А. Баран*, А. Плотниеце, А. Соболев, Б. Виганте, М. Гостева, В. Ольховик^а

СИНТЕЗ И ФОТОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА НОВЫХ КАТИОННЫХ КАРБАЗОЛСОДЕРЖАЩИХ ЛЮМИНОФОРОВ

Описан синтез ряда новых π -сопряжённых амфифильных производных карбазола "стильбенового" типа, замещённых *N*-алкилпиридиниевыми группировками в положениях 2 и 7. Благодаря наличию полярных катионных групп и неполярных алкильных заместителей, полученные соединения потенциально способны выступать в качестве агентов для транспортировки генного материала внутрь клетки, а протяжённая и эффективная цепь сопряжения приводит к появлению интенсивной фотолюминесценции как в растворах, так и в биологических средах, что позволяет использовать их как клеточные зонды. Максимумы поглощения соединений находятся в области 422– 450 нм, а люминесценции – в жёлто-зелёной области, при 575–617 нм.

Ключевые слова: люминесцентные клеточные зонды, производные *N*-алкилпиридиния, производные карбазола, стильбеноиды, фотолюминесценция.

Известно, что производные карбазола проявляют широкий спектр биологической активности и обладают способностью селективно локализовываться внутри определённых штаммов клеток [1], проникать в ткани головного мозга через гематоэнцефалический барьер [2], обратимо связываться с ДНК ядра (ДНК дуплексом) [3], стабилизировать структуру ДНК квадруплекса (две двойные спирали ДНК) [4]. Кроме того, соединения, содержащие фрагмент карбазола, изучаются как потенциальные терапевтические агенты для лечения раковых заболеваний [1, 5], болезни Альцгеймера [2], как субстраты протеинов, отвечающих за множественную лекарственную устойчивость [2]. Ещё одной важной и актуальной областью исследований является создание на основе производных карбазола поли-*п*-сопряжённых систем и использование последних в качестве фото- и электроактивных материалов – красителей, люминофоров, клеточных зондов, сенсоров, препаратов для диагностических целей и т. д. [6, 7]. Тем не менее анализ доступной литературы указывает на недостаточную изученность 2,7-дизамещённых производных карбазола, что объясняется недоступностью исходных соединений и невозможностью прямой функционализации простейшего предшественника – 9Н-карбазола по указанным положениям [8].

Ранее нами были разработаны методы синтеза линейных поли-π-сопряжённых производных карбазола, имеющих заместители в положениях 2 и 7, которые представлят собой высокоэффективные люминесцентные материалы для органических светоиспускающих устройств [9].

В продолжение этих исследований нами был синтезирован новый класс амфифильных (т. е. обладающих бинарной функциональностью) π-сопряжённых карбазолсодержащих соединений 4–7, замещённых как липофильными, так и гидрофильными группировками. Учитывая их строение, для такого рода производных можно прогнозировать биологическую активность, в частности, склонность к образованию липосом в водных средах и способность выступать в качестве невиральных систем для транспортировки генного материала (ДНК, РНК), различных протеинов и медикаментов внутрь живых клеток [10]. Нас интересовало влияние положения и характера алкильных заместителей на физико-химические и спектрально-люминесцентные свойства полученных производных.

4a,b-7a,b

2a, 4a,b, 6a,b R = Me; 2b, 5a,b, 7a,b R = $C_{12}H_{25}$; 3a,b, 4a,b, 5a,b R¹ = Me, X = I; 3c,d, 6a,b, 7a,b R¹ = $C_{12}H_{25}$, X = Br; 3-7 a, 3c – 1,2-дизамещённый пиридин; 3-7 b, 3d – 1,4-дизамещённый пиридин

Целевые поли- π -сопряжённые соединения синтезировали из эфира 1, полученного с выходом около 67% согласно известной методике [9]. Дальнейшие превращения предполагалось проводить реакцией Кнёвенагеля, ключевыми интермедиатами для которой выступают *N*-замещённые карбазол-2,7-дикарбальдегиды 2. Атом азота соединения 1 алкилировали с помощью гидрида натрия, поскольку согласованное влияние электроноакцепторных карбоксильных групп приводит к значительному снижению электронной плотности в карбазольном ядре и существенно осложняет введение заместителей в это положение. Диальдегиды 2a,b получали по классической двустадийной схеме, включающей восстановление соответствующих сложноэфирных групп алюмогидридом лития и последующим окислением образующихся диолов хлорхроматом пиридиния. Суммарный выход альдегидов 2a,b составил 53– 70% в расчёте на исходный сложный эфир 1.

Поскольку известно, что метильные группы пиколинов не способны участвовать в реакциях конденсации, нами было принято решение предварительно осуществить кватернизацию атома азота в пиридиновом ядре. Проведение этой стадии преследовало две цели: во-первых, катионный центр в *орто-* и *пара*-положениях оказывает существенное активирующее влияние на метильную группу, а во-вторых, в результате осуществления конденсации у целевых соединений будет сразу создана необходимая функционализация [11]. Кватернизацию осуществляли метилиодидом и додецилбромидом.

Как и ожидалось, четвертичные *N*-алкилпиридиниевые производные **3а–d** легко вступают в конденсацию с карбазол-2,7-дикарбальдегидами **2а,b** при кипячении в метаноле в присутствии каталитических количеств пиперидина.

Соединение	λ _{аб.} , нм	$\epsilon \cdot 10^{-3}$, л · моль ⁻¹ · см ⁻¹	λ _{фл.} , нм	Стоксов сдвиг
4 a	424	109.1	612	188
4b	427	132.0	608	181
5a	424	69.8	593	169
5b	444	101.0	602	158
6a	422	41.5	580	158
6b	446	69.8	595	149
7a	422 (423)	55.1 (68.6)	575 (603)	153 (180)
7b	450 (444)	66.3 (87.4)	585 (617)	135 (173)

Спектры поглощения и фотолюминесценции соединений 4-7*

* Запись спектров поглощения проводили при концентрации 12.5 мг/л, а фотолюминесценции – при 100.0 мг/л в растворе EtOH. Для соединений **4a,b** и **7a,b** (значения в скобках) соответствующие спектры регистрировали в ДМФА.

За исключением *N*-метилпроизводных **4a,b**, полная конверсия исходных материалов проходила в течение 16–32 ч, приводя к образованию (*E*)-изомеров целевых продуктов, что подтверждалось данными ЯМР ¹Н спектроскопии. Анализ реакционных смесей на предмет наличия других изомеров не проводился. В случае соединений **4a,b** продукты реакции содержали значительные (до 20%) количества монозамещённых производных (некоторые спектральные характеристики для этих соединений приведены в экспериментальной части), что, вероятно, объясняется их незначительной растворимостью и соосаждением вместе с целевыми бисзамещёнными продуктами. Увеличение продолжительности реакции, замена растворителя на этанол и повышение температуры не приводило к изменению качественного и количественного состава получаемых веществ. Выделить целевые продукты в чистом виде удалось только перекристаллизацией из ДМФА. Производные **5**–7, содержащие додецильные группы, очищали многократной перекристаллизацией из МеОН, что приводило к снижению выхода.

Соединения 4–7 представляют собой порошкообразные гигроскопичные вещества, малорастворимые в органических растворителях (CHCl₃, EtOAc, спирты). Молекулы полученных продуктов содержат электронодонорные карбазольные и акцепторные пиридиниевые группы, комбинация которых в единую поли- π -сопряжённую систему приводит к возникновению типичных эффективных хромофорных фрагментов типа D- π -A.

Записи электронных спектров соединений (таблица) проводят при комнатной температуре в растворе этанола (за исключением производных 4) в идентичных условиях для возможности их сравнения. Поглощение света *орто*-замещёнными производными 4a-7a наблюдается в области 422-424 нм, в то время как *пара*-замещённые соединения 4b-7b поглощают свет при 424-450 нм, что в случае последних может объясняться большей протяжённостью цепи сопряжения. Наибольшие коэффициенты молекулярной экстинкции (є) наблюдаются у соединений 5 и 7, замещённых додецильными группами в карбазольном ядре. Высокая интенсивность поглощения наблюдается также в случае производных 4, что частично может объясняться влиянием растворителя – ДМФА. Заметных отличий интенсивности поглощения между *орто-* и *пара*-замещёнными соединениями не обнаружено. Фотолюминесценция полученных люминофоров наблюдается в диапазонах 575-612 нм и 585-617 нм для *орто-* и *пара*-

замещённых производных соответственно, демонстрируя меньшую разницу значений максимумов испускания ($\lambda_{\phi \pi}$.) и Стоксовых сдвигов по сравнению с максимумами поглощения ($\lambda_{a 6}$.). Наибольшую относительную интенсивность люминесценции проявляют производные 6 и 7, а также производное 4b. Данные спектров испускания, записанных в различных растворителях, свидетельствуют об отсутствии полихроматических (сольватохромных) свойств у полученных соединений, а некоторый разброс значений максимумов люминесценции может объясняться значительной шириной спектральных полос (530–650 нм на полувысоте пика). Нормализованные спектры поглощения и фотолюминесценции для соединения 6а приведены на рисунке.

Как известно из литературных источников [1, 4, 5], аналогичные по строению 3,6-замещённые карбазолы, содержащие метильные группы в пиридиниевых фрагментах, оказались способны не только проникать внутрь клеток, но также связываться с ДНК, приводя к значительному усилению флуоресценции ядра клетки. Эти аналоги обладали селективностью к определённым видам клеток, а также специфичностью к сайтам ДНК, содержащим GC фрагменты, что, наряду с низкой цитотоксичностью, делает их привлекательными кандидатами для использования в качестве клеточных зондов.

Таким образом, нами был получен новый класс амфифильных полисопряжённых карбазолсодержащих соединений, проявляющих свойства фотолюминесценции в жёлто-зелёной области видимого спектра и потенциально обладающих биологически активными свойствами. Как показали предварительные исследования [12], производные, содержащие додецильную группу у пиридинового атома азота, оказались способны накапливаться и люминесцировать в клетках, не проявляя при этом заметной цитотоксичности. В дальнейшем нами планируется более детально изучить токсичность и специфичность синтезированных соединений по отношению к различным штаммам клеток, а также их способность образовывать комплексы с ДНК и выступать в качестве агентов генной трансфекции.

Нормализованные спектры поглощения и фотолюминесценции соединения 6а

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на FTIR спектрометре IRPrestige-21 (Shimadzu), спектры поглощения и флуоресценции – на спектрофлуориметре Solar CM2203 (толщина кюветы 1 см, рабочая область 250–1000 нм). Спектры ЯМР записаны на приборах Varian Mercury 200BB (200 МГц) для соединений **3** и Varian 400-MR (рабочие частоты 400 и 100 МГц для ¹H и ¹³C соответственно), внутренний стандарт – остаточные сигналы протонов ДМСО (2.50 м. д.) и CHCl₃ (7.26 м. д.). Масс-спектры получены с использованием жидкостного хромато-масс-спектрометра Acquity UPLC system (Wasters)-Q-TOF (Micromass), хроматографическая колонка Acquity UPLC BEH C18 (1.7 мкм, 2.1×50 мм), градиентное элюирование MeOH–HCOOH (0.1%) в воде, ионизация ESI, регистрация положительных и отрицательных ионов. Элементный анализ соединений проведён на приборе Carlo Erba Instruments EA 1106. Температуры плавления производных **2b**, **3c** и **3d** определены на приборе OptiMelt (SRS Stanford Reseach Systems), всех остальных соединений – на приборе Кофлера.

Очистка полученных производных осуществлена на приборе SPOT Ultimate (Armen Instruments). Чистота полученных соединений определена методом ВЭЖХ с использованием жидкостного хроматографа Waters Alliance 2695, снабжённого UV/Vis детектором Waters 2489, колонка Alltima CN (5 мкм, 4.6×150 мм), градиентное элюирование 0.1% MeCN-H₃PO₄ в воде или 0.1% MeOH-H₃PO₄ в воде, хроматограммы обработаны с помощью автоматизированного программного обеспечения Empower 2. В работе использованы TCX пластинки Merck 20×20 см, силикагель 60Å, F_{254} . Для флеш- и колоночной хроматографии применялся силикагель фирмы Merck, Silica gel 60 (0.063–0.200 mm). Реагенты и растворители приобретены у фирмы Acros и использованы без дополнительной очистки.

N-Метил-2(4)-метилпиридиний иодиды (**3a**,**b**) получены по методике [13], *N*-додецил-2(4)-метилпиридиний бромиды (**3c**,**d**) – по методике [14] (спектральные характеристики соединений **3c**,**d** в работе [14] отсутствуют, поэтому мы приводим их ниже).

N-Алкилирование диметилового эфира 9*H*-карбазол-2,7-дикарбоновой кислоты (1) (общая методика). К раствору 500 мг (1.76 ммоль) карбазола 1 в 5 мл сухого ДМФА добавляют 2.64 ммоль соответствующего алкил галогенида и 140 мг (3.50 ммоль, 60% дисперсия в минеральном масле) NaH, реакционную смесь перемешивают при комнатной температуре в течение 16 ч. После окончания реакции, к смеси добавляют воду и экстрагируют CHCl₃. Полученное вещество перекристаллизовывают из MeOH.

Диметиловый эфир 9-метил-9*H*-карбазол-2,7-дикарбоновой кислоты. Выход 99%. Светло-жёлтые кристаллы, т. пл. 191–193 °С (МеОН). ИК спектр (плёнка), v, см⁻¹: 2935 (С–Н), 1707 (С=О). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 3.93 (6H, с, 2CH₃); 3.98 (3H, с, CH₃); 7.84 (2H, д. д, *J* = 8.2, *J* = 1.4, H-3,6); 8.21 (2H, д, *J* = 1.4, H-1,8); 8.34 (2H, д. *J* = 8.2, H-4,5). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 29.2; 52.1; 110.8; 119.7; 121.1; 124.7; 127.7; 141.1; 166.6. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 298 [М+Н]⁺ (100). Найдено, %: С 68.60; Н 5.01; N 4.68. С₁₇Н₁₅NO₄. Вычислено, %: С 68.68; Н 5.09; N 4.71.

Диметиловый эфир 9-додецил-9*H*-карбазол-2,7-дикарбоновой кислоты. Выход 62%. Бесцветные кристаллы, т. пл. 104–106 °С (MeOH). ИК спектр (плёнка), v, см⁻¹: 2920 (С–Н), 2851 (С–Н), 1719 (С=О). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.85 (3H, т, *J* = 7.2, CH₃); 1.19–1.40 (18H, м, (CH₂)₉); 1.84–1.92 (2H, м, NCH₂C<u>H₂</u>); 3.98 (6H, с, 2CH₃); 4.40 (2H, т, *J* = 7.2, NCH₂); 7.93 (2H, д. д, *J* = 8.2, *J* = 1.4, H-3,6); 8.14 (2H, д, *J* = 8.2, H-4,5); 8.15 (2H, д, *J* = 1.4, H-1,8). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.1; 22.7; 27.2; 29.1; 29.3; 29.5; 29.6; 43.4; 52.2; 52.3; 110.9; 120.3; 120.8; 125.6; 128.2; 141.0; 167.6. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 925 [2M+Na]⁺ (67), 924 [2M–H+Na]⁺ (100), 474 [M+Na]⁺ (48), 452 [M+H]⁺ (93). Найдено, %: С 74.39; H 8.28; N 2.99. C₂₈H₃₇NO₄. Вычислено, %: С 74.47; H 8.26; N 3.10.

Восстановление сложноэфирных групп 9-алкил-9*Н*-карбазол-2,7-дикарбоновой кислоты (общая методика). К раствору 1.0 ммоль соответствующего эфира

в 20 мл сухого ТГФ при комнатной температуре и перемешивании порциями добавляют избыток (7–10 экв.) LiAlH₄ до полной конверсии исходных соединений (TCX). Реакцию прекращают добавлением EtOAc и разб. водн. раствора KOH, выпавший гидроксид алюминия отделяют, промывают горячим ТГФ, фильтрат объединяют и концентрируют. Полученное вещество перекристаллизовывают из MeOH.

2,7-Бис(гидроксиметил)-9-метил-9*H*-карбазол. Выход 90%. Свето-жёлтые кристаллы, т. пл. 169–172 °С (МеОН, разл.). Спектр ЯМР ¹Н (ДМСО-d₆), б, м. д. (*J*, Гц): 3.85 (3H, с, СН₃); 4.67–4.71 (4H, д, *J* = 4.2, 2СН₂О); 5.22–5.28 (2H, т, *J* = 4.2, 2OH); 7.15 (2H, д. д. *J* = 7.8, *J* = 3.4, H-3,6); 7.51 (2H, д. *J* = 3.4, H-1,8); 8.03 (2H, д. *J* = 7.8, H-4,5). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 63.6; 106.8; 117.5; 119.5; 120.7; 140.2; 140.9. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 264 [M+Na]⁺ (18), 242 [M+H]⁺ (20). Найдено, %: С 74.14; H 6.30; N 5.60. С₁₅H₁₅NO₂•0.1H₂O. Вычислено, %: С 74.11; H 6.30; N 5.76.

2,7-Бис(гидроксиметил)-9-додецил-9*H*-карбазол. Выход 87%. Бесцветные кристаллы, т. пл. 109–110 °С (MeOH). ИК спектр (плёнка), v, см⁻¹: 3337 (уш, O–H), 2923 (C–H), 2851 (C–H). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.88 (3H, т, *J* = 7.2, CH₃); 1.19–1.42 (18H, м, (CH₂)₉); 1.59 (2H, уш. с, 2OH); 1.82–1.90 (2H, м, NCH₂C<u>H₂</u>); 4.27 (2H, т, *J* = 7.2, NCH₂); 4.89 (4H, с, 2CH₂O); 7.20 (2H, д. д. *J* = 8.0, *J* = 0.8, H-3,6); 7.42 (2H, д. J = 0.8, H-1,8); 8.05 (2H, J, J = 8.0, H-4,5). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 14.1; 22.7; 27.3; 29.0; 29.3; 29.4; 29.5; 29.6; 31.9; 43.1; 66.1; 66.2; 107.2; 118.1; 120.4; 122.2; 138.7; 141.0. Масс-спектр (ESI), *m/z* (*I*_{0тн}, %): 418 [M+Na]⁺ (100), 396 [M+H]⁺ (18). Найдено, %: С 77.91; H 8.67; N 3.26. C₂₆H₃₇NO₂•0.3H₂O. Вычислено, %: С 77.88; H 9.45; N 3.49.

9-Алкил-9*Н***-карбазол-2,7-дикарбальдегиды 2а,b** (общая методика). К раствору 1.0 ммоль соответствующего диола в 20 мл сухого CH₂Cl₂ при комнатной температуре и перемешивании порциями добавляют избыток (7–10 экв.) хлорхромата пиридиния, следя за ходом реакции по TCX. После завершения процесса к реакционной смеси добавляют 2-PrOH, продукт очищают методом флэш-хроматографии (SiO₂, CH₂Cl₂, затем градиентное элюирование смесью петролейный эфир – EtOAc) и перекристаллизацией из MeOH.

9-Метил-9*Н***-карбазол-2,7-дикарбальдегид (2а)**. Выход 79%. Ярко-жётлые кристаллы, т. пл. 217–218 °С (МеОН, разл.). ИК спектр (нуйол), v, см⁻¹: 1684 (С=О). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 4.02 (3H, с, CH₃); 7.81 (2H, д. д, *J* = 8.0, *J* = 1.2, H-3,6); 8.02 (2H, д, *J* = 1.2, H-1,8); 8.29 (2H, д, *J* = 8.0, H-4,5); 10.20 (2H, с, 2CHO). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 29.6; 110.1; 121.5; 121.8; 126.8; 135.2; 142.3; 192.3. Найдено, %: С 72.20; H 4.96; N 5.23. С₁₅H₁₁NO₂·0.7H₂O. Вычислено, %: С 72.10; H 5.00; N 5.61.

9-Додецил-9*Н***-карбазол-2,7-дикарбальдегид (2b)**. Выход 99%. Ярко-жёлтые кристаллы, т. пл. 78–79 °С (MeOH). ИК спектр (плёнка), v, см⁻¹: 2922 (С–Н), 2852 (С–Н), 1686 (С=О). Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 0.87 (3H, т, *J* = 7.1, CH₃); 1.19–1.42 (18H, м, (CH₂)₉); 1.82–1.90 (2H, м, NCH₂C<u>H₂</u>); 4.44 (2H, т, *J* = 7.1, NCH₂); 7.80 (2H, д. д. *J* = 8.0, *J* = 1.2, H-3,6); 8.00 (2H, д. *J* = 1.2, H-1,8); 8.28 (2H, д. *J* = 8.0, H-4,5); 10.20 (2H, с, 2CHO). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 14.1; 22.7; 27.3; 29.1; 29.3; 29.4; 29.5; 29.6; 31.9; 43.7; 110.3; 121.4; 121.8; 126.9; 135.2; 141.8; 192.4. Найдено, %: С 79.12; Н 8.55; N 3.34. С₂₆Н₃₃NO₂•0.2H₂O. Вычислено, %: С 79.03; Н 8.52; N 3.54.

Бромид 1-додецил-2-метилпиридиния (3с). Выход 76%. Бежевые кристаллы, т. пл. 124–125 °С (Me₂CO) (т. пл. 123–124 °С [13]). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 0.85 (3H, т, *J* = 7.0, CH₃); 1.19–1.39 (18H, м, (CH₂)₉); 1.74–1.92 (2H, м, NCH₂C<u>H₂</u>); 2.84 (3H, с, CH₃); 4.54 (2H, т, *J* = 7.0, NCH₂); 7.97 (1H, т. д, *J* = 7.3, *J* = 1.0, H-5 Py); 8.05 (1H, д. д, *J* = 7.3, *J* = 1.0, H-3 Py); 8.48 (1H, т. д, *J* = 7.3, *J* = 1.0, H-4 Py); 9.03 (1H, д. д, *J* = 7.3, *J* = 1.0, H-6 Py). Масс-спектр (ESI), *m/z* (*I*_{0тн}, %): 262 [M–Br]⁺ (100). Найдено, %: C 62.78; H 9.63; N 3.98. C₁₈H₃₂BrN. Вычислено, %: C 63.15; H 9.42; N 4.09.

Бромид 1-додецил-4-метилпиридиния (3d). Выход 57%. Бесцветные кристаллы, т. пл. 68–69 °С (Me₂CO) (т. пл. 66–67 °С [13]). Спектр ЯМР ¹Н (ДМСО-d₆), б, м. д. (*J*, Гц): 0.85 (3H, т, *J* = 6.8, CH₃); 1.15–1.34 (18H, м, (CH₂)₉); 1.79–1.97 (2H, м, NCH₂C<u>H₂</u>); 2.60 (3H, с, CH₃); 4.52 (2H, т, *J* = 6.8, NCH₂); 7.99 (2H, д, *J* = 6.5, H-3,5 Ру); 8.94 (2H, д, *J* = 6.5, H-2,6 Ру). Масс-спектр (ESI), *m/z* (*I*_{0тн}, %): 262 [M–Br]⁺ (80), 263 [M–Br+H]⁺ (100). Найдено, %: С 61.76; Н 9.27; N 4.00. С₁₈H₃₂BrN•0.5H₂O. Вычислено, %: С 61.53; Н 9.47; N 3.99.

Дигалогениды 9-алкил-2,7-бис[2-(1-алкилпиридиний-2(4)-ил)-(*E*)-этенил]-9*H*-карбазолов 4–7 (общая методика). К суспензии 1.0 ммоль альдегида 2 в 20 мл сухого метанола добавляют раствор 2.5 ммоль соответствующего метил-*N*-алкилпиридиний галогенида 3 в 25 мл сухого метанола и несколько капель пиперидина. Реакционную смесь кипятят 16–32 ч, следя за ходом реакции по TCX. После окончания реакции смесь охлаждают, выпавшие продукты отделяют и промывают охлаждённым метанолом. Полученное вещество перекристаллизовывают из метанола (соединения 5–7) или ДМФА (соединения 4).

Динодид 9-метил-2,7-бис[2-(1-метилпиридиний-2-ил)-(*E*)-этенил]-9*Н*-карбазола (4а). Выход 64%. Оранжево-красный порошок, т. пл. 282–286 °С (ДМФА, разл.). ИК спектр (плёнка), v, см⁻¹: 1615 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 4.06 (3H, с, CH₃); 4.44 (6H, с, 2CH₃); 7.78 (2H, д, *J* = 15.2, 2CH=); 7.79 (2H, д, *J* = 8.4, H-3,6 Cz); 7.93 (2H, т, *J* = 7.1, 2H-5 Ру); 8.17 (2H, с, H-1,8 Cz); 8.18 (2H, д, *J* = 15.2, 2CH=); 8.35 (2H, д, *J* = 8.4, H-4,5 Cz); 8.54 (2H, т, *J* = 7.1, 2H-4 Ру); 8.59 (2H, д, *J* = 7.1, 2H-3 Ру); 8.93 (2H, д, *J* = 7.1, 2H-6 Ру). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 29.4; 46.1; 109.7; 116.9; 120.1; 121.3; 123.6; 124.6; 124.8; 133.3; 141.9; 143.9; 144.1; 146.0; 152.4. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 209 [(M–2I)]²⁺ (100), 208 [M–2I–H]²⁺ (75). Найдено, %: С 50.12; H 4.16; N 6.42. С₂₉H₂₇I₂N₃·1.2H₂O. Вычислено, %: С 50.26; H 4.28; N 6.06.

Дииодид 9-метил-2,7-бис[2-(1-метилпиридиний-4-ил)-(*E*)-этенил]-9*H*-карбазола (4b). Выход 62%. Красный порошок, т. пл. 312–313 °С (ДМФА, разл., сублим.). ИК спектр (нуйол), v. см⁻¹: 1615 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 4.01 (3H, с, СН₃); 4.27 (6H, с, 2CH₃); 7.67 (2H, д, *J* = 7.8, H-3,6 Cz); 7.70 (2H, д, *J* = 15.6, 2CH=); 8.04 (2H, с, H-1,8 Cz); 8.22 (2H, д, *J* = 15.6, 2CH=C<u>H</u>); 8.25 (4H, д, *J* = 6.6, 2H-3,5 Ру); 8.31 (2H, д, *J* = 7.8, H-4,5 Cz); 8.87 (4H, д, *J* = 6.6, 2H-2,6 Ру). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 29.2; 46.8; 109.2; 119.6; 121.2; 122.8; 123.2; 123.4; 133.5; 141.6; 141.8; 145.0; 152.5. Масс-спектр (ESI), *m/z* ($I_{отн}$, %): 418 [M–2I+H]⁺ (25), 417 [M–2I]⁺ (45), 416 [M–2I–H]⁺ (100). Найдено, %: С 50.11; H 4.12; N 6.01. С₂₉H₂₇I₂N₃•1.3H₂O. Вычислено, %: С 50.13; H 4.29; N 6.05.

Динодид 9-додецил-2,7-бис[2-(1-метилпиридиний-2-ил)-(*E*)-этенил]-9*H*-карбазола (5а). Выход 45%. Красный порошок, т. пл. 263–265 °С (МеОН, разл.). ИК спектр (КВг), v, см⁻¹: 2920 (С–Н), 2850 (С–Н), 1610 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.82 (3H, т, *J* = 6.9, CH₃); 1.10–1.41 (18H, м, (CH₂)₉); 1.78– 1.95 (2H, м, NCH₂C<u>H₂</u>); 4.44 (6H, с, 2CH₃); 4.55 (2H, т, *J* = 6.9, NCH₂); 7.76 (2H, д, *J* = 15.8, 2C<u>H</u>=CH); 7.84 (2H, д, *J* = 8.2, H-3,6 Cz); 7.93 (2H, т, *J* = 6.4, 2H-5 Py); 8.12 (2H, с, H-1,8 Cz); 8.17 (2H, д, *J* = 15.8, 2CH=C<u>H</u>); 8.35 (2H, д. *J* = 8.2, H-4,5 Cz); 8.49–8.62 (4H, м, 2H-3,4 Py); 8.93 (2H, д, *J* = 6.4, 2H-6 Py). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 13.8; 22.0; 26.4; 28.5; 28.7; 28.8; 28.9; 31.2; 39.4; 46.1; 110.5; 116.9; 119.4; 121.3; 123.5; 124.7; 124.8; 133.2; 141.1; 144.0; 144.1; 146.0; 152.4. Масс-спектр (ESI), *m/z* ($I_{0тH}$, %): 571 [M–2I]⁺ (40), 570 [M–2I–H]⁺ (100). Найдено, %: C 56.34; H 5.86; N 4.90. C₄₀H₄₉I₂N₃•1.5H₂O. Вычислено, %: C 56.34; H 6.15; N 4.93.

Динодид 9-додецил-2,7-бис[2-(1-метилпиридиний-4-ил)-(*E*)-этенил]-9*H*-карбазола (5b). Выход 19%. Коричнево-красный порошок, т. пл. 253–255 °С (МеОН, разл.). ИК спектр (плёнка), v, см⁻¹: 2923 (С–Н), 2863 (С–Н), 1614 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), δ, м. д. (*J*, Гц): 0.81 (3H, т, *J* = 6.8, CH₃); 1.12–1.39 (18H, м, (CH₂)₉); 1.83– 1.92 (2H, м, NCH₂C<u>H</u>₂); 4.27 (6H, с, 2CH₃); 4.51 (2H, т, *J* = 6.8, NCH₂); 7.68 (2H, д, *J* = 15.6, 2CH=); 7.68 (2H, д, *J* = 7.6, H-3,6 Cz); 8.02 (2H, с, H-1,8 Cz); 8.22 (2H, д, *J* = 15.6, 2CH=); 8.24 (4H, д, *J* = 5.6, 2H-3,5 Ру); 8.30 (2H, д, *J* = 7.6, H-4,5 Cz); 8.87 (4H, д, *J* = 5.6, 2H-2,6 Ру). Спектр ЯМР ¹³С (ДМСО-d₆), δ, м. д.: 13.9; 22.0; 26.4; 28.5; 28.7; 28.8; 28.9; 31.2; 39.4; 46.8; 109.7; 119.3; 121.3; 122.7; 123.2; 123.4; 133.5; 141.2; 141.7; 145.0; 152.5. Масс-спектр (ESI), *m/z* ($I_{\text{отн}}$ %): 571 [M–2I]⁺ (40), 570 [M–2I–H]⁺ (100). Найдено, %: C 56.03; H 5.78; N 4.68. C₄₀H₄₉I₂N₃·1.5H₂O. Вычислено, %: C 56.34; H 6.15; N 4.93.

Дибромид 2,7-бис[2-(1-додецилпиридиний-2-ил)-(*E*)-этенил]-9-метил-9*H*-карбазола (ба). Выход 26%. Оранжевый порошок, т. пл. 264–266 °С (МеОН, разл.). ИК спектр (плёнка), v, см⁻¹: 2924 (С–Н), 2854 (С–Н), 1613 (С=С). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 0.76 (6H, т, *J* = 7.4, 2CH₃); 1.05–1.40 (36H, м, 2(CH₂)₉); 1.79–1.91 (4H, м, 2NCH₂C<u>H</u>₂); 4.04 (3H, с, CH₃); 4.86 (4H, т, *J* = 7.4, 2NCH₂); 7.79 (2H, д, *J* = 8.2, H-3,6 Cz); 7.84 (2H, д, *J* = 15.6, 2C<u>H</u>=CH); 7.97 (2H, т. д, *J* = 6.0, *J* = 2.4, 2H-5 Py); 8.14 (2H, д, *J* = 15.6, 2CH=C<u>H</u>); 8.15 (2H, с, H-1,8 Cz); 8.33 (2H, д, *J* = 8.2, H-4,5 Cz); 8.53–8.60 (4H, м, 2H-3,4 Py); 8.98 (2H, д, *J* = 6.0, 2H-6 Py). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 13.8; 22.0; 25.2; 28.1; 28.6; 28.8; 28.9; 29.0; 29.3; 29.6; 31.1; 57.4; 109.6; 116.7; 120.0; 121.2; 123.6; 125.3; 125.7; 133.2; 141.9; 144.2; 144.5; 145.5; 151.9. Масс-спектр (ESI), *m/z* (*I*_{0тн}, %): 364 [M–2Br+H]²⁺ (30), 363 [M–2Br]²⁺ (100). Найдено, %: С 66.30; H 8.18; N 4.32. C₅₁H₇₁Br₂N₃·2.1H₂O. Вычислено, %: С 66.31; H 8.20; N 4.55.

Дибромид 2,7-бис[2-(1-додецилпиридиний-4-ил)-(*E*)-этенил]-9-метил-9*H*-карбазола (6b). Выход 18%. Красный порошок, т. пл. 271–274 °С (МеОН, разл.). ИК спектр (нуйол), v, см⁻¹: 1617 (С=С). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 0.84 (6H, т, *J* = 7.0, 2CH₃); 1.20–1.36 (36H, м. 2(CH₂)₉); 1.85–1.97 (4H, м. 2NCH₂C<u>H₂</u>); 4.01 (3H, с, CH₃); 4.50 (4H, т, *J* = 7.0, 2NCH₂); 7.67 (2H, д, *J* = 8.8, H-3,6 Cz); 7.71 (2H, д, *J* = 16.8, 2CH=); 8.04 (2H, с, H-1,8 Cz); 8.25 (2H, д, *J* = 16.8, 2CH=); 8.27 (4H, д, *J* = 6.6, 2H-3,5 Py); 8.31 (2H, д, *J* = 8.4, H-4,5 Cz); 8.97 (4H, д, *J* = 6.6, 2H-2,6 Py). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 13.9; 22.0; 25.3; 28.3; 28.6; 28.7; 28.8; 28.9; 29.2; 30.4; 31.2; 59.6; 109.3; 119.6; 121.2; 122.9; 123.4; 123.6; 123.8; 133.5; 141.9; 144.2; 152.9. Масс-спектр (ESI), *m/z* (*I*_{0TH}, %): 363 [M–2Br]²⁺ (100). Найдено, %: С 66.52; H 8.16; N 4.48. C₅₁H₇₁Br₂N₃·2H₂O. Вычислено, %: С 66.44; H 8.20; N 4.56.

Дибромид 9-додецил-2,7-бис[2-(1-додецилпиридиний-2-ил)-(*E*)-этенил]-9*Н*-карбазола (7а). Выход 84%. Оранжевый порошок, т. пл. 281–283 °С (из МеОН, разл.). ИК спектр (КВг), v, см⁻¹: 2921 (С–Н), 2852 (С–Н), 1609 (С=С). Спектр ЯМР ¹Н (ДМСОd₆), δ , м. д. (*J*, Гц): 0.76 (6H, т, *J* = 7.1, 2СН₃); 0.81 (3H, т, *J* = 6.7, CH₃); 1.00–1.45 (54H, м, 27CH₂); 1.78–1.95 (6H, м, 3NCH₂C<u>H₂</u>); 4.56 (2H, т, *J* = 6.7, NCH₂); 4.87 (4H, т, *J* = 7.1, 2NCH₂); 7.78 (2H, д, *J* = 8.2, H-3,6 Cz); 7.83 (2H, д, *J* = 15.6, 2CH=); 7.97 (2H, т. д, *J* = 6.2, *J* = 2.5, 2H-5 Ру); 8.15 (2H, с, H-1,8 Cz); 8.15 (2H, д, *J* = 15.6, 2CH=); 8.32 (2H, д, *J* = 8.2, H-4,5 Cz); 8.53–8.60 (4H, м, 2H-3,4 Ру); 8.98 (2H, д, *J* = 6.2, 2H-6 Ру). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 13.8; 21.9; 22.0; 25.3; 26.4; 28.2; 28.6; 28.7; 28.8; 28.9; 29.0; 29.6; 31.1; 31.2; 39.4; 57.4; 109.7; 116.7; 119.9; 121.2; 123.7; 125.3; 125.6; 133.2; 141.3; 144.2; 144.4; 145.5; 151.9. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 440 [M–2Br]²⁺ (100). Найдено, %: C 71.43; H 9.20; N 3.86. C₆₂H₉₃N₃Br₂. Вычислено, %: C 71.59; H 9.01; N 4.04.

Дибромид 9-додецил-2,7-бис[2-(1-додецилпиридиний-4-ил)-(*E*)-этенил]-9*H*-карбазола (7b). Выход 54%. Красный порошок, т. пл. 239–241 °C (MeOH, разл.). ИК спектр (KBr), v, см⁻¹: 2922 (C–H), 2852 (C–H), 1614 (C=C). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 0.80 (3H, т, *J* = 7.1, CH₃); 0.84 (6H, т, *J* = 7.2, 2CH₃); 1.11–1.40 (54H, м, 27CH₂); 1.83–1.92 (6H, м, 3NCH₂C<u>H</u>₂); 4.50 (6H, м, 3NCH₂); 7.68 (2H, д, *J* = 7.8, H-3, 6 Cz); 7.70 (2H, д, *J* = 15.8, 2CH=); 8.02 (2H, с, H-1,8 Cz); 8.24 (2H, д, *J* = 15.8, 2CH=); 8.27 (4H, д, *J* = 6.8, 2H-3,5 Py); 8.31 (2H, д, *J* = 7.8, H-4,5 Cz); 8.97 (4H, д, *J* = 6.8, 2H-2,6 Py). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 13.8; 13.9; 21.9; 22.0; 25.3; 26.4; 28.3; 28.5; 28.6; 28.7; 28.8; 28.9; 30.4; 31.1; 31.2; 39.4; 59.6; 109.7; 119.3; 121.3; 122.8; 123.4; 123.5; 133.5; 141.2; 142.0; 144.1; 152.9. Масс-спектр (ESI), *m/z* (*I*_{отн}, %): 441 [M–2Br+H]²⁺ (18), 440 [M–2Br]²⁺ (100). Найдено, %: C 69.85; H 9.23; N 3.65. C₆₂H₉₃Br₂N₃•1.5H₂O.

Иодид 9-метил-2-[2-(1-метилпиридиний-2-ил)-(*E***)-этенил]-9***H***-карбазол-7-карбальдегида. Спектр ЯМР ¹H (ДМСО-d₆), \delta, м. д. (***J***, Гц): 4.07 (3H, с, CH₃); 4.44 (3H, с, CH₃); 7.79–7.83 (2H, м, H Cz); 7.78 (1H, д,** *J* **= 16.4, CH=); 7.93 (1H, д. т,** *J* **= 6.4,** *J* **= 1.2, H-5 Py); 8.19 (1H, с, H-1(8) Cz); 8.25 (1H, с, H-8(1) Cz); 8.17 (1H, д,** *J* **= 16.4, CH=); 8.41 (1H, д,** *J* **= 8.0, H Cz); 8.43 (1H, д,** *J* **= 8.0, H Cz); 8.54 (1H, д. т,** *J* **= 6.4,** *J* **= 1.2, H-4 Py); 8.59 (1H, д. д,** *J* **= 6.4,** *J* **= 1.2, H-3 Py); 8.93 (1H, д. д,** *J* **= 6.4,** *J* **= 1.2, H-6 Py); 10.18 (1H, с, CHO). Масс-спектр (ESI),** *m/z* **(***I***_{отн}, %): 328 [M–I+H]⁺ (30), 327 [M–I]⁺ (100). Масс-спектр (ESI)** *m/z* **(***I***_{отн}, %): 127 [I]⁻ (100).**

Иодид 9-метил-2-[2-(1-метилпиридиний-4-ил)-(*E*)-этенил]-9*H*-карбазол-7-карбальдегида. Спектр ЯМР ¹Н (ДМСО-d₆), б, м. д. (*J*, Гц): 4.05 (3H, с, CH₃); 4.27 (3H, с, CH₃); 7.70 (1H, α , J = 8.2, H Cz); 7.73 (1H, α , J = 15.6, CH=); 7.80 (1H, α , J = 8.2, H Cz); 8.08 (1H, c, H-1(8) Cz); 8.23 (1H, α , J = 15.6, CH=); 8.25 (1H, c, H-8(1) Cz); 8.26 (2H, α , J = 6.6, H-3,5 Py); 8.39 (1H, α , J = 8.2, H Cz); 8.41 (1H, α , J = 8.2, H Cz); 8.88 (2H, α , J = 6.6, H-2,6 Py); 10.18 (1H, c, CHO). Macc-cnekrp (ESI), m/z (I_{oTH} , %): 328 [M–I+H]⁺ (30), 327 [M–I]⁺ (100). Macc-cnekrp (ESI), m/z (I_{oTH} , %): 127 [I]⁻ (100).

Работа выполнена при финансовой поддержке Европейского социального фонда (ESF), проект 2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014 "Design of new pharmacomodulators and studies of their nanoassociates as transport forms".

СПИСОК ЛИТЕРАТУРЫ

- 1. C.-C. Chang, I.-C. Kuo, J.-J. Lin, Y.-C. Lu, C.-T. Chen, H.-T. Back, P.-J. Lou, T.-C. Chang, *Chem. Biodiversity*, **1**, 1377 (2004).
- C. Saengkhae, M. Salerno, D. Adès, A. Siove, L. Le Moyec, V. Migonney, A. Garnier-Suillerot, *Eur. J. Pharmacol.*, 559, 124 (2007).
- F. Tanious, D. Ding, D. Patrick, C. Bailly, R. Tidwell, W. Wilson, *Biochemistry*, 39, 12091 (2000).
- 4. C.-C. Chang, J.-Y. Wu, T.-C. Chang, J. Chin. Chem. Soc., 50, 185 (2003).
- F.-C. Huang, C.-C. Chang, P.-J. Lou, I.-C. Kuo, C.-W. Chien, C.-T. Chen, F.-Y. Shieh, T.-C. Chang, J.-J. Lin, *Mol. Cancer Res.*, 6, 955 (2008).
- J. Gu, W. Yulan, W.-Q. Chen, X.-Z. Dong, X.-M. Duan, S. Kawata, New J. Chem., 31, 63 (2007).
- Z. Wang, V. N. Nesterov, O. Y. Borbulevych, R. D. Clark, M. Y. Antipin, T. V. Timofeeva, *Acta Crystallogr.*, C57, 1343 (2001).
- J.-F. Morin, M. Leclerc, D. Ades, A. Siove, *Macromol. Rapid Commun.*, 26, 761 (2005).
- V. K. Olkhovik, D. A. Vasilevskii, A. A. Pap, G. V. Kalechyts, Y. V. Matveienko, A. G. Baran, N. A. Halinouski, V. G. Petushok, *ARKIVOC*, ix, 69 (2008).
- J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, P. L. Felgner, *J. Biol. Chem.*, 269, 2550 (1994).
- 11. A. P. Phillips, J. Am. Chem. Soc., 74, 3296 (1952).
- A. Baran, A. Plotniece, V. Olkhovik, in 4th International Symposium on Advances in Synthetic and Medicinal Chemistry (ASMC11), Materials of the Conerence, St. Petersburg, Russia, August 21–25, 2011, p. 238.
- S. Wróblewski, K. Trzebiatowska, B. Jędrzejewska, M. Pietrzak, R. Gawinecki, J. Pączkowski, J. Chem. Soc., Perkin Trans. 2, 1909 (1999).
- 14. H. G. Kolloff, A. P. Wyss, R. E. Himelick, F. Mantele, J. Am. Pharm. Assoc., 31, 51 (1942).

Латвийский институт органического синтеза, ул. Айзкрауклес, 21, Рига LV-1006, Латвия e-mail: baran.andrei@gmail.com

Поступило 27.07.2011

^а Институт химии новых материалов НАН Беларуси, ул. Ф. Скарыны, 36, Минск 220141, Беларусь e-mail: slavol@ichnm.basnet.by