в спектре ЯМР ^{13}C при 105.6 м. д., взаимодействует с протонами H-2' и H-1', чему соответствуют константы второго и третьего порядков.

Атомы азота индолинового и хинолинового фрагментов в спектре ЯМР ¹⁵N дают сигналы при 95.6 и 198.2 м. д. соответственно. При экстраполяции спектров ЯМР⁻¹Н и ¹⁵N спиропирана 2 в гетероядерный корреляционный спектр по дальним связям HMBC ¹H-¹⁵N (рис. 4) наблюдается следующая картина: атом азота N-1 взаимодействует с протонами H-7 и H-2', что выражается константами третьего порядка, и с протонами метильной группы 1-СН₃ (константа второго порядка); атом азота N-7' взаимодействует с протонами Н-6' и Н-9' (константа третьего порядка), а также с протоном H-8' и протонами метиленового мостика -CH2- (константа второго порядка). Взаимодействие вышеуказанных атомов между собой подтверждает правильное отнесение сигналов в спектрах как для атомов азота, так и для атомов водорода. Таким образом, спектр HMBC ¹H-¹⁵N полностью доказал расположение сигнала индолинового атома азота в сильном поле, а хинолинового – в слабом, что, в свою очередь, подтверждает солевую структуру спиропирана 2 с положительным зарядом на атоме азота N-7'.

1174

Рис. 2. Гетероядерный одноквантовый корреляционный спектр HSQC ¹H-¹³C соединения 2

Таким образом, совокупность всех использованных методов ЯМР спектроскопии позволила точно установить структуру полученной молекулы посредством полного соотнесения всех атомов углерода, азота и водорода и их экстраполяции друг на друга.

Данные фотохимических исследований полученного бисспиропирана 2 (рис. 5) значительно отличаются от таковых его предшественника спиропирана 1 (таблица).

Рис. 3. Гетероядерный корреляционный спектр по дальним связям HMBC ¹H–¹³C соединения **2**

Рис. 4. Гетероядерный корреляционный спектр по дальним связям HMBC ¹H-¹⁵N соединения **2**

Максимум длинноволновой полосы поглощения открытой формы молекулы 2 смещён батохромно, ее время жизни на порядок превышает время жизни спиропирана 1. Та же картина, но в меньшей степени наблюдается при сравнении УФ спектров соединения 2 с таковыми алкилзамещённого солевого аналога 4 [8] и бензилзамещённого солевого спиропирана 3 (таблица).

Рис. 5. Фотоиндуцированные спектральные изменения раствора соединения **2** в ацетонитриле при облучении Σ -светом с использованием светофильтра УФС-1 (интервал 1.5 с). На вставке изображена в увеличенном масштабе часть спектра, претерпевающая изменение при облучении

Результаты проведённых исследований дают возможность предполагать, что синтезированный на базе индолинового спиропирана симметричный заряженный бисспиропиран может использоваться в качестве компонента фотоуправляемых солеобразующих магнетиков аналогично иодиду 1,3,3,7'-тетраметил-1,3-дигидроспиро[индол-2,3'-пирано[3,2-*f*]хинолиния] [5], что делает эту систему перспективной для дальнейшего исследования.

Соединение	λ^{A}_{max} , нм	$\epsilon \cdot \lambda^{A}_{max}, M^{-1} c m^{-1}$	λ^{B}_{max} , нм	τ^{B}_{24} , c
1	289	10140		
	301	9650	~530	~0.2
	350	4480	564	
2	272	88250		
	335	8640	574	6.5
	401	7340		
3	247	32430		
	272	28130	573	5.9
	335	2480		
	401	2120		
	270	46430		
	334	4520	~538	53
	397	3810	570	0.0

Спектральные и кинетические свойства соединений 1-4

1177

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Varian Excalibur 3100 FT-IR методом нарушенного полного внутреннего отражения. Спектры ЯМР ¹H и ¹³C записаны на спектрометре Bruker Avance 600 (600 и 150 МГц соответственно) относительно сигналов остаточных протонов растворителя. Элементный анализ проведён классическим методом микроанализа [9]. Температуры плавления определены на приборе Фишера–Джонса Fisher Scientific. Регистрация электронных спектров поглощения проведена на спектрофотометре Agilent 8453. Источник облучения – ртутная лампа 200 Вт (Newport) с использованием светофильтра УФС-1.

Дииодид 7',7"-{[1,4-фениленди(метилен)бис(1,3,3-триметил-5-хлор-1,3-дигидроспиро[индол-2,3'-пирано[3,2-f]хинолиния])} (2). 0.300 г (0.827 ммоль) спиропирана 1 [8] и 0.109 г (0.413 ммоль) 1,4-ди(бромметил)бензола растворяют в 15 мл абсолютного ацетона в присутствии 1.24 г (8.26 ммоль) NaI, кипятят в течение 4.5 ч, затем охлаждают. Выпавший осадок отфильтровывают и перекристаллизовывают из СНСІ3. Выход 0.127 г (28%), т. пл. 233–235 °С. ИК спектр, v, см⁻¹: 933 (С-О); 1049, 1109 (С_л-О); 1261 (С-N); 1481, 1537 (С=N); 1580, 1603, 1645 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), б, м. д. (*J*, Гц): 1.16 (6H, с, 2(3-CH₃)); 1.21 (6H, с, 2(3-CH₃)); 2.65 (6H, с, 2(1-СН₃)); 6.15 (2H, д, J = 10.7, H-2'); 6.27 (4H, с, 2СН₂); 6.63 (2H, д, J = 8.2, H-7); 7.17 (2H, д. д, J = 8.2, J = 2.0, H-6); 7.22 (2H, с, H-4); 7.30 (4H, с, H Ar); 7.66 (2H, д, J = 9.1, Н-10'); 8.00 (2Н, д, J = 10.7, Н-1'); 8.20 (2Н, д. д, J = 6.3, J = 9.1, Н-9'); 8.23 (2Н, д, J = 10.0, H-6'; 9.51 (2H, J, J = 6.3, H-8'); 9.62 (2H, J, J = 10.0, H-5'). Cnextp SMP ¹³C (ДМСО-d₆), δ, м. д.: 19.5 (3-CH₃); 25.1 (3-CH₃); 28.6 (1-CH₃); 52.0 (C-3); 59.6 (CH₂); 105.6 (C-2,3'); 108.2 (C-7); 113.0 (C-10b'); 120.8 (C-9'); 121.1 (C-2'); 122.0 (C-4); 122.6 (C-6'); 123.1 (C-3a); 124.0 (C-1'); 125.9 (C-10'); 127.2 (C-10a'); 127.3 (C-6); 127.6 (C-12'); 133.0 (C-6a'); 134.4 (C-11'); 138.0 (C-5); 141.7 (C-5'); 146.1 (C-7a); 147.5 (C-8'); 153.4 (С-4а'). Спектр ЯМР ¹⁵N, δ, м. д.: 95.6 (N-1); 198.2 (N-7'). Найдено, %: С 57.68; Н 4.28; N 5.26. С₅₂Н₄₆Сl₂I₂N₄O₂. Вычислено, %: С 57.63; Н 4.28; N 5.17.

Иодид 7'-бензил-1,3,3-триметил-5-хлор-1,3-дигидроспиро[индол-2,3'-пирано-[3,2-*f*]хинолиния] (3). Раствор 0.06 г (0.165 ммоль) спиропирана 1 [8] и 0.02 мл (0.174 ммоль) бензилхлорида в 15 мл абсолютного ацетона в присутствии 0.52 г (3.48 ммоль) NaI кипятят в течение 3.5 ч с защитой от влаги воздуха. Реакционную смесь оставляют на 2 сут, выпавший осадок отфильтровывают. Искомую спиропирановую соль 3 затем экстрагируют из осадка ацетоном (5 × 10 мл), экстракт упаривают, остаток перекристаллизовывают из CHCl₃. Выход 0.063 г (35%), т. пл. 202–205 °C. ИК спектр, v, см⁻¹: 1100 (C_{Ar}–O); 1620, 1600, 1576 (C=C). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.20 (3H, с, 3-CH₃); 1.25 (3H, с, 3-CH₃); 2.67 (3H, с, 1-CH₃); 6.04 (1H, д, *J* = 10.7, H-2'); 6.44 (2H, с, CH₂); 7.02 (1H, д, *J* = 2.1, H-7); 7.14 (1H, д, *J* = 2.1, H-6); 7.24 (1H, с, H-4); 7.33 (5H, м, H Ph); 7.46 (1H, д, *J* = 9.6, H-6'); 7.75 (1H, д, *J* = 10.7, H-1'); 8.12 (1H, д, *J* = 9.6, H-5'); 8.22 (1H, д. д, *J* = 5.7, *J* = 8.9, H-9'); 9.44 (1H, д, *J* = 8.9, H-10'); 10.12 (1H, д, *J* = 5.7, H-8'). Найдено, %: C 60.07; H 4.40; N 4.73. C₂₉H₂₆CIIN₂O. Вычислено, %: C 59.96; H 4.51; N 4.82.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 12-03-90017-Бел_а) и Совета по грантам при Президенте РФ (грант НШ 927.2012.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. А. Волошин, С. О. Безуглый, А. В. Метелица, Е. В. Соловьева, К. Е. Шепеленко, В. И. Минкин, *XГС*, 561 (2012). [*Chem. Heterocycl. Compd.*, **48**, 525 (2012).]
- 2. Б. С. Лукьянов, М. Б. Лукьянова, XГС, 323 (2005). [Chem. Heterocycl. Compd., 41, 281 (2005).]

- В. В. Ткачёв, С. М. Алдошин, Н. А. Санина, Б. С. Лукьянов, В. И. Минкин, А. Н. Утёнышев, К. Н. Халанский, Ю. С. Алексеенко, *XTC*, 690 (2007). [*Chem. Heterocycl. Compd.*, 43, 576 (2007).]
- 4. Е. Л. Муханов, Ю. С. Алексеенко, Б. С. Лукьянов, И. В. Дороган, С. О. Безуглый, *Химия высоких энергий*, 44, 248 (2010).
- 5. С. М. Алдошин, Н. А. Санина, Е. А. Юрьева, Г. В. Шилов, Е. В. Курганова, Р. Б. Моргунов, Б. С. Лукьянов, В. И. Минкин, *Изв. АН, Сер. хим.*, 2445 (2008).
- 6. К. Н. Халанский, Ю. С. Алексеенко, Б. С. Лукьянов, А. Н. Утёнышев, С. О. Безуглый, *Научная мысль Кавказа*, 239 (2006).
- 7. К. Г. Джапаридзе, Спирохромены, Мецниереба, Тбилиси, 1979, с. 40
- Ю. С. Алексеенко, К. Н. Халанский, Е. Л. Муханов, Б. С. Лукьянов, С. О. Безуглый, Вестн. ЮНЦ РАН, 4, 27 (2008).
- 9. Н. Э. Гельман, Методы количественного органического элементного анализа, Химия, Москва, 1987.

НИИ физической и органической химии Южного федерального университета, пр. Стачки, 194/2, Ростов-на-Дону 344006, Россия e-mail: bluk@ipoc.sfedu.ru Поступило 5.05.2011

^а Южный научный центр РАН, пр. Чехова, 41, Ростов-на-Дону 344006, Россия e-mail: lab811@ipoc.sfedu.ru