В. П. Зайцев*, Н. М. Михайлова, И. К. Айриян, Е. В. Галкина, В. Д. Голубев, Е. В. Никитина, Ф. И. Зубков, А. В. Варламов

ЦИКЛОПРИСОЕДИНЕНИЕ ФУРФУРИЛАМИНОВ К МАЛЕИНОВОМУ АНГИДРИДУ И ЕГО ЗАМЕЩЁННЫМ ПРОИЗВОДНЫМ

Изучена регио- и стереоселективность [4+2]-циклоприсоединения малеинового, цитраконового, дихлор(дибром)малеинового ангидридов к дифурфуриламинам и вторичным фурфуриламинам. Синтезированы *N*-фурфурил(фенил, бензил)замещённые гексагидрооксоэпоксиизоиндол-7-карбоновые кислоты. Разработан подход к получению незамещённой по атому азота гексагидроэпоксиоксоизоиндол-7-карбоновой кислоты. В результате ароматизации оксабициклогептанового фрагмента дигалогензамещённых эпоксиизоиндолонкарбоновых кислот получен ряд 7-карбокси-2-R-изоиндолонов-1.

Ключевые слова: изоиндолоны, малеиновый ангидрид, фурфуриламины, [4+2]-циклоприсоединение.

Функционально замещённые эпоксиизоиндолоны интересны в синтетическом плане. На их основе могут быть получены аннелированные с азагетероциклами псевдосахара [1–3], различные конденсированные гетероциклические соединения, содержащие изоиндольный фрагмент [4–10]. Большие перспективы в этом направлении открывает разрабатываемый в последнее время метод синтеза изоиндолонов-1, базирующийся на ацилировании *N*-арил(алкил)замещённых фурфуриламинов производными непредельных кислот и последующем внутримолекулярном [4+2]-циклоприсоединении полученных непредельных амидов [11–19].

Развитием упомянутого подхода явилась разработка двустадийного препаративного метода синтеза 7-карбокси-2-R-изоиндолонов-1 [20], который основывается на реакции [4+2]-циклоприсоединения малеинового ангидрида к *N*-замещённым фурфуриламинам. Изучены границы применимости этого метода, показано влияние заместителя при атоме азота фурфуриламинов на циклоприсоединение, подобраны условия ароматизации оксабициклогептенового фрагмента до 7-карбоксифталимидинов [21].

В настоящей работе изучается регио- и стереонаправленность циклоприсоединения малеинового, цитраконового, дибром- и дихлормалеинового ангидридов к бис-фурфуриламинам, а также к фенил- и бензилфурфуриламинам. Сделана попытка оценить влияние заместителей в оксабициклогептеновом фрагменте на способность к ароматизации аддуктов Дильса– Альдера.

Исходные фурфуриламины **1а-h** были получены в виде светлых подвижных масел восстановлением соответствующих оснований Шиффа боргидридом натрия в этаноле.

$$\begin{array}{c} R \\ N \\ \end{array} \\ \hline \\ N \\ \end{array} \\ \hline \\ R^{1} \\ \hline \\ EtOH \\ \end{array} \\ \begin{array}{c} NaBH_{4} \\ H \\ H \\ \end{array} \\ \hline \\ \\ H \\ \end{array} \\ \begin{array}{c} N \\ \\ H \\ \end{array} \\ \hline \\ \\ 1a-h \\ \end{array} \\ \begin{array}{c} R \\ \\ H \\ \end{array} \\ \hline \\ \\ 1a-h \\ \end{array}$$

a-d R = фурфурил,**e,f**<math>R = Ph, g,h R = Bn;**a,e,g**, $R^1 = H, b,f,h$ $R^1 = Me, c$ $R^1 = Br, d$ $R^1 = I$

Дифурфуриламины **1а–d** легко вступают в реакцию циклоприсоединения с малеиновым ангидридом, образуя при комнатной температуре смеси изомерных *N*-фурфурилзамещённых изоиндолонкарбоновых кислот **2а–d**. Присоединение протекает через промежуточное образование фурфуриламида малеиновой кислоты **2'** и последующее экзо-[4+2]-циклоприсоединение непредельного фрагмента к фурановому кольцу [20].

 $\mathbf{a} \mathbf{R}^1 = \mathbf{H}, \mathbf{b} \mathbf{R}^1 = \mathbf{M}\mathbf{e}, \mathbf{c} \mathbf{R}^1 = \mathbf{B}\mathbf{r}, \mathbf{d} \mathbf{R}^1 = \mathbf{I}$

При комнатной температуре циклоприсоединение к фурфуриламинам 1b-d протекает неселективно по обоим фурановым фрагментам с образованием смеси изомерных *N*-фурфурилзамещённых оксоэпоксиизоиндолонкарбоновых кислот 2b-dA и 2b-dB. В случае 5-метил- и 5-бромфурилзамещённых аминов **1b,с** в смесях преобладают изомеры **2b,сB** с заместителем R¹ в оксабициклогептеновом фрагменте, а в случае иодзамещённого 1d – изомер **2dA**. На примере дифурфуриламина **1b** ($R^1 = Me$) показано, что при понижении температуры реакции от 25 °C до 0-5 °C незначительно увеличивается региоселективность (доля изомера 2bB возрастает с 1:2.3 до 1:3). Вероятно, изомер 2bB является кинетическим продуктом реакции (5-метилзамещённое фурановое кольцо является лучшим диеном по сравнению с 5-незамещённым), а изомер 2bA – термодинамическим (см. ниже). В кипящем бензоле циклоприсоединение малеинового ангидрида к аминам 1а-d протекает стерео- и региоселективно. При этом в случае соединений 1с, d малеинамидный фрагмент циклоприсоединяется по галогензамещённому фурановому фрагменту с образованием изомеров 2с, dB, а в случае метилзамещённого фурфуриламина **1b** по незамещённому фурановому фрагменту с образованием кислоты 2bА.

Соотношение изомеров **A** и **B** устанавливали на основании измерений интегральных интенсивностей сигналов протонов H-4, H-5 и H-6 в спектрах ЯМР ¹Н воздушно-сухих реакционных смесей (выпадающие в ходе реакции кристаллические аддукты отфильтровывали и промывали эфиром). В спектрах ЯМР ¹Н соединений **2a**–**d** имеются три характеристичных сигнала от взаимодействующих протонов H-4, H-5 и H-6 с химическими сдвигами 6.48–6.55, 6.41–6.74 и 4.97–4.99 м. д. соответственно и КССВ ${}^{3}J_{5,6} = 1.5-1.7$ и

 ${}^{3}J_{4,5} = 5.6-5.7$ Гц. Отсутствие КССВ ${}^{3}J_{6,7}$ в оксабициклогептеновом фрагменте молекулы однозначно указывает на эндо-расположение протонов H-7, H-7а ($J_{7,7a} = 8.7-9.3$ Гц) и, соответственно, на экзо-расположение карбоксильного и амидного заместителей. Отсутствие характеристичного сигнала протона H-6 и константы ${}^{3}J_{5,6}$ свидетельствует об образовании кислот **2** в виде **B**-изомера. Протоны группы 3-CH₂ в изоиндолонкарбоновых кислотах **2a**-**d** химически неэквивалентны и наблюдаются в спектре в виде AB-системы с КССВ ${}^{2}J_{A,B} = 11.2-11.8$ Гц.

В литературе не описаны методы синтеза эпоксиизоиндолонкарбоновых кислот, не содержащих заместителей у атома азота. Наличие вторичного атома азота открывает широкие возможности для модификации таких изоиндолов по амидной группе. Ранее попытки осуществить синтез такого рода соединений циклоприсоединением малеинового ангидрида к фурфуриламину в различных растворителях оказались безуспешными [22]. Лишь при кипячении в воде (5 ч) с эквимолярным количеством малеинового ангидрида кислота **2e** была получена с выходом 17%. Более удобным оказался подход, базирующийся на взаимодействии салицилиденфурфуриламина **3** с малеиновым ангидридом в дихлорметане. В этом случае происходит элиминирование салицилового альдегида, что приводит к трициклу **2e** с выходом 51%.

Механизм этой необычной реакции, по всей видимости, включает нуклеофильную атаку вторичного атома азота таутомерной формы I основания Шиффа 3 по карбонильной группе малеинового ангидрида. Последующая внутримолекулярная экзо-реакция Дильса–Альдера в образующемся амиде II приводит к трициклической системе III. Присоединение воды к последней сопровождается элиминированием салицилового альдегида и завершает процесс образования аддукта 2e.

540

Реакция, хотя и протекает в мягких условиях (25 °C), требует продолжительного периода времени (3–5 сут). Вероятно, это время необходимо для завершения гидролиза хиноидной структуры III влагой воздуха. Нагревание существенно не влияет на скорость реакции, а добавление воды в реакционную смесь, по всей видимости, приводит к гидролизу исходного азометина **3**.

Цитраконовый ангидрид также вступает в реакцию циклоприсоединения с вторичными фурфуриламинами **1a**,**b**,**f**–**h**; образование эпоксиизоиндолонкарбоновых кислот **5а–еА** наблюдается при кипячении в бензоле в течение 4 ч.

1a,b, 5a R = фурфурил; 1e,f, 4b, 5c, 6a,d R = Ph; 1g,h, 4c,d, 5d,e, 6b,c R = Bn; 5b R = 5-метилфурфурил; 1a,e,g, 4b,c, 5a,b,d, 6a,b,d R¹ = H; 1f,h, 4d, 5c,e, 6c R¹ = Me; 6a-c Hal = Cl; 6d Hal = Br

При взаимодействии фурфуриламинов **1a,b,f–h** с цитраконовым ангидридом можно ожидать образования двух региоизомерных кислот **A** и **B** с геминальным и вицинальным расположением метильной и карбоксильной групп. При 80 °C аминолизу подвергается лишь карбонильный атом C-2, в результате чего образуется *N*-фурфуриламид цитраконовой кислоты **5**', который через *экзо*-переходное состояние превращается в аддукты **5а–еА** с вицинальным расположением метильной и карбоксильной групп.

На примере изоиндолонов **5aA** (R = 5-фурфурил) и **5eA** (R = Bn) положение метильной группы при C-7a однозначно доказано совокупностью методик ЯМР, включающей двумерные спектры ${}^{1}\text{H}-{}^{13}\text{C}$, NOE, HSQC и HMBC. Наиболее информативной оказалась последняя методика, позволившая надёжно проследить углеводородный каркас молекулы, опираясь на интенсивные кросс-пики, отвечающие взаимодействиям ${}^{3}J_{\text{Me,C-1}}$, ${}^{3}J_{\text{Me,C-3a}}$, ${}^{3}J_{\text{H-3,C-7a}}$. На наш взгляд, измерение ЯЭО в образцах этих соединений, использовавшееся для той же цели в работах [15, 17], не даёт достаточно надёжной структурной информации из-за малой интенсивности кросс-пиков H-7/Me-7a (H-7a/Me-7).

Таким образом, положение эндо-7а-Ме в бициклогептеновом фрагменте аддуктов **5A** согласуется с данными работ [15, 17], но отличается от такового в аддуктах термического циклоприсоединения метилмалеинового ангидрида к 2-фурилзамещённым гетероциклам, описанных нами ранее [6, 23].

Дибром- и дихлормалеиновый ангидриды [24, 25] реагируют с *N*-фурфуриламинами **1**е,**g**,**h** уже при комнатной температуре с образованием *экзо*аддуктов **6а**–**d** с хорошими выходами.

Все аддукты **2а–е**, **5а–е** и **6а–d** представляют собой бесцветные кристаллы плохо растворимые в большинстве органических растворителей. В ИК спектрах этих соединений имеются характеристичные полосы валентных колебаний амидной и карбоксильной групп в области 1634–1712 и 1722–1751 см⁻¹ соответственно. В масс-спектрах соединений **2а–е**, **5а–с** и **6а–d** наблюдаются пики молекулярных ионов низкой интенсивности, соответствующие их брутто-формулам.

Таблица 1

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., ⁰С
нение		С	Н	Ν	
2a	C ₁₄ H ₁₃ NO ₅	<u>61.38</u> 61.09	<u>4.50</u> 4.76	<u>5.64</u> 5.09	150-151
2bA	C ₁₅ H ₁₅ NO ₅	<u>62.44</u> 62.28	<u>5.07</u> 5.23	<u>4.59</u> 4.84	106-108
2cB	C ₁₄ H ₁₂ BrNO ₅	$\frac{47.13}{47.48}$	$\frac{3.56}{3.42}$	$\frac{4.22}{3.95}$	>209 (разл.)
2dB	C ₁₄ H ₁₂ INO ₅	<u>42.13</u> 41.92	<u>2.67</u> 3.02	<u>3.15</u> 3.49	>205 (разл.)
2e	C ₉ H ₉ NO ₄	<u>55.72</u> 55.39	<u>4.47</u> 4.65	<u>8.11</u> 7.18	152-154
4a	C ₁₁ H ₉ NO ₄	<u>59.91</u> 60.27	<u>4.49</u> 4.14	<u>6.53</u> 6.39	188–190 (разл.)
4d	C ₁₇ H ₁₅ NO ₃	<u>72.81</u> 72.58	<u>5.49</u> 5.37	<u>5.13</u> 4.98	153–154 (разл.)
5a	C ₁₅ H ₁₅ NO ₅	<u>62.42</u> 62.28	<u>5.68</u> 5.23	<u>4.35</u> 4.84	106–107
5b	C ₁₆ H ₁₇ NO ₅	<u>63.11</u> 63.36	<u>5.33</u> 5.65	<u>5.82</u> 4.62	145–146
5c	C ₁₇ H ₁₇ NO ₄	<u>68.01</u> 68.21	<u>5.65</u> 5.72	<u>4.16</u> 4.68	133–134
6a	$C_{15}H_{11}Cl_2NO_4$	<u>52.53</u> 52.96	<u>3.19</u> 3.26	<u>4.27</u> 4.12	160–161 (разл.)
6b	$C_{16}H_{13}Cl_2NO_4$	<u>54.42</u> 54.26	<u>3.54</u> 3.70	<u>4.26</u> 3.95	149–150 (разл.)
6c	$C_{17}H_{15}Cl_2NO_4$	<u>55.72</u> 55.45	<u>4.37</u> 4.11	$\frac{3.65}{3.80}$	131–132 (разл.)
6d	$C_{15}H_{11}Br_2NO_4$	<u>42.33</u> 41.99	<u>2.13</u> 2.58	<u>3.48</u> 3.26	175–176

Физико-химические характеристики соединений 2а-е, 4a,d, 5а-с, 6а-d

Соеди- нение	ИК спектр, v, см ⁻¹	Спектры ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)
2a	1663 (NCO), 1741 (CO ₂ H)	2 .52 (1H, μ , $J = 9.3$, H-7a); 2.79 (1H, μ , $J = 9.3$, H-7); 3.58 (1H, μ , $J = 11.2$) μ 3.94 (1H, μ , $J = 11.2$, 3-CH ₂); 4.30 (1H, μ , $J = 15.6$) μ 4.52 (1H, μ , $J = 15.6$, 2-CH ₂); 4.99 (1H, μ , $J = 1.5$, H-6); 6.31 (1H, yui, μ , $J = 3.2$, H-3'); 6.39 (1H, μ , μ , $J = 1.9$, $J = 3.2$, H-4'); 6.41 (1H, μ , μ , $J = 1.5$, $J = 5.6$, H-5); 6.55 (1H, μ , $J = 5.6$, H-4); 7.56 (1H, μ , μ , $J = 1.9$, $J = 1$
2bA	1675 (NCO), 1744 (CO ₂ H)	2.22 (3H, c, CH ₃); 2.52 (1H, π , J = 9.2, H-7a); 2.79 (1H, π , J = 9.2, H-7); 3.56 (1H, π , J = 11.5) и 3.94 (1H, π , J = 11.5, 3-CH ₂); 4.20 (1H, π , J = 15.6) и 4.45 (1H, π , J = 15.6, 2-CH ₂); 4.97 (1H, π , J = 1.7, H-6); 5.99 (1H, π , J = 0.7, J = 3.0, H-4); 6.18 (1H, ym. π , J = 3.0, H-3'); 6.41 (1H, π , J = 1.7, J = 5.7, H-5); 6.55 (1H, π , J = 5.7, H-4)
2cB	1675 (NCO), 1750 (CO ₂ H)	2.97 (1H, π , $J = 8.7$, H-7a); 3.01 (1H, π , $J = 8.7$, H-7); 3.64 (1H, π , $J = 11.8$) и 3.94 (1H, π , $J = 11.8$, 3-CH ₂); 4.32 (1H, π , $J = 15.6$) и 4.50 (1H, π , $J = 15.6$, 2-CH ₂); 6.35 (1H, π , π , $J = 0.9$, $J = 3.1$, H-3'); 6.41 (1H, π . π , $J = 1.9$, $J = 3.1$, H-4'); 6.48 (1H, π , $J = 5.6$, H-4); 6.74 (1H, π , $J = 5.6$, H-5); 7.59 (1H, π . π , J = 0.9, $J = 1.9$, H-5')
2dB	1670 (NCO), 1745 (CO ₂ H)	2.88 (1H, π , $J = 8.8$, H-7a); 2.93 (1H, π , $J = 8.8$, H-7); 3.62 (1H, π , $J = 11.8$) и 3.92 (1H, π , $J = 11.8$, 3-CH ₂); 4.30 (1H, π , $J = 16.0$) и 4.50 (1H, π , $J = 16.0$, 2-CH ₂); 6.35 (1H, π . π , $J = 0.8$, $J = 3.2$, H-3'); 6.41 (1H, π . π , $J = 1.8$, $J = 3.2$, H-4'); 6.54 (1H, π , $J = 5.6$, H-4); 6.55 (1H, π , $J = 5.6$, H-5); 7.58 (1H, π . π , J = 0.8, $J = 1.8$, H-5')
2e	1634 (NCO), 1733 (CO ₂ H), 3355 (NH)	2.43 (1H, π , $J = 9.3$, H-7a); 2.67 (1H, π , $J = 9.3$, H-7); 3.47 (1H, π , π , $J = 11.7$, $J = 1.4$) μ 3.85 (1H, π , $J = 11.7$, 3-CH ₂); 4.97 (1H, π , $J = 1.7$, H-6); 6.42 (1H, π , π , $J = 5.7$, $J = 1.7$, H-5); 6.57 (1H, π , $J = 5.7$, H-4); 7.64 (1H, c, NH); 12.15 (1H, ym. c, CO ₂ H)
4a	1640 (NCO), 1722 (CO ₂ H)	2.74 (3H, c, CH ₃); 4.96 (2H, c, 1-CH ₂); 7.79 (1H, уш. д, <i>J</i> = 7.9, H-7); 7.89 (1H, т, <i>J</i> = 7.9, H-6); 8.54 (1H, уш. д, <i>J</i> = 7.9, H-5); 14.31 (1H, c, CO ₂ H)
4d	1602 (NCO), 1712 (CO ₂ H)	2.33 (3H, с, 5-CH ₃); 4.33 (2H, с, 1-CH ₂); 4.70 (2H, с, CH ₂ Ph); 7.26–7.46 (7H, м, H Ar)
5a	1667 (NCO), 1736 (CO ₂ H)	1.03 (3H, c, 7a-CH ₃); 2.06 (1H, c, H-7); 3.53 (1H, π , $J = 11.8$) и 3.82 (1H, π , $J = 11.8$, 3-CH ₂); 4.26 (1H, π , $J = 15.6$) и 4.54 (1H, π , $J = 15.6$, 2-CH ₂); 4.89 (1H, π , $J = 1.6$, H-6); 6.30 (1H, ym. π , $J = 3.0$, H-3'); 6.39 (1H, π . π , $J = 1.9$, $J = 3.0$, H-4'); 6.51 (1H, π . π , $J = 1.6$, $J = 5.6$, H-5); 6.53 (1H, π , π , $J = 5.6$, H-4); 7.56 (1H, ym. π , $J = 1.9$, H-5'); 12.05 (1H, ym. c, CO ₂ H)
5b	1644 (NCO), 1722 (CO ₂ H)	0.99 (3H, c, 7a-CH ₃); 2.02 (1H, c, H-7); 2.19 (3H, д, <i>J</i> = 0.8, 5'-CH ₃); 3.49 (1H, д, <i>J</i> = 11.7) и 3.77 (1H, д, <i>J</i> = 11.7, 3-CH ₂); 4.13 (1H, д, <i>J</i> = 15.6) и 4.45 (1H, д, <i>J</i> = 15.6, 2-CH ₂); 4.84 (1H, д, <i>J</i> = 1.6, H-6); 5.94 (1H, д. к, <i>J</i> = 0.8, <i>J</i> = 3.0, H-4'); 6.11 (1H, д, <i>J</i> = 3.0, H-3'); 6.47 (1H, д. д, <i>J</i> = 1.6, <i>J</i> = 5.7, H-5); 6.50 (1H, д, <i>J</i> = 5.7, H-4)
5c	1712 (NCO), 1750 (CO ₂ H)	1.12 (3H, c, 7a-CH ₃); 1.52 (3H, c, 6-CH ₃); 2.21 (1H, c, H-7); 4.02 (1H, π , $J = 11.8$) n 4.45 (1H, π , $J = 11.8$, 3-CH ₂); 6.40 (1H, π , $J = 5.6$, H-4); 6.66 (1H, π , $J = 5.6$, H-5); 7.14 (1H, ym. r, $J = 7.5$, H-4'); 7.38 (2H, ym. r, $J = 7.5$, H-3',5'); 7.65 (2H, ym. π , $J = 7.5$, H-2',6')
6a	1701 (NCO), 1746 (CO ₂ H)	4.26 (1H, д, $J = 12.5$) и 4.66 (1H, д, $J = 12.5$, 3-CH ₂); 5.58 (1H, д, $J = 1.9$, H-6); 6.77 (1H, д. д, $J = 1.9$, $J = 5.6$, H-5); 6.85 (1H, д, $J = 5.6$, H-4); 7.24 (1H, уш. т, $J = 7.5$, H-4'); 7.44 (2H, уш. т, $J = 7.5$, H-3',5'); 7.65 (2H, уш. д, $J = 7.5$, H-2',6')
6b	1674 (NCO), 1746 (CO ₂ H)	3.60 (1H, д, $J = 12.5$) и 3.97 (1H, д, $J = 12.5$, 3-CH ₂); 4.44 (1H, д, $J = 15.6$) и 4.52 (1H, д, $J = 15.6$, 2-CH ₂); 5.51 (1H, д, $J = 1.9$, H-6); 6.69 (1H, д. д, J = 1.9, $J = 5.6$ H-5); 6.75 (1H, л, $J = 5.6$ H-4); 7.24–7.37 (5H, м H Ph)
6с	1666 (NCO), 1751 (CO ₂ H)	1.57 (3H, c, 6-CH ₃); 3.59 (1H, μ , $J = 12.5$) μ 3.90 (1H, μ , $J = 12.5$, 3-CH ₂); 4.41 (1H, μ , $J = 14.8$) μ 4.49 (1H, μ , $J = 14.8$, 2-CH ₂); 6.48 (1H, μ , $J = 5.5$, H-5); 6.70 (1H, μ , $J = 5.5$, H-4); 7.24 (2H, ym. μ , $J = 7.5$, H-2',6'); 7.28 (1H, ym. π , $J = 7.5$, H-4'); 7.33 (2H, ym. π , $J = 7.5$, H-3',5')
6d	1700 (NCO), 1739 (CO ₂ H)	4.22 (1H, π , $J = 12.5$) μ 4.58 (1H, π , $J = 12.5$, 3-CH ₂); 5.56 (1H, π , $J = 1.9$, H-6); 6.73 (1H, π , π , $J = 1.9$, $J = 5.6$, H-5); 6.77 (1H, π , $J = 5.6$, H-4); 7.21 (1H, π , $J = 7.5$, H-4'); 7.42 (2H, yui. π , $J = 7.5$, H-3',5'); 7.63 (2H, yui. π , $J = 7.5$, H-2',6')

ИК и ЯМР ¹Н спектры соединений 2а–е, 4а,d, 5а–с, 6а–d

Наличие в кислотах 2a-d ацидофобного фуранового фрагмента, свободной группы NH в соединении 2e, метильной группы или атомов галогена в оксабициклогептеновом фрагменте кислот 5 и 6 заметно затрудняет ароматизацию эпоксисодержащего кольца или делает её невозможной. Ароматизация 7-оксабицикло[2.2.1]гептенового фрагмента под действием сильных минеральных кислот (HCl, H₃PO₄, H₂SO₄) различных концентраций [20] не приводит к положительным результатам. Кислота 2e ароматизируется при комнатной температуре эфиратом трёхфтористого бора в уксусном ангидриде с образованием изоиндолона 4a. Ароматизацию дигалогензамещённых кислот 6a-c осуществляли действием цинка в уксусной кислоте. Кислоты 4b-d получены с удовлетворительными выходами.

Таблица З

Соеди- нение	Химические сдвиги, б, м. д.
2a	38.8 (CH ₂); 44.5 (C-7a); 47.8 (C-3); 49.9 (C-7); 81.1 (C-6); 88.2 (C-3a); 107.8 (C-4'); 110.5 (C-3'); 135.5 (C-5); 136.6 (C-4); 142.6 (C-5'); 150.0 (C-2'); 170.1 (C-1); 172.7 (CO ₂ H)
2bA	13.3 (CH ₃); 38.9 (CH ₂); 44.6 (C-7a); 47.8 (C-3); 50.1 (C-7); 81.2 (C-6); 88.3 (C-3a); 106.5 (C-4'); 108.8 (C-3'); 135.6 (C-5); 136.7 (C-4); 148.2 (C-5'); 151.3 (C-2'); 170.1 (C-1); 172.8 (CO ₂ H)
2cB	38.8 (CH ₂); 47.7 (C-3); 51.1 (C-7a); 53.0 (C-7); 87.3 (C-3a); 90.5 (C-6); 108.8 (C-4'); 110.6 (C-3'); 138.0 (C-5); 139.8 (C-4); 142.7 (C-5'); 149.8 (C-2'); 169.2 (C-1); 169.6 (CO ₂ H)
2dB	38.8 (CH ₂); 47.3 (C-3); 52.0 (C-7a); 52.8 (C-7); 87.9 (C-3a); 88.3 (C-6); 108.0 (C-4'); 110.5 (C-3'); 135.5 (C-5); 137.2 (C-4); 142.7 (C-5'); 149.8 (C-2'); 169.3 (C-1); 170.4 (CO ₂ H)
2e	43.2 (C-3); 44.5 (C-7); 49.3 (C-7a); 81.2 (C-6); 91.3 (C-3a); 135.9 (C-5); 136.6 (C-4); 173.1 (C-1); 173.2 (CO ₂ H)
4 a	25.3 (CO <u>C</u> H ₃); 49.0 (C-1); 127.8 (C-7); 128.4 (C-6); 130.8 (C-5); 134.8 (C-4); 135.2 (C-3a); 142.5 (C-7a); 164.1 (CO); 170.4 (CO ₂ H); 171.1 (C-3)
4d	18.1 (CH ₃); 45.4 (CH ₂); 48.8 (C-1); 123.5 (C-7); 127.3 (C-4'); 127.6 (C-4); 127.7 (C-3',5'); 128.0 (C-5); 128.6 (C-2',6'); 128.8 (C-1); 133.0 (C-6); 137.3 (C-3a); 139.4 (C-7a); 166.1 (C-3); 168.6 (CO ₂ H)
5a	21.5 (CH ₃); 38.9 (CH ₂); 46.4 (C-3); 52.6 (C-7); 55.7 (C-7a); 80.7 (C-6); 90.4 (C-3a); 107.8 (C-4'); 110.6 (C-3'); 133.5 (C-5); 137.6 (C-4); 142.7 (C-5'); 150.1 (C-2'); 172.9 (C-1); 173.7 (CO ₂ H)
5b	13.2 (CH ₃); 21.4 (CH ₃); 38.9 (CH ₂); 46.3 (C-3); 52.5 (C-7); 55.6 (C-7a); 80.6 (C-6); 90.3 (C-3a); 106.4 (C-4'); 108.5 (C-3'); 133.5 (C-5); 137.5 (C-4); 148.2 (C-5'); 151.2 (C-2'); 172.8 (C-1); 173.6 (CO ₂ H)
5c	15.6 (CH ₃); 21.8 (CH ₃); 48.1 (C-3); 56.9 (C-7); 60.0 (C-7a); 88.0 (C-6); 88.9 (C-3a); 119.5 (C-2',6'); 123.9 (C-4'); 128.6 (C-3',5'); 134.3 (C-4); 139.6 (C-1'); 140.5 (C-5); 171.6 (C-1); 174.0 (CO ₂ H)
6a	48.4 (C-3); 72.5 (C-7a); 75.5 (C-7); 85.7 (C-6); 90.5 (C-3a); 120.7 (C-2',6'); 125.9 (C-4'); 129.5 (C-3',5'); 133.9 (C-5); 138.9 (C-1'); 139.6 (C-4); 166.3 (C-1); 168.2 (CO ₂ H)
6b	46.2 (CH ₂); 46.7 (C-3); 71.9 (C-7a); 74.7 (C-7); 85.5 (C-6); 91.5 (C-3a); 127.9 (C-3',5'); 128.1 (C-4'); 129.2 (C-2',6'); 134.3 (C-5); 136.3 (C-1'); 139.2 (C-4); 167.3 (C-1); 168.2 (CO ₂ H)
60	14.2 (CH ₃), 45.7 (CH ₂); 46.7 (C-3); 76.2 (C-7a); 77.7 (C-7); 90.1 (C-6); 93.0 (C-3a); 127.5 (C-3',5'); 128.4 (C-4'); 128.7 (C-2',6'); 134.5 (C-5); 135.8 (C-1'); 141.4 (C-4); 166.4 (C-1); 167.3 (CO ₂ H)
6d	47.8 (C-3); 65.8 (C-7a); 68.0 (C-7); 85.1 (C-6); 90.2 (C-3a); 120.0 (C-2',6'); 125.1 (C-4'); 128.9 (C-3',5'); 133.1 (C-5); 138.5 (C-1'); 139.7 (C-4); 165.8 (C-1); 167.5 (CO ₂ H)

Спектры ЯМР ¹³С соединений 2а-е, 4а,d, 5а-с, 6а-d

Масс-спектры	соединений 2а–е, 4а, 5а–с, 6а–d
--------------	---------------------------------

Соеди- нение	<i>m/z (I</i> _{отн} , %)
2a	275 [M] ⁺ (3), 231 (2), 194 (47), 176 (31), 150 (18), 121 (12), 109 (64), 99 (61), 80 (100), 69 (24), 54 (94), 43 (63)
2b	289 [M] ⁺ (22), 208 (87), 194 (54), 164 (13), 150 (21), 110 (100), 96 (83), 80 (92), 67 (13), 55 (70), 43 (40)
2c	353 [M] ⁺ (для ⁷⁹ Br) (3), 274 (27), 254 (19), 228 (17), 194 (70), 176 (76), 159 (52), 148 (29), 131 (47), 109 (38), 96 (72), 80 (100), 67 (26), 53 (88), 43 (65), 32 (34)
2d	401 [M] ⁺ (6), 320 (64), 276 (14), 222 (46), 207 (72), 194 (67), 179 (39), 147 (16), 128 (67), 109 (38), 96 (73), 80 (100), 59 (54), 53 (85), 44 (49)
2e	195 [M] ⁺ (3), 177 (20), 96 (100), 81 (40), 69 (18), 53 (23), 39 (17)
4 a	219 [M] ⁺ (5), 191 (11), 175 (92), 145 (13), 133 (100), 104 (42), 89 (14), 76 (37), 59 (47), 43 (78)
5a	289 [M] ⁺ (6), 208 (47), 176 (22), 122 (100), 113 (75), 96 (80), 80 (72), 69 (39), 53 (52), 43 (35)
5b	303 [M] ⁺ (11), 222 (83), 204 (27), 190 (67), 136 (12), 123 (57), 109 (100), 95 (92), 80 (96), 68 (41), 59 (42), 53 (43), 43 (52)
5c	299 [M] ⁺ (12), 254 (21), 187 (100), 143 (11), 106 (36), 95 (96), 77 (24), 68 (30), 51 (21), 41 (56)
6a	340 [M] ⁺ (для ³⁵ Cl) (3), 304 (41), 260 (22), 224 (76), 196 (71), 172 (52), 140 (22), 123 (48), 105 (47), 86 (100), 76 (94), 65 (44), 53 (82), 43 (47)
6b	353 [M] ⁺ (для ³⁵ Cl) (3), 318 (21), 274 (30), 238 (22), 218 (24), 182 (58), 146 (41), 122 (78), 105 (43), 96 (100), 86 (97), 65 (72), 53 (68), 43 (31)
6c	368 [M] ⁺ (для ³⁵ Cl) (3), 332 (11), 276 (13), 252 (21), 232 (14), 196 (82), 160 (40), 122 (79), 110 (69), 91 (100), 77 (43), 65 (67), 52 (87)
6d	427 [M] ⁺ (для ⁷⁹ Br) (2), 348 (4), 303 (7), 255 (13), 223 (24), 195 (28), 172 (34), 143 (16), 130 (81), 104 (49), 80 (100), 65 (22), 53 (74), 43 (67)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на фурье-спектрометре Инфралюм ФТ-801 в таблетках с КВг. Спектры ЯМР ¹Н зарегистрированы на приборе Bruker WH-400 (400 МГц) и JEOL JNM-ECA600 (600 МГц) при 26 °С для ~3% растворов в ДМСО-d₆, внутренний стандарт – остаточный сигнал растворителя (2.49 м. д.). Спектры ЯМР ¹³С записаны на спектрометре Bruker AMX-400 (100 МГц), в качестве стандарта использовали центральный сигнал мультиплета ДМСО-d₆ (39.96 м. д.). Масс-спектры записаны на масс-спектрометре Thermo Trace DSQ (прямой ввод образца в источник ионов, энергия ионизации 70 эВ). Температуры плавления синтезированных образцов определены на приборе SMP 30 и не исправлены. Для тонкослойной хроматографии использовали пластины Sorbfil (проявление парами иода). Очистку продуктов реакций проводили перекристаллизацией из смеси 2-РгОН–ДМФА. Соотношение изомеров в пролуктах реакций определяли по спектрам ЯМР¹Н, как отношение интегральных интенсивностей сигналов однотипных протонов. Для колоночной хроматографии использовали Al₂O₃ (активированный, нейтральный, 50–200 меш). Реактивы фирмы Acros Organics применяли без дополнительной очистки, для синтезов использовали свежеперегнанные растворители.

Физико-химические характеристики и данные элементного анализа всех новых соединений приведены в табл. 1, ИК и ЯМР ¹Н спектры – в табл. 2, спектры ЯМР ¹³С – в табл. 3, масс-спектры – в табл. 4.

(3aS*,6R*,7S*,7aR*)-1-Оксо-2-(2-фурилметил)-1,2,3,6,7,7а-гексагидро-3а,6эпоксиизоиндоло-7-карбоновая кислота (2a), (3aS*,6R*,7S*,7aR*)-2-[(5-метил-2-фурил)метил]-1-оксо-1,2,3,6,7,7а-гексагидро-За,6-эпоксиизоиндоло-7-карбоновая килота (2bA), (3aS*,6R*,7S*,7aR*)-6-метил-1-оксо-2-(2-фурилметил)-1,2,3,6,7,7агексагидро-За,6-эпоксиизоиндоло-7-карбоновая кислота (2bB), (3aS*,6R*,7S*,7aR*)-2-[(5-бром-2-фурил)метил]-1-оксо-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (2cA), (3aS*,6S*,7R*,7aR*)-6-бром-1-оксо-2-(2-фурилметил)-1,2,3,6,7,7а-гексагидро-За,6-эпоксиизоиндоло-7-карбоновая кислота (2cB), (3aS*,6R*,7S*,7aR*)-2-[(5-иод-2-фурил)метил]-1-оксо-1,2,3,6,7,7а-гексагидро-3а,6эпоксиизоиндоло-7-карбоновая кислота (2dA), (3aS*,6S*,7R*,7aR*)-2-(2-фурилметил)-6-иод-1-оксо-1,2,3,6,7,7а-гексагидро-За,6-эпоксиизоиндоло-7-карбоновая кислота (2dB) (общая методика). А. К раствору 0.020 моль амина 1b-d в 50 мл бензола при 20 °C добавляют раствор 2.24 г (0.023 моль) малеинового ангидрида в 50 мл бензола и выдерживают реакционную смесь до окончания реакции (контроль TCX). Осадок отфильтровывают и промывают эфиром (2 × 15 мл). Получают смеси А- и В-изомеров карбоновых кислот 2b-d в виде бесцветных кристаллов. Суммарный выход, соотношение А- и В-региоизомеров: 2b - 79%, 30:70; 2c - 52%, 45:55; 2d -50%, 60:40.

Б. Раствор 0.020 моль амина **1а**–**d** и 2.24 г (0.023 моль) малеинового ангидрида в 100 мл бензола кипятят 10 ч. Выпавшие кристаллы отфильтровывают и промывают эфиром (2×15 мл). Получают индивидуальные карбоновые кислоты **2a** (87%), **2bA** (86%), **2cB** (78%) и **2dB** (70%) в виде бесцветных кристаллов.

(3а*S**,6*R**,7*S**,7а*R**)-1-Оксо-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (2е). Раствор 15.1 г (0.154 моль) малеинового ангидрида и 15.5 г (0.077 моль) салицилиденфурфуриламина 3 в 100 мл CH₂Cl₂ перемешивают 3 сут при 20 °C. Выпавший мелкокристаллический порошок отфильтровывают, промывают CH₂Cl₂ (2 × 25 мл) и перекристаллизовывают из смеси 2-PrOH–ДМФА. Получают 11.1 г (51%) соединения 2е в виде бесцветных кристаллов.

2-Ацетил-3-оксо-2,3-дигидро-1*H***-изоиндол-4-карбоновая кислота (4а)**. К раствору 10.42 г (0.05 моль) эпоксиизоиндолонкарбоновой кислоты **2е** в 70 мл свежеперегнанного уксусного ангидрида прибавляют 6.6 мл (0.05 моль) BF₃·Et₂O. Реакционную смесь перемешивают 1 сут при 20 °C (контроль TCX), затем выливают в 100 мл воды, экстрагируют CH₂Cl₂ (3×50 мл). Экстракт сушат MgSO₄. Растворитель отгоняют в вакууме. Остаток (тёмное масло) очищают на колонке (Al₂O₃, 40 × 100 см, элюент – EtOAc–гексан, 1:1). Получают 4.60 г (41%) соединения **4а** в виде бледно-жёлтых кристаллов.

3-Оксо-2-фенил-2,3-дигидро-1*H***-изоиндол-4-карбоновая кислота (4b), 2-бензил-3-оксо-2,3-дигидро-1***H***-изоиндол-4-карбоновая кислота (4c), 2-бензил-5-метил-3оксо-2,3-дигидро-1***H***-изоиндол-4-карбоновая кислота (4d)** (общая методика). К раствору 0.28 ммоль карбоновой кислоты **6а**-с в 10 мл ледяной уксусной кислоты прибавляют 1.1 г (16.90 ммоль) цинковой пыли и перемешивают 2 ч при 70 °C. Охлаждают, прибавляют 100 мл воды и нейтрализуют водным раствором аммиака. Непрореагировавший цинк отфильтровывают. Фильтрат подкисляют конц. HCl до рН 4–5. Выпавшие кристаллы отфильтровывают, промывают эфиром (2 × 15 мл). После перекристаллизации из смеси 2-РгОН–ДМФА получают бесцветные кристаллы соответствующих кислот: **4b** (45%), **4c** (62%) и **4d** (40%). Физико-химические характеристики и спектральные данные кислот **4b**, с идентичны описанным в работе [20].

 $(3aS^*,6R^*,7S^*,7aR^*)$ -7а-Метил-1-оксо-2-(2-фурилметил)-1,2,3,6,7,7а-гексагидро-За,6-эпоксиизоиндоло-7-карбоновая кислота (5а), (3aS*,6R*,7S*,7aR*)-7а-метил-2-[(5-метил-2-фурил)метил]-1-оксо-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (5b), (3aS*,6R*,7S*,7aR*)-6,7а-диметил-1-оксо-2-фенил-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (5с), (3aS*,6R*,7S*,7aR*)-2-бензил-7а-метил-1-оксо-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (5d), (3aS*,6R*,7S*,7aR*)-2-бензил-6,7а-диметил-1-оксо-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (5с) (общая методика). Раствор 0.011 моль соответствующего амина 1a,b,f-h и 1.1 мл (0.012 моль) цитраконового ангидрида в 30 мл бензола кипятят 6 ч (контроль TCX). Остаток, после отгонки растворителя, перекристаллизовывают из смеси 2-PrOH– ДМФА. Получают соответствующие кислоты **5a** (88%), **5b** (50%), **5c** (59%), **5d** (65%) и **5e** (69%) в виде бесцветных кристаллов. Физико-химические характеристики и спектральные данные соединений **5d,е** идентичны описанным в работах [15, 17].

(3аR*,6R*,7R*,7аS*)-1-Оксо-2-фенил-7,7а-дихлор-1,2,3,6,7,7а-гексагидро-3а,6эпоксиизоиндоло-7-карбоновая кислота (6а), (3аR*,6R*,7R*,7аS*)-2-бензил-1-оксо-7,7а-дихлоро-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (6b), (3аR*,6R*,7R*,7аS*)-2-бензил-6-метил-1-оксо-7,7а-дихлор-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (6с), (3аR*,6R*,7R*,7aS*)-7,7адибром-1-оксо-2-фенил-1,2,3,6,7,7а-гексагидро-3а,6-эпоксиизоиндоло-7-карбоновая кислота (6d) (общая методика). Раствор 0.011 моль амина 1e,g,h и 1.8 г (0.011 моль) дихлор- (для 6а-с) или 2.8 г (0.011 моль) диброммалеинового ангидрида (для 6d) в 20 мл бензола, перемешивают 3 сут при 20 °С (контроль ТСХ). Выпавшие кристаллы отфильтровывают, промывают эфиром (2 × 15 мл). После перекристаллизации из смеси 2-PrOH–ДМФА получают бесцветные кристаллы соответствующих кислот: 6a (51%), 6b (50%), 6c (55%) и 6d (76%).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 11-03-90416 Укр ф а).

Авторы выражают благодарность сотрудникам лаборатории Центра прецизионных инструментальных методов анализа "ПРИМА" ЦКП РУДН.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Ogawa, I. Kasahara, T. Suami, Bull. Chem. Soc. Jpn., 52, 118 (1979).
- I. N. N. Namboothiri, M. Ganesh, S. M. Mobin, M. Cojocaru, J. Org. Chem., 70, 2235 (2005).
- H. W. Gschwend, M. J. Hillman, B. Kisis, R. K. Rodebaugh, J. Org. Chem., 41, 104 (1976).
- 4. A. Ilyin, V. Kysil, M. Krasavin, I. Kurashvili, A. V. Ivachtchenko, J. Org. Chem., 71, 9544 (2006).
- 5. V. V. Kouznetsov, U. M. Cruz, F. I. Zubkov, E. V. Nikitina, Synthesis, 375 (2007).
- F. I. Zubkov, V. P. Zaitsev, A. M. Piskareva, M. N. Eliseeva, E. V. Nikitina, N. M. Mikhailova, A. V. Varlamov, *Rus. J. Org. Chem.*, 46, 1192 (2010).
- A. V. Varlamov, E. V. Boltukhina, F. I. Zubkov, E. V. Nikitina, K. F. Turchin, J. Heterocycl. Chem., 43, 1479 (2006).
- 8. A. V. Varlamov, F. I. Zubkov, E. V. Boltukhina, N. V. Sidorenko, R. S. Borisov, *Tetrahedron Lett.*, **44**, 3641 (2003).
- F. I. Zubkov, E. V. Boltukhina, K. F. Turchin, A. V. Varlamov, *Tetrahedron*, 60, 8455 (2004).
- 10. F. I. Zubkov, E. V. Boltukhina, K. F. Turchin, R. S. Borisov, A. V. Varlamov, *Tetrahedron*, 61, 4099 (2005).
- 11. P. A. Jacobi, Y. Li, J. Am. Chem. Soc., 123, 9307 (2001).
- 12. R. A. Tromp, J. Brussee, A. van der Gen, Org. Biomol. Chem., 1, 3592 (2003).
- 13. K. Paulvannan, T. Chen, J. W. Jacobs, Synlett, 1609 (1999).
- 14. K. Paulvannan, J. W. Jacobs, Tetrahedron, 55, 7433 (1999).
- 15. R. Murali, H. S. Prakash Rao, H. W. Scheeren, Tetrahedron, 57, 3165 (2001).
- 16. K. Paulvannan, Tetrahedron Lett., 40, 1851 (1999).
- 17. R. Murali, H. W. Scheeren, Tetrahedron Lett., 40, 3029 (1999).
- D. Fokas, J. E. Patterson, G. Slobodkin, C. M. Baldino, *Tetrahedron Lett.*, 44, 5137 (2003).

- 19. K. L. Milkiewicz, I. B. Neagu, D. J. Parks, T. Lu, Tetrahedron Lett., 44, 7341 (2003).
- 20. А. В. Варламов, Е. В. Болтухина, Ф. И. Зубков, Н. В. Сидоренко, А. И. Чернышев, Д. Г. Грудинин, *XIC*, 27 (2004). [*Chem. Heterocycl. Compd.*, **40**, 22 (2004).]
- 21. P. S. Sarang, A. A. Yadav, P. S. Patil, U. M. Krishna, G. K. Trivedi, M. M. Salunkhe, *Synthesis*, 1091 (2007).
- 22. F. I. Zubkov, E. V. Nikitina, A. V. Varlamov, Russ. Chem. Rev., 74, 639 (2005).
- 23. F. I. Zubkov, I. K. Airiyan, A. A. Dzyubenko, N. I. Yudina, V. P. Zaytsev, E. V. Nikitina, A. V. Varlamov, V. N. Khrustalev, D. G. Grudinin, *J. Heterocycl. Chem.*, **47**, 400 (2010).
- M. Dubernet, V. Caubert, J. Guillard, M.-C. Viaud-Massuard, *Tetrahedron*, 61, 4585 (2005).
- 25. H. M. Relles, J. Org. Chem., 37, 3630 (1972).

Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва 117198, Россия e-mail: vzaitsev@sci.pfu.edu.ru Поступило 26.04.2011