П. Г. Морозов, С. В. Курбатов*

ОПРЕДЕЛЕНИЕ БАРЬЕРА *R ⇐ S* ЭНАНТИОМЕРИЗАЦИИ 5,6-ДИГИДРО[4,5]ИМИДАЗО[1,2-*c*]ХИНАЗОЛИНОВ

Взаимодействием 2-(o-аминофенил)бензимидазолов с альдегидами и кетонами синтезированы хиральные имидазохиназолины, претерпевающие термически индуцируемую обратимую $R \rightleftharpoons S$ энантиомеризацию. Бензимидазольный фрагмент впервые использован в качестве индикаторной группы в температурно-зависимых спектрах ЯМР ¹Н для определения энергетического барьера этой перегруппировки. Исследован характер влияния заместителей в ближайшем окружении реакционного узла на кинетические и активационные параметры и механизм рециклизации.

Ключевые слова: бензимидазол, хиназолин, энантиомеризация, перегруппировка, динамический ЯМР ¹Н.

Известно, что образующиеся при взаимодействии 2-(*о*-аминофенил)бензимидазола с ароматическими альдегидами азометины типа 1, самопроизвольно циклизуются в хиральные имидазохиназолины типа 2 [1].

Если энергетический барьер внутримолекулярного превращения (например $R-2 \rightleftharpoons S-2$) попадает в шкалу времени ЯМР ¹Н (ΔG^{\neq}_{298} 30–125 кДж/моль) и сопровождается изменением конфигурации хирального центра, то определить его можно без предварительного разделения энантиомеров R и S. Для этого необходимо ввести в ближайшее окружение стереогенного центра диастереотопную метку, например бензильную или изопропильную группу, и следить за эволюцией её сигнала в температурно-зависимых спектрах ЯМР. Подобные методы изучения стереоконверсии, протекающей через диссоциацию-рекомбинацию связей, образованных стереогенным центром, ранее успешно использовались для углерода и других элементов [2, 3]. Однако введение диастереотопной метки бывает синтетически затруднительно и/или влияет на кинетику и механизм исследуемой внутримолекулярной реакции.

Целью нашей работы было исследование кинетической стабильности и механизма разрыва-образования связи С–N хиназолинового цикла с использованием бензимидазольного фрагмента в качестве индикаторной группы. При взаимодействии синтезированного нами 2-(2-аминофенил)-5,6-диметилбензимидазола (3) с альдегидами образуются 9,10-диметилзамещённые аналоги хиназолинов типа 2. Мы ввели две индикаторные метильные группы, для того чтобы упростить спектральную картину сигналов бензимидазольного фрагмента и облегчить анализ спектров динамического ЯМР. Следует подчеркнуть, что в спектре ЯМР ¹Н исходного бензимидазола **3** сигналы протонов Н-4 и Н-7 проявляются в виде двухпротонного синглета, а сигналы метильных групп – в виде шестипротонного синглета [3].

Метильные группы (как и протоны Н-4 и Н-7) претерпевают быстрый обмен положений, обусловленный N-1 → N-3 переносом протона и вращением вокруг связи бензимидазолил-фенил. В спектрах ЯМР ¹Н полученных диметилимидазохиназолинов 4а-і сигналы метильных групп при комнатной температуре анизохронны и проявляются в виде двух трёхпротонных синглетов в области 2.1-2.3 м. д. При нагревании растворов соединений 4а-і в дейтеронитробензоле в ряде случаев наблюдается обмен положений метильных групп, отражающий термически индуцированную обратимую рециклизацию пиримидинового цикла. Сигналы метильных групп уширяются, затем коалесцируют и трансформируются в уширенный шестипротонный синглет, сужающийся при дальнейшем повышении температуры ампулы в ЯМР спектрометре. Разрыв связи C-N хиназолинового цикла сопровождается вращением бензимидазольного фрагмента в "раскрытом" интермедиатном состоянии типа 5 и R \rightleftharpoons инверсией конфигурации хирального спироуглеродного центра. Кинетические и активационные параметры этих перегруппировок представлены в табл. 1.

а Ar = Ph, b Ar = 4-Me₂NC₆H₄, c Ar = 4-MeOC₆H₄, d Ar = 3,4-(MeO)₂C₆H₃, e Ar = 3,4,5-(MeO)₃C₆H₂, f Ar = 4-ClC₆H₄, g Ar = 4-O₂NC₆H₄, h Ar = 2-фурил, i Ar = 2-тиенил

Соеди- нение	Ar	∆ <i>G</i> [≠] 298, кДж/моль	∆ <i>Н</i> [≠] , кДж/моль	∆S [≠] , Дж/моль∙К	k_{298}, c^{-1}
4 a	Ph	>125		_	<1.10-9
4b	4-Me ₂ NC ₆ H ₄	78.2	48	-103	$1.1 \cdot 10^{-1}$
4c	4-MeOC ₆ H ₄	83.3	66	-59	$1.4 \cdot 10^{-2}$
4d	3,4-(MeO) ₂ C ₆ H ₃	77.8	55	-77	$1.4 \cdot 10^{-1}$
4 e	3,4,5-(MeO) ₃ C ₆ H ₂	>125	_	_	<1.10-9
4 f	$4-ClC_6H_4$	>125	_	_	$< 1 \cdot 10^{-9}$
4g	$4-O_2NC_6H_4$	>125	-	-	$< 1 \cdot 10^{-9}$
4h	2-Фурил	80.3	43	-125	$5.2 \cdot 10^{-2}$
4i	2-Тиенил	>125	_	_	$< 1 \cdot 10^{-9}$

Кинетические и активационные параметры *R* → *S* перегруппировок 5,6-дигидробензо[4,5]имидазо[1,2-с]хиназолинов 4а–i

Из данных табл. 1 следует, что фенильный заместитель и его производные, содержащие электроноакцепторные группы (соединения **4a,f,g**), резко увеличивают активационный барьер, выводя его за границы определения методом ЯМР. Наиболее вероятным объяснением такого влияния заместителей нам представляется следующее. Скорость перегруппировок $R-4 \rightleftharpoons S-4$ определяется устойчивостью интермедиата типа **5**. Электронодонорные заместители уменьшают электронный дефицит на азометиновом атоме углерода и стабилизируют раскрытую структуру **5**, а электроноакцепторные – дестабилизируют.

Активационный барьер существенно понижается для производных π -избыточных альдегидов (соединения **4b–d,h**). Наибольший эффект оказывают диметиламиногруппа и две метоксигруппы. Следует отметить, что введение третьей метоксигруппы (соединение **4e**) уже резко повышает ΔG^{\neq} . Это связано с тем, что вследствие стерической перегруженности неподелённая пара атома кислорода *n*-метоксигруппы не может эффективно вступать в сопряжение с π -системой бензольного кольца и связи C=N, и поэтому преобладает электроноакцепторный индуктивный эффект трёх метоксигрупп.

Известно, что по способности стабилизировать электронодефицитные центры, гетероатомы располагаются в последовательности: $-NH- > -O- > > -Te- \approx -Se- > -S-$ [4]. Это объясняет большую кинетическую подвижность производного фурана **4h** по сравнению с производным тиофена **4i**.

Рециклизация *R*-4 \rightleftharpoons *S*-4, по-видимому, сопровождается переносом протона от аминогруппы к бензимидазольному фрагменту и формированием интермедиатных структур типа **5**, а не сводится просто к обратимому гетеролизу связи С–N. Для проверки этого предположения мы синтезировали *N*-алкилированные хиназолины типа **6**. Введение диастереотопной бензильной группы в ближайшее окружение хирального центра позволяет, помимо выявления роли фрагмента N–H, использовать дополнительную индикаторную группу для изучения стереодинамики хиназолинов типа **6**. Однако имидазохиназолины **6а–c**, даже содержащие электронодонорные заместители, в отличие от своих не *N*-алкилированных аналогов типа **4**, не рециклизовались при нагревании их растворов в дейтеронитробензоле вплоть до 180 °C ($\Delta G^{\neq}_{298} > 125$ кДж/моль). Сигналы протонов H-8,11 и H-9,10 бензимидазольного фрагмента оставались анизохронными и не уширялись, а сигнал метиленовой группы сохранялся в виде АВ-квартета. В отличие от *N*-алкилирования, резко повышающего активационный барьер рециклизации, *C*-алкилирование хирального центра закономерно понижает активационный барьер вследствие электронодонорного эффекта метильной группы (соединения **4c** и **7b**, табл. 1, 2).

6 а Ar = 4-MeOC₆H₄, b Ar = 4-Me₂NC₆H₄, c Ar = 2-фурил; 7 а R = Ph, b R = 4-MeOC₆H₄, c R = Me, d R = Et, e R = Pr

В ряду производных 7с-е, синтезированных из бензимидазола 3 и соответствующих кетонов, активационный барьер термически индуцированной рециклизации также прогрессивно уменьшается (табл. 2).

Введение метильных групп в бензимидазольный фрагмент упростило спектральные исследования соединений типа 4 и 7, но затруднило получение монокристаллов, пригодных для исследования методом РСА. Нам удалось вырастить монокристалл неметилированного производного бензимидазола – хиназолина 8. По данным РСА (рисунок), молекулы соединения 8 упакованы в кристалле в виде рацемата (пространственная группа *P*) за счёт межмолекулярной водородной связи N(16)–H…N-8 между *R*-и *S*-энантиомерами.

В заключение необходимо отметить, что предлагаемый нами новый подход с использованием бензимидазольного фрагмента в качестве индикаторной метки позволяет исследовать процессы разрыва–образования связей даже для ахиральных структур, для которых известные подходы с использованием диастереотопной метки в принципе неприменимы. Таким образом

Молекулярная структура хиназолина 8 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

может быть исследована кинетическая стабильность любых взаимодействий (ковалентных, координационных, водородных), затрагивающих азольный или азиновый атом азота бензимидазольного фрагмента и препятствующих в результате этого его свободному вращению.

Таблица 2

Кинетические и активационные параметры перегруппировок 5,6-дигидробензо[4,5]имидазо[1,2-с]хиназолинов 7а-е

	-				
Соеди-	R	$\Delta G^{\neq}_{298},$	$\Delta H^{\neq},$	ΔS^{\neq} ,	k_{200} c^{-1}
нение	К	кДж/моль	кДж/моль	Дж/моль•К	R 298, C
7a	Ph	>125	_	-	<1.10-9
7b	4-MeOC ₆ H ₄	78.2	72	-22	$1.2 \cdot 10^{-1}$
7c	Me	117.5	153	119	$1.5 \cdot 10^{-8}$
7d	Et	93.3	77	-53	$2.7 \cdot 10^{-4}$
7e	Pr	87.4	64	-78	$2.6 \cdot 10^{-3}$

Таблица З

Физико-химические характеристики синтезированных соединений	i 4a—i	6a-c,	7а–е и	1 8
---	--------	-------	--------	------------

	_	-1 -	Найдено. %		,	-,
Соеди-	Брутто-	Вычислено, %			Т. пл., °С	Выход, %
нение	формула	С	Н	Ν		
4a	$C_{22}H_{19}N_3$	<u>81.23</u>	<u>5.97</u>	<u>12.99</u>	260-262	61
		81.20	5.89	12.91		
4b	$C_{24}H_{24}N_4$	<u>78.36</u>	<u>6.70</u>	<u>15.31</u>	226–228	84
	~ ~ ~ ~ ~ ~	78.23	6.57	15.20		
4 c	$C_{23}H_{21}N_{3}O$	77.85	$\frac{6.04}{5.06}$	<u>11.91</u>	224–226	66
43	CUNO	74.00	5.96	11.82	212 214	05
40	$C_{24}H_{23}N_3O_2$	<u>74.90</u> 74.78	$\frac{6.11}{6.01}$	$\frac{10.12}{10.00}$	212-214	95
10	C. H. N.O.	74.78	6.16	10.90	106_108	86
40	025112511303	$\frac{72.40}{72.27}$	<u>6 06</u>	$\frac{10.20}{10.11}$	170 170	00
4f	C22H18CIN2	73.55	5.16	11.80	264-266	73
	- 22185	73.43	5.04	11.68		
4g	$C_{22}H_{18}N_4O_2$	71.47	<u>5.01</u>	<u>15.22</u>	314-316	96
0		71.34	4.90	15.13		
4h	C ₂₀ H ₁₇ N ₃ O	76.30	<u>5.55</u>	<u>13.45</u>	220-222	63
		76.17	5.43	13.32		
4i	$C_{20}H_{17}N_3S$	<u>72.62</u>	<u>5.28</u>	<u>12.80</u>	238-240	62
-	a	72.48	5.17	12.68		~ -
6a	$C_{28}H_{23}N_{3}O$	80.71	<u>5.66</u>	$\frac{10.17}{10.06}$	162–164	85
(h	CUN	80.55	5.55	10.06	220, 222	80
0D	$C_{29}H_{26}N_4$	81.10 80.00	<u>6.20</u>	$\frac{13.13}{13.01}$	220-222	80
60	CarHaNaO	79.70	5.13	11 20	170-172	50
UC	0251119130	<u>79.55</u>	$\frac{5.15}{5.06}$	$\frac{11.20}{11.13}$	1/0 1/2	50
7a	$C_{22}H_{21}N_2$	81.53	6.45	12.48	210-212	56
	- 25215	81.39	6.24	12.38		
7b	C ₂₄ H ₂₃ N ₃ O	78.15	6.37	<u>11.48</u>	232-234	63
		78.02	6.27	11.37		
7c	$C_{18}H_{19}N_3$	78.11	<u>7.01</u>	<u>15.27</u>	202-204	63
		77.95	6.90	15.15		
7d	$C_{19}H_{21}N_3$	<u>78.48</u>	$\frac{7.37}{7.26}$	<u>14.52</u>	218-220	49
-	C U N	78.32	7.26	14.42	206, 200	70
7e	$C_{20}H_{23}N_3$	<u>/8.82</u> 78.65	$\frac{1.0}{7.50}$	$\frac{13.84}{12.76}$	206-208	/0
8	CHNO	75.05	1.39 5.28	13.70	150 152	55
o	C19H15H3O	75 73	<u>5.20</u>	$\frac{13.80}{13.94}$	130-132	55
	I	15.15	5.02	15.74		I

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)
1	2
4a	2.15 (3H, c) и 2.28 (3H, c, 9,10-CH ₃); 4.94 (1H, уш. c, NH); 6.30 (1H, c) и 7.50 (1H, c, H-8,11); 6.55 (1H, c, H-6); 6.66 (1H, д, <i>J</i> = 8.1, H-4); 6.91 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.7, H-2); 7.19 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.1, H-3); 7.27–7.43 (5H, м, H Ph); 8.15 (1H, д, <i>J</i> = 7.7, H-1)
4b	2.15 (3H, c) и 2.28 (3H, c, 9,10-CH ₃); 2.93 (6H, c, N(CH ₃) ₂); 4.64 (1H, c, NH); 6.28 (1H, c) и 7.50 (1H, c, H-8,11); 6.43 (1H, c, H-6); 6.59–6.69 (3H, м, H-4,3',5'); 6.90 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.7, H-2); 7.18 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.0, H-3); 7.25 (2H, д, <i>J</i> = 8.7, H-2',6'); 8.16 (1H, д, <i>J</i> = 7.7, H-1)
4c	2.15 (3H, c) μ 2.28 (3H, c, 9,10-CH ₃); 3.76 (3H, c, OCH ₃); 4.85 (1H, c, NH); 6.27 (1H, c) μ 7.49 (1H, c, H-8,11); 6.48 (1H, c, H-6); 6.66 (1H, μ , $J = 8.0$, H-4); 6.84 (2H, μ , $J = 8.7$, H Ar); 7.30 (2H, μ , $J = 8.7$, H Ar); 6.91 (1H, μ . μ , $J = 7.4$, $J = 7.8$, H-2); 7.19 (1H, μ . μ , $J = 7.4$, $J = 8.0$, H-3); 8.15 (1H, μ , $J = 7.8$, H-1)
4d	2.13 (3H, c) и 2.28 (3H, c, 9,10-CH ₃); 3.72 (3H, c) и 3.88 (3H, c, 3',4'-OCH ₃); 4.66 (1H, c, NH); 6.20 (1H, c) и 7.50 (1H, c, H-8,11); 6.47 (1H, c, H-6); 6.69 (1H, д, <i>J</i> = 8.6, H-4); 6.80–7.03 (4H, м, H-2,2',5',6'); 7.22 (1H, д. <i>д</i> , <i>J</i> = 7.6, <i>J</i> = 8.6, H-3); 8.16 (1H, д, <i>J</i> = 7.7, H-1)
4e	2.14 (3H, c) и 2.28 (3H, c, 9,10-CH ₃); 3.68 (6H, c, 3',5'-OCH ₃); 3.82 (3H, c, 4'-OCH ₃); 5.02 (1H, c, NH); 6.22 (1H, c) и 7.49 (1H, c, H-8,11); 6.38 (1H, c, H-6); 6.61 (2H, c, H-2',6'); 6.74 (1H, д, $J = 7.9$, H-4); 6.92 (1H, д. д, $J = 7.6$, $J = 7.8$, H-2); 7.22 (1H, д. д, $J = 7.6$, $J = 7.9$, H-3); 8.14 (1H, д, $J = 7.8$, H-1)
4f	2.19 (3H, с) и 2.30 (3H, с, 9,10-CH ₃); 4.77 (1H, с, NH); 6.39 (1H, с) и 7.51 (1H, с, H-8,11); 6.58 (1H, с, H-6); 6.69 (1H, д, <i>J</i> = 7.3, H-4); 6.94 (1H, д. д, <i>J</i> = 7.6, <i>J</i> = 7.6, H-2); 7.17–7.34 (5H, м, H-3, H Ar); 8.15 (1H, д, <i>J</i> = 7.6, H-1)
4g	2.24 (3H, c) и 2.29 (3H, c, 9,10-CH ₃); 6.78–6.89 (2H, м, H-2,4); 7.16 (1H, c) и 7.47 (1H, c, H-8,11); 7.18–7.29 (2H, м, H-3,6); 7.39 (2H, д, <i>J</i> = 8.7, H-2',6'); 7.73 (1H, c, NH); 7.95 (1H, д, <i>J</i> = 8.1, H-1); 8.16 (2H, д, <i>J</i> = 8.7, H-3',5')
4h	2.30 (3H, c) и 2.33 (3H, c, 9,10-CH ₃); 5.23 (1H, c, NH); 6.00 (1H, д, $J = 3.4$, H-3'); 6.18 (1H, д. д, $J = 1.8$, $J = 3.2$, H-4'); 6.68 (1H, д. $J = 1.8$, H-6); 6.74 (1H, д. $J = 8.3$, H-4); 6.80 (1H, c) и 7.52 (1H, c, H-8,11); 6.92 (1H, д. д, $J = 7.6$, $J = 7.9$, H-2); 7.20 (1H, д. д, $J = 7.6$, $J = 8.3$, H-3); 7.28 (1H, д. $J = 1.8$, H-5'); 8.11 (1H, д. $J = 7.9$, H-1)
4i	2.25 (3H, с) и 2.31 (3H, с, 9,10-CH ₃); 4.99 (1H, с, NH); 6.62 (1H, с) и 7.50 (1H, с, H-8,11); 6.74 (1H, д, <i>J</i> = 8.3, H-4); 6.86–6.92 (2H, м, H-6,4'); 6.95 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.6, H-2); 7.04 (1H, д, <i>J</i> = 3.4, H-3'); 7.18–7.28 (2H, м, H-3,5'); 8.14 (1H, д, <i>J</i> = 7.6, H-1)
6a	3.68 (3H, c, OCH ₃); 4.28 (1H, д, <i>J</i> = 15.6) и 4.64 (1H, д, <i>J</i> = 15.6, CH ₂); 6.51 (1H, c, H-6); 6.71 (2H, д, <i>J</i> = 8.5, H-3',5'); 6.80 (1H, д, <i>J</i> = 8.5, H-4); 6.91–7.44 (12H, м, H Ar); 7.80 (1H, д, <i>J</i> = 8.1, H-11); 8.31 (1H, д, <i>J</i> = 7.7, H-1)
6b	2.84 (6H, c, N(CH ₃) ₂); 4.28 (1H, д, <i>J</i> = 16.0) и 4.64 (1H, д, <i>J</i> = 16.0, CH ₂); 6.45–6.54 (3H, м, H-6,3',5'); 6.75 (1H, д, <i>J</i> = 8.4, H-4); 6.92–7.38 (12H, м, H Ar); 7.78 (1H, д, <i>J</i> = 8.1, H-11); 8.30 (1H, д, <i>J</i> = 7.7, H-1)
6с	4.46 (1H, д, <i>J</i> = 15.4) и 4.80 (1H, д, <i>J</i> = 15.4, CH ₂); 5.89 (1H, д, <i>J</i> = 3.7, H-3'); 6.13 (1H, д. д, <i>J</i> = 1.8, <i>J</i> = 3.7, H-4'); 6.59 (1H, c, H-6); 6.86 (1H, д, <i>J</i> = 8.4, H-4); 7.02 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.7, H-2); 7.14–7.40 (10H, м, H Ar); 7.81 (1H, д, <i>J</i> = 8.1, H-11); 8.27 (1H, д, <i>J</i> = 7.7, H-1)
7a	2.10 (3H, c), 2.12 (3H, c) и 2.28 (3H, c, 6,9,10-CH ₃); 4.64 (1H, c, NH); 6.11 (1H, c) и 7.50 (1H, c, H-8,11); 6.67 (1H, д, <i>J</i> = 8.1, H-4); 6.91 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.7, H-2); 7.21 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.1, H-3); 7.33–7.44 (3H, м, H-3',4',5'); 7.54–7.66 (2H, м, H-2',6'); 8.16 (1H, д, <i>J</i> = 7.7, H-1)
7b	2.06 (3H, c, 6-CH ₃); 2.12 (3H, c) и 2.26 (3H, c, 9,10-CH ₃); 3.80 (3H, c, OCH ₃); 4.63 (1H, c, NH); 6.12 (1H, c) и 7.49 (1H, c, H-8,11); 6.67 (1H, д, <i>J</i> = 8.1, H-4); 6.83–6.94 (3H, м, H-2,3',5'); 7.20 (1H, д. д, <i>J</i> = 7.7, <i>J</i> = 8.1, H-3); 7.55 (2H, д, <i>J</i> = 8.5, H-2',6'); 8.15 (1H, д, <i>J</i> = 7.7, H-1)

Спектры ЯМР ¹Н синтезированных имидазохиназолинов 4а–і, 6а–с, 7а–е и 8

820

1	2
7c	1.88 (6H, с, 6-С(СН ₃) ₂); 2.35 (3H, с) и 2.38 (3H, с, 9,10-СН ₃); 4.60 (1H, с, NH); 6.71
	(1H, д, <i>J</i> = 8.1, H-4); 6.89 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.7, H-2); 7.20 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.1, H-3); 7.30 (1H, с) и 7.56 (1H, с, H-8,11); 8.13 (1H, д, <i>J</i> = 7.7, H-1)
7d	0.93 (3H, т, $J = 7.3$, CH ₂ C <u>H₃</u>); 1.89 (3H, с, 6-CH ₃); 2.28–2.52 (8H, м, C <u>H</u> ₂ CH ₃ , 9,10-CH ₃); 4.24 (1H, с, NH); 6.67 (1H, д, $J = 8.1$, H-4); 6.83 (1H, д. д, $J = 7.3$, $J = 7.7$, H-2); 7.18 (1H, д. д, $J = 7.3$, $J = 8.1$, H-3); 7.24 (1H, с) и 7.54 (1H, с, H-8,11); 8.09 (1H, д. $J = 7.7$, H-1)
7e	0.82 (3H, T, $J = 7.3$, CH ₂ CH ₂ CH ₃); 1.13–1.37 (1H, M) µ 1.39–1.63 (1H, M, CH ₂ CH ₂ CH ₃); 1.74–1.96 (4H, M, 6-CH ₃ , CH ₂ CH ₂ CH ₃); 2.23–2.51 (7H, M, 9,10-CH ₃ , CH ₂ CH ₂ CH ₃); 4.40 (1H, c, NH); 6.67 (1H, д, $J = 8.1$, H-4); 6.84 (1H, д. $J, J = 7.3$, $J = 7.7$, H-2); 7.18 (1H, д. $J, J = 7.3$, $J = 7.3$, $J = 8.1$, H-3); 7.23 (1H, c) µ 7.54 (1H, c, H-8,11); 8.09 (1H, д, $J = 7.7$, H-1)
8	2.13 (3H, c, CH ₃); 5.13 (1H, c, NH); 5.70 (1H, π , $J = 3.4$, H-4'); 5.76 (1H, π , $J = 3.4$, H-3'); 6.54 (1H, c, H-6); 6.83 (1H, π , $J = 8.4$, H-4); 6.98 (1H, π . π , $J = 7.4$, $J = 7.6$, H-2); 7.14–7.38 (4H, π , H Ar); 7.80 (1H, π , $J = 7.6$, H-11); 8.25 (1H, π , $J = 7.6$, H-1)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборе Bruker DPX-250 (250 МГц) в CDCl₃ (для соединения **4g** – в ДМСО-d₆), температурно-зависимые спектры – в C₆D₅NO₂, внутренний стандарт ТМС. Компьютерное моделирование спектров и расчёт констант скоростей проведено с помощью программы gNMR 5.1 [5]. Значение энергии Гиббса (ΔG^{*}) рассчитано по уравнению Аррениуса для каждой константы скорости. Линеаризацией по МНК с коэффициентом корреляции не ниже 0.98 найдены энтальпия (ΔH^{*}) и энтропия (ΔS^{*}) активации.

Физико-химические характеристики синтезированных соединений 4a-i, 6a-c, 7a-e, **8** представлены в табл. 3, данные ЯМР ¹Н спектроскопии – в табл. 4.

9,10-Диметил-5,6-дигидробензо[4,5]имидазо[1,2-с]хиназолины 4а-i, 6-(5-метилфуран-2-ил)-5,6-дигидробензо[4,5]имидазо[1,2-с]хиназолин (8) (общая методика). К раствору 1.27 ммоль 2-(2-аминофенил)бензимидазола или его 5,6-диметилпроизводного **3** [6] в 5 мл МеОН прибавляют 1.27 ммоль альдегида и 0.01 мл АсОН. Реакционную смесь кипятят 2 ч и оставляют на ночь для полного выпадения осадка. Осадок отфильтровывают, промывают холодным МеОН и сушат на воздухе при температуре 50 °С.

5,6-Дигидробензо[4,5]имидазо[1,2-с]хиназолины 6а-с, 7а,b,d,е (общая методика). Раствор 4.2 ммоль соответствующего 2-(2-аминофенил)бензимидазола или его *N*-бензильного производного [6], 8.4 ммоль карбонильного соединения и 5 мг *n*-толуолсульфокислоты в 5 мл бутанола кипятят 21 ч. Осадок отфильтровывают, последовательно промывают 5 мл смеси бутанол – петролейный эфир, 1:2, 10 мл петролейного эфира и сушат на воздухе при 80 °C.

6,6,9,10-Тетраметил-5,6-дигидробензо[4,5]имидазо[1,2-с]хиназолин (7с). Растворяют при нагревании 1 г (4.2 ммоль) 2-(2-аминофенил)-5,6-диметилбензимидазола в 10 мл ацетона. К полученному раствору прибавляют 0.1 мл АсОН и кипятят 14 ч. Выпавший осадок отфильтровывают и промывают 5 мл ацетона.

Рентгеноструктурное исследование соединения 8. Монокристаллы хиназолина 8 получены из метилового спирта. Кристаллы соединения 8 ($C_{19}H_{15}N_3O_3$, M 301.34) моноклинные, пространственная группа P при 293 К: а 8.9393(18), b 12.798(3), c 13.361(3) Å; β 92.90(3)°; V 1526.6(5) Å³; Z 4 (Z' 1); $d_{выч}$ 1.311 г/см⁻³; μ (МоК α) 3.57 см⁻¹; F(000) 632. Интенсивности 5613 отражений (λ (МоК α) 0.71073 Å, ω -сканирование, 2 θ < 58°) и 5327 независимых отражений (R_{int} 0.0424) определены на дифрактометре Bruker SMART 1000 ССD и использованы в дальнейшем уточнении. Структура расшифрована прямым методом и уточнена МНК в анизотропно-изотропном полноматричном приближении по F². Положения атомов водорода рассчи-

Т	а	б	Л	И	ц	а	5
---	---	---	---	---	---	---	---

Связь	<i>l</i> , Å	Связь	<i>l,</i> Å
O(1)–C(18)	1.3688(14)	C(10)–C(11)	1.3977(18)
O(1)–(21)	1.3806(16)	C(10)–C(15)	1.4079(16)
N(1)–C(9)	1.3716(15)	C(11)–C(12)	1.381(2)
N(1)–C(2)	1.3878(16)	C(12)–C(13)	1.388(2)
N(1)–C(17)	1.4549(14)	C(13)–C(14)	1.377(2)
C(2)–C(3)	1.3851(19)	C(14)–C(15)	1.4000(18)
C(2)–C(7)	1.4017(17)	C(15)–N(16)	1.3862(16)
C(3)–C(4)	1.381(2)	N(16)–C(17)	1.4536(16)
C(4)–C(5)	1.395(2)	C(17)–C(18)	1.5030(17)
C(6)–C(7)	1.3929(18)	C(18)–C(19)	1.3347(18)
C(7)–N(8)	1.3982(16)	C(19)–C(20)	1.425(2)
N(8)–C(9)	1.3208(15)	C(20)–C(21)	1.339(2)
C(9)–C(10)	1.4451(17)	C(21)–C(22)	1.485(2)

Основные длины связей (1) в молекуле имидазохиназолина 8

Таблица б

Основные валентные углы (ю) в молекуле имидазохиназолина 8

Связи	ω, град.	Связи	ω, град.
C(18)-O(1)-C(21)	106.34(10)	N(8)-C(9)-C(10)	128.46(11)
C(9)-N(1)-C(2)	107.16(10)	N(1)-C(9)-C(10)	118.69(10)
C(9)–N(1)–C(17)	124.50(10)	C(11)-C(10)-C(15)	120.14(12)
C(2)-N(1)-C(17)	126.52(10)	C(11)-C(10)-C(9)	122.52(11)
C(3)-C(2)-N(1)	132.39(12)	C(15)-C(10)-C(9)	117.30(11)
C(3)–C(2)–C(7)	122.62(12)	C(12)-C(11)-C(10)	120.44(13)
N(1)-C(2)-C(7)	104.96(11)	C(11)–C(12)–C(13)	119.22(14)
C(4)–C(3)–C(2)	116.50(13)	C(14)–C(13)–C(12)	121.39(14)
C(3)–C(4)–C(5)	121.53(15)	C(13)-C(14)-C(15)	120.23(13)
C(6)–C(5)–C(4)	121.91(14)	N(16)-(15)-C(14)	121.25(11)
C(5)–C(6)–C(7)	117.40(13)	N(16)-C(15)-C(10)	120.11(11)
C(6)–C(7)–N(8)	129.77(12)	C(14)-C(15)-C(10)	118.56(12)
C(6)–C(7)–C(2)	120.04(12)	C(15)-N(16)-C(17)	120.15(10)
N(8)–C(7)–C(2)	110.16(10)	N(16)–C(17)–N(1)	108.44(10)
C(9)–N(8)–C(7)	104.86(10)	N(16)-C(17)-C(18)	114.10(10)
N(8)-C(9)-N(1)	112.76(11)	N(1)-C(17)-C(18)	108.50(10)

таны геометрически и уточнены в изотропном приближении по модели "наездника". Окончательное значение факторов недостоверности для соединения 8: *wR2* 0.1030 и *GOOF* 1.012 для всех независимых отражений (*R*1 0.1405 рассчитывали по *F* для 2620 зафиксированных отражений с $I > 2\sigma(I)$). Все расчёты проведены по комплексу программ SHELXTL PLUS 5.0 [7].

Основные геометрические параметры монокристалла 8 представлены в табл. 5, 6. Данные РСА хиназолина 8 депонированы в Кембриджском банке структурных данных (ССDС 846361).

Авторы благодарят 3. А. Старикову (ИНЭОС РАН) за выполнение рентгеноструктурного исследования.

Работа выполнена при финансовой поддержке РФФИ (проект № 09-03-00726-а) и Минобрнауки РФ (АВЦП РНП ВШ 3.6.11).

- R. M. Padmaja, R. C. Satyanarayana, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 27B, 418 (1988); Chem. Abstr., 109, 210999 (1989).
- 2. M. Oki, Pure Appl. Chem., 61, 699 (1989).
- 3. L. P. Olekhnovich, Z. N. Budarina, A. V. Lesin, S. V. Kurbatov, G. S. Borodkin, V. I. Minkin, *Mendeleev Commun.*, **4**, 162 (1994).
- 4. А. Ф. Пожарский, Теоретические основы химии гетероциклов, Химия, Москва, 1985.
- 5. P. H. M. Budzelaar, http://home.cc.umanitoba.ca/~budzelaa/gNMR/gNMR.html
- 6. П. Г. Морозов, С. В. Курбатов, Ф. М. Долгушин, М. Ю. Антипин, Л. П. Олехнович, *Изв. АН, Сер. хим.*, **53**, 1990 (2004).
- 7. G. M. Sheldrick, SHELXTL v. 5.10, Structure Determination Software Suit, Bruker AXS, 1998.

Южный федеральный университет, ул. Зорге, 7, Ростов-на-Дону 344090, Россия e-mail: kurbatov@sfedu.ru Поступило 15.08.2011