С. Г. Клочков*, И. В. Ананьев^а, С. А. Пухов, С. В. Афанасьева

СТЕРЕОХИМИЯ АЗА-РЕАКЦИИ МИХАЭЛЯ С УЧАСТИЕМ ПРИРОДНЫХ АЛАНТОЛАКТОНОВ

Реакцией природных алантолактонов с фармакофорными аминами синтезированы гидрированные 3-аминометилнафто[2,3-*b*]фуран-2-оны. Приведены данные по определению методом двумерного ЯМР конфигурации нового асимметрического центра, возникающего в результате этого взаимодействия. Структура полученных соединений доказана с помощью РСА.

Ключевые слова: алантолактоны, 3-аминометилдекагидронафто[2,3-*b*]фуран-2-оны, аза-реакция Михаэля, двумерный ЯМР, РСА, стереохимия.

Изоалантолактон (1) и алантолактон (2) относятся к классу сесквитерпеновых лактонов (вторичных метаболитов растений семейства сложноцветных *Asteraceae*), проявляющих различные виды физиологической активности [1, 2]. Использование природных соединений, в частности сесквитерпеновых лактонов, – один из кратчайших путей создания оптически активных молекул с новыми биологическими свойствами. Наличие в структуре соединений 1 и 2 α-метилен-γ-лактонного цикла позволяет легко их модифицировать, например с помощью реакции Михаэля [3]. При введении в эту реакцию хиральных молекул большое значение имеет стереохимический результат. В условиях такого превращения сохраняются содержащиеся в молекуле хиральные центры и появляется новый асимметрический атом углерода С-3, определение стереоконфигурации которого является довольно сложной задачей.

Реакция лактонов 1 и 2 с первичными и вторичными аминами в метаноле при комнатной температуре протекает региоселективно с образованием продуктов присоединения по экзоциклической двойной связи лактонного цикла – гидрированных 3-аминометилнафто[2,3-*b*]фуран-2-онов 3 и 4 соответственно. Выходы – высокие; во всех случаях в реакционной смеси зафиксирован только один диастереомер. Строение полученных соединений устанавливали спектральными методами, в том числе с использованием гомо- и гетерокорреляционных методов ${}^{1}\text{H}{-}^{1}\text{H}$ COSY и ${}^{13}\text{C}{-}^{1}\text{H}$ HSQC. Стереоконфигурация атома C-3 была определена при помощи двумерной спектроскопии ${}^{1}\text{H}{-}^{1}\text{H}$ NOESY, которая позволила выявить близкорасположенные протоны. В данной статье рассмотрены спектральные характеристики аминометилпроизводных **3а**,**b** и **4**, для которых удалось вырастить монокристаллы и подтвердить полученные результаты данными рентгеноструктурного анализа.

Так, для соединения **За** на основании пика протонированного молекулярного иона $[M+H]^+$ m/z 400.2471 в масс-спектре высокого разрешения при ионизации электрораспылением (ИЭР ESI) была установлена брутто-формула $C_{24}H_{33}NO_4$. Данные спектров ЯМР ¹H и ¹³С подтверждают наличие фрагмента изоалантолактона в молекуле. В спектре ЯМР ¹H наблюдаются сигналы протонов экзометиленовой группы при 4.40 и 4.77 м. д. в виде дублетов с константой 1.2 Гц, сигнал метильных протонов при атоме C-8a в виде синглета при 0.80 м. д. и характерный слабопольный сигнал протона при атоме C-9a при 4.49 м. д. в виде дублета дублетов дублетов (КССВ 6.0, 4.5 и 1.4 Гц), а также сигналы аминного фрагмента – ароматических протонов и двух метоксигрупп. Стереоконфигурация атома C-3 этого соединения была установлена на основании анализа корреляций вицинальных взаимодействий протонов и NOE-корреляций в эксперименте NOESY (рис. 1).

Известно, что в молекуле изоалантолактона (1) протон H-9а имеет α -ориентацию, так же как и протон при атоме C-3а, что экспериментально подтверждается небольшой константой спин-спинового взаимодействия ($J_{3a,9a} = 6.0 \ \Gamma$ ц) и свидетельствует о *цис*-сочленении лактонного и декагидронафталинового циклов [4]. В спектре NOESY соединения **3a** наблюдаются отчётливые NOE-корреляции между протонами H-9a и H-3a, H-9a и H-3, H-9a и H_{eq}-9 и H-9a и H_{ax}-9. Для протона при атоме C-3a имеются выраженные корреляции с α -ориентированным протоном в положении 4a и образовавшимся после присоединения амина протоном при атоме C-3. На основании этих данных можно сделать вывод о том, что протоны H-9a, H-4a, H-3a и H-3 расположены по одну сторону гидрированной нафто[2,3-*b*]фуран-2-оновой системы, т. е. образовавшийся аминометильный заместитель имеет β -конфигурацию (стереодескриптор *R*). Аналогичные закономерности выявлены и при анализе спектров продуктов **3b** и **4**.

Рис. 1. Структурно-значимые NOE-корреляции для соединений **3a**,**b** (*a*) и **4** (*b*)

Описанные выше данные о строении всех полученных соединений были дополнительно подтверждены РСА монокристаллов. На рис. 2a-c показаны пространственные структуры молекул соединений **За,b** и **4** в представлении неводородных атомов анизотропными эллипсоидами тепловых колебаний с 50% вероятностью.

Стоит отметить, что исследуемые аминометилпроизводные кристаллизуются в нецентросимметричных пространственных группах в виде чистых стереоизомеров. Поскольку в ходе экспериментов использовалось $K\alpha$ -излучение молибденового анода (0.71073 Å), абсолютная конфигурация была определена с учётом аномального рассеяния рентгеновского излучения атомом хлора в соединении **3b** по значению параметра Флака (0.02(4)) [5]. Однако все соединения образуются в сходных синтетических условиях, что позволяет интерполировать полученные данные об абсолютной конфигурации на соединения **3a** и **4**.

Данные РСА также подтверждают нахождение лактонного и тетрагидронафталинового циклов в *цис*-форме (атомы углерода C(3a) и C(9a) имеют (*R*)-конфигурацию). При этом лактонный цикл, независимо от природы заместителя при атоме азота N(1), сохраняет свою геометрию и во всех случаях имеет конформацию "конверт", в которой выход атома C(3a) из плоскости диктуется природой сочленённого цикла: 0.574(2) и 0.591(2) Å для соединений **3a** и **3b** и 0.464(1) Å в случае производного алантолактона **4**. Наконец, анализ молекулярной структуры показывает, что асимметрический атом углерода C(3) имеет (*R*)-конфигурацию, в то же время атомы C(4a) (C(5) в случае соединения **4**) и C(8a) в ходе реакции очевидным образом сохраняют свою конфигурацию (стереодескрипторы *S* и *R* соответственно), что полностью согласуется с данными ЯМР спектроскопии.

Пространственное строение аминометилпроизводных **За,b** и **4** позволяет сделать заключение о стереохимии аза-реакции Михаэля в ряду природных лактонов **1** и **2**. *N*-Нуклеофил присоединяется к активированной двойной связи лактона по экзоциклическому атому углерода, генерируя енолят. Протонирование последнего протекает исключительно с *экзо*-стороны и приводит к диастереомеру, в котором атом водорода в положении З занимает псевдоаксиальное положение и находится в *цис*-конфигурации с атомом H-За по отношению к пятичленному циклу. В результате данного превращения образуется только одно соединение с псевдоэкваториальным аминометильным заместителем, а хиральный атом C-З приобретает (*R*)-конфигурацию благодаря стереохимическим особенностям исходной молекулы.

Таким образом, исследовано взаимодействие природных оптически активных α-метилен-γ-лактонов с первичными и вторичными аминами. Установлено, что в результате этой реакции стереоселективно образуются продукты присоединения по экзоциклической двойной связи. На основании анализа спектров ЯМР и рентгеноструктурных данных определена стереоконфигурация образующегося асимметрического центра.

Рис. 2. Общий вид соединений **3a** (*a*), **3b** (*b*) и **4** (*c*). Атомы водорода показаны только при стереоцентрах и гетероатомах

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре Bruker ZFS-113 в таблетках КВг. Спектры ЯМР ¹H и ¹³C, NOESY, ¹H–¹H COSY, ¹³C–¹H HSQC зарегистрированы на приборе Bruker Avance III (рабочая частота 500 и 125 МГц соответственно, для эксперимента NOESY время смешивания 1 с, задержка между импульсами 2 с) в растворе CDCl₃, стандарт – остаточный сигнал растворителя ($\delta_{\rm H}$ 7.27 и $\delta_{\rm C}$ 77.2 м. д.). Индексы α и β в расшифровке спектров ЯМР ¹H относятся к неэквивалентным протонам при одном атоме углерода. Масс-спектры высокого разрешения записаны на масс-спектрометре Thermo Fisher Exactive, масс-анализатор ORBITRAP с ортогональным вводом ионов, источник ионизации – электрораспыление. Для ионизации использованы растворы исходных веществ в ацетонитриле с концентрацией ~10⁻⁵ моль/л, значения *m/z* соответствуют пику протонированного молекулярного иона. Удельное вращение определено на поляриметре Model 341 (Perkin Elmer) в растворе CHCl₃, значения вращения выражены в (град·мл)/(г·дм), а концентрация – в г на 100 мл раствора.

Рентгенодифракционное исследование соединений За,b и 4 проведено на дифрактометре SMART APEX II ССD (Мо $K\alpha$ -излучение, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном полноматричном приближении по F^2_{hkl} . Атомы водорода при гетероатомах локализованы из разностных Фурье синтезов электронной плотности и уточнены в изотропном приближении. Позиции атомов водорода при атомах углерода рассчитаны геометрически и уточнены по модели "наездника". Все расчёты проведены с помощью комплекса программ SHELXTL PLUS [6]. Основные кристаллографические данные и параметры уточнения представлены в таблице. Кристаллографические данные для всех соединений депонированы в Кембриджском банке структурных данных (депоненты ССDC 868314–868316).

Параметры	Соединение		
	3a	3b	4
Т, К	100	100	100
Сингония	Моноклинная	Моноклинная	Ромбическая
Пространственная группа	$P2_1$	$P2_1$	$P2_{1}2_{1}2$
Ζ	2	2	4
<i>a</i> , Å	11.1974(7)	5.7663(4)	9.948(5)
b, Å	8.2102(5)	13.6039(10)	28.013(14)
<i>c</i> , Å	12.3374(8)	14.6585(11)	7.611(4)
В, град	109.2220(10)	92.1920(14)	-
<i>V</i> , Å ³	1070.98(12)	1149.03(14)	2120.9(19)
$d_{\rm Bbiy}, \Gamma \cdot {\rm cm}^{-3}$	1.239	1.283	1.220
μ, см ⁻¹	0.83	1.94	0.82
<i>F</i> (000)	432	476	848
20 _{тах} , град	63	61	55
Число измеренных отражений	15139	14962	7726
Число независимых отражений	3815	6950	2890
Число отражений с <i>I</i> > 2 σ (<i>I</i>)	3584	5713	2756
Количество уточняемых параметров	266	282	256
<i>R</i> 1	0.0344	0.0384	0.0319
wR2	0.0953	0.0894	0.0852
GOOF	1.038	0.991	1.014
Остаточная электронная плотность, е·Å^-3(d_{\min}/d_{\max})	0.368/-0.170	0.279/-0.186	0.271/-0.177

Основные кристаллографические данные соединений За, b и 4

Исходные изоалантолактон (1) и алантолактон (2) выделены в виде смеси из корней растения *Inula helenium L.* (сем. *Asteraceae*); разделение изомеров проведено на колонке, импрегнированной нитратом серебра, как описано в работе [7], контроль за чистотой осуществлён ГЖХ.

Реакция (изо)алантолактона с аминами (общая методика). Смесь 0.232 г (1.0 ммоль) лактона 1 или 2 и 1.1 ммоль соответствующего амина растворяют при перемешивании в МеОН и оставляют при комнатной температуре. По завершении реакции (12–24 ч) соединения 3а,b, 4 выпадают из раствора, кристаллы отфильтровывают, промывают небольшим количеством МеОН, сушат в вакууме.

(3R,3aR,4aS,8aR,9aR)-3-[(3,4-Диметоксибензиламино)метил]-8а-метил-5-метилидендекагидронафто[2,3-b]фуран-2-он (3а). Выход 0.264 г (66%), т. пл. 96-98 °С. $[\alpha]_{D}^{20}$ +34° (*c* 0.1). ИК спектр, v, см⁻¹: 1027 и 1236 (MeO), 1761 (O–C=O), 3461 (NH). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 0.80 (3H, c, 8a-CH₃); 1.19 (1H, κ , *J* = 12.6, 4-CH α); 1.25–1.28 (1Н, м, 8-СНа); 1.46 (1Н, д. д, J = 15.5, J = 4.6, 9-СНа); 1.50–1.54 (1Н, м, 4-СНВ); 1.54–1.56 (1Н, м, 8-СНВ); 1.56–1.62 (2Н, м, 7-СН2); 1.77 (1Н, д, J = 12.6, Н-4а); 1.99 (1Н, т. д. *J* = 12.6, *J* = 6.2, 6-СНа); 2.17 (1Н, д. д. *J* = 15.5, *J* = 1.4, 9-Нβ); 2.33 (1Н, д, J = 12.6, 6-Нβ); 2.49 (1Н, т. д. д, J = 12.6, J = 6.0, J = 1.6, Н-3а); 2.77 (1Н, д. д. *J* = 11.8, *J* = 7.3) и 3.05 (1Н, д. д, *J* = 11.8, *J* = 7.2, CHC<u>H</u>₂N); 2.94 (1Н, к, *J* = 6.9, H-3); 3.75 (1H, д, J = 12.9) и 3.83 (1H, д, J = 12.9, NCH₂Ar); 3.88 (3H, с, OCH₃) и 3.89 (3H, с, ОСН₃); 4.40 (1H, д, J = 1.2, (E)-CH=C); 4.49 (1H, д. д. д, J = 6.0, J = 4.5, J = 1.4, H-9a); 4.77 (1Н, д, *J* = 1.2, (*Z*)-CH=C); 6.83 (1Н, д, *J* = 8.1, Н-5'); 6.87 (1Н, д. д, *J* = 8.1, *J* = 1.7, H-6'); 6.90 (1H, д, J=1.7, H-2'). Спектр ЯМР ¹³С, б, м. д.: 17.8 (8а-CH₃); 21.1 (С-4); 22.7 (C-7); 34.8 (C-8a); 36.8 (C-6); 39.2 (C-3a); 41.5 (C-9); 42.3 (C-8); 44.7 (3-CH₂); 46.6 (C-4а); 47.6 (С-3); 54.0 (NCH₂); 55.9 и 56.0 (ОСН₃); 78.3 (С-9а); 106.5 (5-СН₂); 111.1 (С-5'); 111.4 (C-2'); 120.3 (C-6'); 132.5 (C-1'); 148.2 (C-4'); 149.1 (C-5); 149.3 (C-3'); 178.2 (C-2). Найдено, *m/z*: 400.2471 [M+H]⁺. С₂₄H₃₃NO₄. Вычислено, *m/z*: 400.2488.

(3R,3aR,4aS,8aR,9aR)-3-[4-Гидрокси-4-(4-хлорфенил)пиперидин-1-илметил]-8а-метил-5-метилидендекагидронафто[2,3-b]фуран-2-он (3b). Выход 0.369 г (83%), т. пл. 137–138 °С. [а]_D²⁰ +42° (*с* 0.1). ИК спектр, v, см⁻¹: 1106 (Ph–Cl), 1762 и (О–С=О), 3590 (ОН). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.82 (3H, с, 8а-CH₃); 1.18 (1H, к, *J* = 13.0, 4-CHα); 1.26 (1H, τ, *J* = 12.1, 8-CHα); 1.49 (1H, д. д, *J* = 15.6, *J* = 3.5, 9-CHα); 1.56 (1H, д, J = 12.1, 8-CHβ); 1.58–1.65 (2H, м, 7-CH₂); 1.69–1.78 (2H, м, 5'-CH_{ax}, 4-CHβ); 1.83 (1Н, д, J = 12.7, Н-4а); 1.97–2.07 (3Н, м, 3'-CH_{ax}, 5'-CH_{eq}, 6-CHа); 2.12 (1Н, т. д, J = 13.6, J = 3.8, 3'-CH_{ea}); 2.19 (1H, д. д, J = 15.6, J = 1.3, 9-CHβ); 2.36 (1H, д, J = 12.1, 6-CHβ); 2.48 (1H, τ, *J* = 11.0, 6'-CH_{ax}); 2.55 (1H, τ. д. д, *J* = 13.0, *J* = 5.5, *J* = 1.5, H-3a); 2.64 (1H, т, J = 11.5, 2'-CH_{ax}); 2.70–2.76 (2H, м, CHCHaN, 2'-CH_{eq}); 2.83–2.89 (2H, м, СНС<u>Н</u>βN, 6'-CH_{eq}); 2.96–3.04 (1H, м, H-3); 4.50 (2H, уш. с, (Z)-CH=C, H-9a); 4.80 (1H, с, (E)-CH=C); 7.32 (2H, д, J = 8.4, H-5",3"); 7.45 (2H, д, J = 8.4, H-6",2"). Спектр ЯМР 13С, б, м. д.: 17.9 (8а-СН₃); 21.1 (С-4); 22.7 (С-7); 34.9 (С-8а); 36.8 (С-6); 38.5 (С-3'); 38.5 (C-5'); 39.5 (C-3a); 41.6 (C-9); 42.3 (C-8); 45.7 (C-3); 46.6 (C-4a); 48.6 (C-6'); 50.6 (C-2'); 53.2 (3-CH₂); 70.9 (C-4'); 78.3 (C-9a); 106.5 (5-CH₂); 126.1 (C-6"); 126.1 (C-2"); 128.4 (С-5"); 128.5 (С-3"); 132.9 (С-4"); 146.9 (С-1"); 149.5 (С-5); 177.9 (С-2). Найдено, *m/z*: 444.2289 [M+H]⁺. С₂₆H₃₄ClNO₃. Вычислено, *m/z*: 444.2305.

(3*R*,3*aR*,5*S*,8*aR*,9*aR*)-Этил-1-(5,8*a*-диметил-2-оксо-3*a*,5,6,7,8,8*a*,9,9*a*-октагидронафто[2,3-*b*]фуран-3-илметил)пиперидин-4-карбоксилат (3c). Выход 0.312 г (80%), т. пл. 135–137 °С. [α]_D²⁰ +42° (*c* 0.1). ИК спектр, v, см⁻¹: 1722 и 1756 (O–C=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.11–1.15 (1H, м, 8-СН α); 1.16 (3H, д, *J* = 7.5, 5-СН₃); 1.26 (3H, с, 8*a*-CH₃); 1.29 (3H, т, *J* = 7.1, OCH₂C<u>H₃</u>); 1.46 (1H, д. кв, *J* = 13.9, *J* = 3.5, 7-СН α); 1.56 (1H, д. д, *J* = 14.7, *J* = 2.5, 9-СН α); 1.58–1.69 (3H, м, 6-СН₂, 8-СН β); 1.69–1.83 (2H, м, 3'-СН₂); 1.83–1.89 (1H, м, 7-СН β); 1.91–1.97 (2H, м, 5'-СН₂); 2.02 (1H, т. д, *J* = 11.4, *J* = 2.0, 6'-СН_{*ax*}); 2.14 (1H, д. д, *J* = 14.7, *J* = 3.2, 9-СН β); 2.25 (1H, т. д, *J* = 11.4, *J* = 2.3, 2'-СН_{*ax*}); 2.33 (1H, т. т, *J* = 11.3, *J* = 4.0, H-4'); 2.53 (1H, т. д, *J* = 7.5, *J* = 2.3, H-5); 2.62 (1H, д. д, *J* = 13.0, *J* = 11.3) и 2.69 (1H, д. д, *J* = 13.0, *J* = 4.6, CHC<u>H</u>₂N); 2.83 (1H, д. т, $J = 10.7, J = 3.5, 2'-CH_{eq}$); 3.01 (1H, д. т, $J = 11.3, J = 4.0, 6'-CH_{eq}$); 3.07 (1H, д. д. д. д. J = 11.3, J = 8.4, J = 4.3, H-3); 3.16 (1H, д. д. д. J = 8.5, J = 5.5, J = 3.3, H-3a); 4.17 (2H, к. $J = 7.1, OCH_2CH_3$); 4.76 (1H, д. т, J = 5.4, J = 2.6, H-9a); 5.36 (1H, д. J = 2.9, H-4). Спектр ЯМР ¹³С, δ , м. д.: 14.2 (OCH₂<u>C</u>H₃); 16.9 (C-7); 23.1 (5-CH₃); 28.3 (C-3'); 28.6 (C-5'); 28.7 (8a-CH₃); 33.0 (C-6); 33.2 (C-8a); 38.1 (C-3a); 38.7 (C-5); 41.2 (C-4'); 42.4 (C-8); 42.9 (C-9); 43.8 (C-3); 51.6 (C-2'); 54.4 (C-6'); 54.5 (3-CH₂); 60.3 (O<u>C</u>H₂CH₃); 77.40 (C-9a); 115.8 (C-4); 150.9 (C-4a); 175.2 (C=O); 177.6 (C-2). Найдено, *m/z*: 390.2654 [M+H]⁺. C₂₃H₃₅NO₄. Вычислено, *m/z*: 390.2644.

СПИСОК ЛИТЕРАТУРЫ

- A. Ghantous, H. Gali-Muhtasib, H. Vuorela, N. A. Saliba, N. Darwiche, *Drug Discovery Today*, 15, 668 (2010).
- 2. I. Merfort, Curr. Drug Targets, 12, 1560 (2011).
- 3. С. М. Адекенов, А. Т. Кулыясов, Избранные методы синтеза и модификации гетероциклов, под ред. В. Г. Карцева, IBS Press, Москва, 2003, т. 2, с. 7.
- 4. К. С. Рыбалко, Природные сесквитерпеновые лактоны, Медицина, Москва, 1978.
- 5. H. D. Flack, Acta Crystallogr., A39, 876 (1983).
- 6. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).
- С. Г. Клочков, С. В. Афанасьева, А. Н. Пушин, Химия природ. соединений, 325 (2006).

Институт физиологически активных веществ РАН, Северный пр., 1, Черноголовка 142432, Россия e-mail: klochkov@ipac.ac.ru Поступило 29.02.2012

^а Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991, Россия e-mail: i.ananyev@gmail.com