Посвящается памяти акад. Э. Лукевица

Э. Силинь*, С. Беляков^а, Я. Ашакс, Л. Печ, Д. Зарума

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СОЛЬВАТА 4,6-ДИМЕТИЛ-8-ХИНОЛИНТИОЛАТА МЫШЬЯКА

Синтезирован кристаллосольват 4,6-диметил-8-хинолинтиолата мышьяка As[4,6-Me₂C₉H₄NS]₃·CHCl₃. Методом PCA определено молекулярное и кристаллическое строение соединения. Обсуждается влияние состава и строения лиганда на геометрию координационного окружения центрального атома мышьяка в исследованных кристаллических структурах внутрикомплексных соединений 8-хинолинтиолов.

Ключевые слова: 8-хинолинтиолаты, внутрикомплексные соединения мышьяка, молекулярная и кристаллическая структура.

Настоящая работа является продолжением систематических исследований строения внутрикомплексных соединений 8-хинолинтиола, обобщённых в [1-3]. Результаты исследований, как правило, согласуются с общеизвестной установкой об определяющей роли катиона в организации строения вещества – кристаллической структуры. Однако среди кристаллических структур 8-хинолинтиолатов имеются группы лигандов, состав и строение которых определённым образом влияют на геометрию координационного окружения катиона. Наиболее заметное влияние на окружение катиона, а также на физико-химические свойства соответствующих комплексов проявляют лиганды, имеющие заместители в положении 2 хинолинового ядра [4]. Так, присутствие метильной группы в этом положении вследствие стерических препятствий приводит к возникновению тетраэдрически искажённого планарного окружения (2S + 2N) центрального атома в 2-метил-8-хинолинтиолатах палладия и платины [5, 6] по сравнению с планарными центросимметричными комплексами Pd(C₉H₆NS)₂ [7] и Pt(C₉H₆NS)₂ [8]. В свою очередь, изоструктурность 2-фенил-8-хинолинтиолатов переходных (Co, Ni) и непереходных (Zn, Hg) металлов с искажённым тетраэдрическим окружением (2S + 2N) центральных атомов описанным выше комплексным соединениям вызывается внутримолекулярным $\pi - \pi$ взаимодействием хинолинового ядра одного лиганда с фенильным кольцом другого лиганда того же комплекса [9].

Представляет интерес исследование влияния состава и строения лиганда во внутрикомплексных соединениях неполновалентных *p*-элементов V группы – As(III), Sb(III) и Bi(III), в которых окружение центрального атома обусловлено не только природой катиона, но и суммарным взаимодействием неподелённой электронной пары (НЭП) катиона и лиганда. На примере полученного нового комплекса As(4,6-Me₂C₉H₄NS)₃·CHCl₃ (1) и ранее исследованных комплексов As(C₉H₆NS)₃ (2) [10], As(2-MeC₉H₅NS)₃ (3) [11],

Рис. 1. Общий вид комплекса As(4,6-Me₂C₉H₄NS)₃·CHCl₃ с обозначениями атомов

As(4-MeC₉H₅NS)₃ (4) [12] и As(4-MeOC₉H₅NS)₃ (5)* показано влияние состава и строения лигандов метил- и метокси-8-хинолинтиола на образование координационной сферы центрального атома мышьяка.

Соединение As[4,6-Me₂C₉H₄NS]₃ получено в виде бесцветного аморфного порошка. Перекристаллизация вещества из смеси хлороформ–этанол сопровождается включением молекул хлороформа в состав кристаллов. Молекулярная и кристаллическая структура комплекса As(4,6-Me₂C₉H₄NS)₃·CHCl₃ (1) определена методом PCA (рис. 1).

В комплексе атом мышьяка с атомами серы трёх лигандов образует близкие по длине связи As(1)–S, $l_{cpeq} = 2.2941$ Å (табл. 1). Они немного больше суммы ковалентных радиусов атомов ($R_{As} + R_S = 2.28$ Å [13]), но немного меньше средней длины связи As–S в структурах комплексов **2–5** (2.3010–2.3179 Å [10–12]). Длины связей As–S согласуются с данными Кембриджского кристаллографического банка (версия 5.26). Связи As(1)–S расположены приблизительно под прямыми углами S–As(1)–S ($\omega_{cp} = 91.21^{\circ}$), и расположение атомов в фрагменте (As(1) + 3S) можно характеризовать как незначительно искажённую тригональную пирамиду с атомом мышьяка на вершине. Атом As(1) от плоскости 3S отдален на –1.301(1) Å.

Межатомные расстояния As…N в комплексе 1 различаются и значительно превышают сумму ковалентных радиусов атомов ($R_{As} + R_N = 1.976$ Å) [13]). Расстояние As(1)…N(1a) находится в пределах расстояний As…N, обнаруженных в комплексах 2–5, что приблизительно соответствует промежуточному значению между суммами ковалентных и ван-дерваальсовых радиусов ($r_{As} + r_N = 3.3$ [14] и 3.576 Å [15]) и интерпретируется как слабая координационная связь, которая замыкает металлоцикл. Расстояния As(1)…N(1b) и As(1)…N(1c) более приближены к значению

^{*} Э. Я. Силинь, С. В. Беляков, Я. В. Ашакс, Л. Я. Печ, Д. Э. Зарума, *Журн. неорг. химии*, в печати.

Таблица 1

D ROMMICKEE I				
Связь	l, Å	Угол	ω, град.	
As(1)–S(1)	2.2699(8)	S(1)-As(1)-N(1a)	75.11(6)	
As(1)-S(2)	2.2861(8)	S(2)-As(1)-N(1b)	65.34(5)	
As(1) - S(3)	2.3262(8)	S(3)-As(1)-N(1c)	67.38(7)	
$As(1) \cdots N(1a)$	2.637(1)	S(1)-As(1)-S(2)	94.16(3)	
$As(1) \cdots N(1b)$	3.236(1)	S(1)-As(1)-S(3)	82.22(4)	
$As(1) \cdots N(1c)$	3.051(1)	S(2)-As(1)-S(3)	97.25(3)	
S(1)–C(8)	1.772	N(1a)-As(1)-N(1b)	75.27(8)	
	1.767(2)-1.775(2)*	N(1a)-As(1)-N(1c)	133.60(9)	
N(1)–C(2)	1.315	N(1b)-As(1)-N(1c)	67.79(9)	
	1.310(3)-1.322(3)*	S(3)-As(1)-N(1a)	156.91(6)	
N(1)–C(9)	1.367	S(1)-As(1)-N(1b)	144.06(6)	
	1.364(2)-1.372(3)*	S(1) - As(1) - N(1c)	147.75(7)	
C(9)-C(10)	1.422	S(3)-As(1)-N(1b)	127.46(6)	
	1.420(3)-1.424(3)*	As(1)-Se(1)-C(8)	104.7	
			103.5(1)-106.42(8)*	

Некоторые характерные длины связей (*l*) и значения валентных углов (ω) в комплексе 1

* Пределы колебания значений одноимённых длин связей и валентных углов в лигандах L(a), L(b), L(c).

суммы ван-дер-ваальсовых радиусов. Можно считать, что в этом случае замыкание соответствующих металлоциклов не происходит, в пользу чего говорят и большие отклонения положения атома As(1) от среднеквадратичных плоскостей соответствующих хинолиновых ядер (-1.748(1) (L(b)) и 1.468(1) (L(c)) в отличие от -0.737(1) Å (L(a)). Следовательно, в комплексе 1, подобно комплексу 2, один лиганд является бидентатным (S, N), а остальные два – монодентатны (S). Однако, как нами будет показано далее, не исключено направленное слабое вторичное взаимодействие As(1)…N.

Значения углов N–As(1)–N также сильно отличаются между собой: $\Delta = 65.8^{\circ}$ (табл. 1). Полученные значения согласуются с таковыми в комплексе **2**, но принципиально отличаются от приблизительно тетраэдрических углов в комплексах **3** и **5** (табл. 2), характерных для симметричного изомера октаэдрических комплексов [16]. В комплексе **1** сумма углов N– As(1)–N, равная 276.6°, является наименьшей из всех, найденных в комплексах **2–5**. Атом As(1) отдалён от плоскости 3N на 1.013(1) Å. В пространстве между векторами As–N возможна локализация стереохимически активной НЭП, которая препятствует замыканию двух металлоциклов.

Координационная связь $As(1) \cdots N(1a)$ расположена в приблизительном *транс*-положении к более слабой связи As(1)–S(3). Согласно обсуждённым геометрическим параметрам координационный полиэдр атома As(1) можно характеризовать как "качели" (3S + N). Однако анализ всех угловых значений окружения атома As(1) (табл. 1) с учётом возможного слабого вторичного взаимодействия $As(1) \cdots N(1b)$ и $As(1) \cdots N(1c)$ позволяет геометрически интерпретировать расположение атомов S(1), S(3), N(1a), N(1b), N(1c) как сильно искажённое основание пентагональной пирамиды. В таком случае координационный полиэдр атома As(1) -искажённая пентагональная пирамида (3S + 3N) с атомом серы S(2) и НЭП на вершинах. Отклонения атомов основания пирамиды от её средне-

Таблица 2

Комплекс	Расстояние As…N, Å	Угол N–As–N, град.	Координационный полиэдр атома As
1	2.637(1)	67.79(9)	"Качели" (3S + N) или ү-тригональная
	3.0501(1)	75.27(8)	бипирамида (3S + N + E)
	3.236(1)	133.60(9)	
2*	2.491(4)	73.0(1)	"Качели" (3S + N) или ү-тригональная
	2.801(4)	87.0(1)	бипирамида (3S + N + E)
	3.422(4)	133.2(2)	
3*	2.641(3)	104.1(1)	Искажённый октаэдр (3S + 3N)
	2.692(5)	106.3(1)	или одношапочный у-октаэдр (3S + 3N + E)
	2.719(4)	109.6(1)	
4*	2.524(4)	80.8(1)	Тригональная бипирамида (3S + 2N)
	2.672(2)	115.2(2)	или <i>ψ</i> -октаэдр (3S + 2N + E)
	2.964(2)	112.8(1)	
5*	2.688(3)	110.12(9)	Искажённый октаэдр (3S + 3N)
	2.688(3)	110.12(9)	или одношапочный у-октаэдр (3S + 3N + E)
	2.688(3)	110.12(9)	

Длина и конфигурация слабых координацонных связей As…N в комплексах 1-5

* Данные для комплекса **2** взяты из [10], для **3** – из [11], для **4** – из [12], для **5** – из неопубликованной работы авторов (см. сноску на с. 1848).

квадратичной плоскости составляет 0.007(1) Å для атома S(1), 0.042(1) для S(3), -0.411(3) для N(1a), 0.699(3) для N(1b) и 0.696(3) Å для N(1c). Центральный атом As(1) от основания пирамиды отклонён на -0.037(3) Å, а атом S(2) в противоположную сторону на 2.267(1) Å. В *транс*положении атом S(2) (угол S(2)–As(1)···C(5a) 169.9°) имеет укороченный контакт As(1)···C(5a) (1 – x, -y, 2 – z) с длиной 3.489(2) Å. Пара контактов As(1)···C(5a) объединяет комплексы в димеры (рис. 2). Контакт As(1)···H(5a) не отвечает критериям слабой внутримолекулярной водородной связи с участием НЭП, предложенной в [11].

Двугранный угол между плоскостями S(1)–As(1)–N(1a) и S(2)–As(1)–N(1b) составляет 85.78(3)°, между плоскостями S(1)–As(1)–N(1a) и S(3)–As(1)–N(1c) – 164.56(4)°, между плоскостями S(2)–As(1)–N(1b) и S(3)–As(1)–N(1c) – 108.37(3)°. Двугранные углы перегиба пятичленных циклов S, As, N, C, C по линии N \cdots S: 26.22(8), 121.07(3), 127.5(1) в лигандах L(a), L(b) и L(c) соответственно. Хелатный цикл –S(1)–As(1) \cdots N(1a)–C(9a)–C(8a)– имеет конформацию "конверт"; отклонения атома As(1) от среднеквадратичной плоскости, проведённой через остальные атомы цикла, составляет –0.928(3) Å.

Рис. 2. Димер комплекса 1

Рис. 3. Упаковка комплексов 1 в кристаллической структуре

Длины связей S–C комплекса 1 (табл. 1) незначительно больше стандартной длины полуторной связи S–C(sp^2) (1.76 Å) [17]. Значения валентных углов типа As(1)–S–C(8) немного меньше значения идеального тетраэдрического угла.

Молекулы 4,6-диметил-8-меркаптохинолина имеют обычное строение (табл. 1). Метильные группы локализованы в плоскости лиганда. Строение молекул CHCl₃ характеризуют близкие по длине связи C(1')–Cl от 1.741(3) до 1.746(4) Å и значения валентных углов Cl–C(1')–Cl от 109.6(2)° до 111.3(2)°. Молекулы CHCl₃ упаковываются центросимметричными димерами при помощи межмолекулярных контактов Cl(1')…Cl(1') (–x, 1 –y, 2 – z) с длиной 3.481(1) Å ($2r_{Cl} = 3.50$ Å [14]).

Общая форма комплекса, которую характеризуют двугранные углы между среднеквадратичными плоскостями хинолиновых лигандов L(a)/L(b), L(a)/L(c) и L(b)/L(c) равными 35.9(1)°, 36.2(1)° и 3.9(1)° соответственно, существенно отличается от таковой комплексов **3–5**. Практически параллельное расположение лигандов L(b) и L(c) комплекса **1** вызвано π – π взаимодействием ароматических систем (расстояние между центроидами гетероцикла N(1c), C(2c), C(3c), C(4c), C(9c), C(10c) и бензольного цикла C(5b), C(6b), C(7b), C(8b), C(9b), C(10b) составляет 3.479 Å).

Комплексы As(4,6-Me₂C₉H₄NS)₃ в кристаллах упакованы слоями параллельно плоскости (0 1 0) (Рис. 3). Молекулы хлороформа связывают лиганды в слои, так как контакты Cl(1')…H(7b)–C(7b) (x, y, z) с геометрическими параметрами Cl(1')…C(7b) 3.841(4) Å, Cl(1')…H(7b) 2.86 Å, Cl(1')…H(7b)–C(7b) 168° согласно [18] можно интерпретировать как слабые водородные связи C–H…Cl.

В заключение, сопоставляя исследованные внутрикомплексные соединения 1–5, следует отметить, что в описанных молекулах координаци-

онное окружение атома мышьяка зависит от состава и строения лиганда. Поскольку не изменяется строение главного координационного полиэдра (As + 3S), то тип полиэдра определяют существующие слабые координационные связи As…N. Длина и конфигурация этих связей может меняться в широких пределах как при переходе от одного комплекса к другому, так и в одной молекуле. Присутствие метильных заместителей во втором и шестом положениях лиганда приводит в комплексе к преобладающей роли слабых взаимодействий (As…N, π – π) в формировании данного внутрикомплексного соединения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез комплекса As(4,6-Me₂C₉H₄NS)₃ и его сольвата (1). К раствору 0.50 г (2.65 ммоль) 4,6-диметил-8-меркаптохинолина в 15 мл этанола и 3 мл воды при нагревании по каплям добавляют 20% водн. NaOH до приобретения раствором жёлтой окраски, после чего смесь разбавляют водой до 50 мл. Отдельно суспендируют 0.08 г (0.40 ммоль) As₂O₃ в 10 мл воды, добавляют несколько капель 20% водн. NaOH и встряхивают до полного растворения осадка. Полученный раствор гидроксида мышьяка приливают к первому раствору. Реакционную смесь нейтрализуют прибавлением уксусной кислоты по каплям при перемешивании до нейтральной реакции (pH 7), выпавшее бесцветное вещество отфильтровывают, промывают водой и сушат на воздухе. Выход 0.45 г (88%). Найдено, %: С 62.04; H 5.12; N 6.63; S 14.92. $C_{33}H_{30}N_3S_3As$. Вычислено, %: С 61.60; H 5.17; N 6.54; S 14.96.

Светло-жёлтые монокристаллы сольвата 1 выращены из смеси хлороформэтанол, 1:1.

Рентгеноструктурный анализ соединения 1. Параметры элементарной ячейки кристалла и дифракционная картина получены от монокристалла соединения 1 размером 0.17×0.16×0.05 мм при -80(2) °С на автоматическом дифрактометре Bruker Nonius KappaCCD с применением сканирования по φ и ω (λ Mo K_{α} -излучение, графитовый монохроматор) до 20_{макс} = 59°. Монокристаллы сольвата 1 принадлежат к моноклинной сингонии, пространственная группа – P2₁/n. Параметры кристаллической решётки: a = 16.4671(2), b = 12.0801(2),c = 17.9947(3) Å, $\beta = 108.7908(7)^{\circ}$, V = 3388.79(9) Å³, M = 759.116, F(000) = 1552, $\mu = 1.45 \text{ мм}^{-1}$, $\rho_{выч} = 1.488 \text{ г/см}^3$, Z = 4. Молекулярная структура соединения установлена прямым методом и уточнена полноматричным МНК по 6505 отражениям с $I > 3\sigma(I)$ до R-фактора = 0.044 ($wR_2 = 0.110$, GooF = 1.083) в анизотропном приближении для неводородных атомов. Положения атомов водорода метильных групп найдены из разностного синтеза, координаты остальных Н-атомов рассчитаны геометрически. Координаты атомов водорода уточнены по модели "наездника". Использованы программы maXus и Denzo [19, 20]. Кристаллическая структура депонирована в Кембриджском банке структурных данных (CCDC 856937).

Авторы выражают благодарность Латвийскому совету по науке за финансовую поддержку исследования.

СПИСОК ЛИТЕРАТУРЫ

L. Pech, Yu. Bankovsky, V. Belsky, A. Kemme, E. Silina, J. Ashaks, in *Advances in Structure Analysis*, Czech and Slovak Crystallographic Association, 2001, p. 260.

- 2. E. Silina, Yu. Bankovsky, V. Belsky, L. Pech, J. Ashaks, J. Lejejs, in *Advances in Structure Analysis*, Czech and Slovak Crystallographic Association, 2001, p. 256.
- 3. E. Silina, Latv. ķīm. žurn., 7 (2008).
- 4. А. П. Стурис, Ю. А. Банковский, Л. Я. Печ, Изв. АН ЛатвССР, Сер. хим., 259 (1990).
- 5. Л. Я. Печ, Ю. А. Банковский, А. А. Кемме, Э. Я. Силинь, Я. В. Ашакс, А. П. Стурис, *Latv. ķīm. žurn.*, 19 (2000).
- 6. Л. Я. Печ, Ю. А. Банковский, Э. Я. Силинь, В. К. Бельский, Н. А. Соболев, А. П. Стурис, *Latv. ķīm. žurn.*, 203 (2001).
- 7. А. Д. Озола, Я. К. Озолс, А. Ф. Иевиньш, *Изв. АН ЛатвССР, Сер. хим.*, 662 (1973).
- Я. К. Озолс, А. Д. Озола, А. Ф. Иевиныш, Изв. АН ЛатвССР, Сер. хим., 648 (1973).
- Л. Я. Печ, Ю. А. Банковский, В. К. Бельский, И. Р. Берзиня, Я. В. Ашакс, Э. Я. Силинь, *Latv. ķīm. žurn.*, 359 (2002).
- О. Г. Матюхина, В. К. Бельский, И. Р. Берзиня, Ю. А. Банковский, Я. В. Ашакс, И. В. Зуйка, Изв. АН ЛатвССР, Сер. хим., 400 (1984).
- 11. Э. Я. Силинь, В. К. Бельский, А. И. Сташ, Я. В. Ашакс, Л. Я. Печ, Ю. А. Банковский, *Журн. неорг. химии*, **49**, 470 (2004).
- 12. Э. Я. Силинь, В. К. Бельский, Я. В. Ашакс, Л. Я. Печ, Ю. А. Банковский, *Latv. ķīm. žurn.*, 135 (2003).
- 13. Дж. Кемпбел, Современная общая химия, Мир, Москва, 1975, т. 1, с. 415.
- 14. Г. Б. Бокий, Кристаллохимия, Наука, Москва, 1971.
- 15. С. С. Бацанов, Журн. неорг. химии, 46, 1519 (2001).
- 16. Л. Г. Кузьмина, Г. А. Кукина, Я. Э. Леейс, С. Р. Грап, Ю. А. Банковский, И. А. Ефименко, *Журн. неорг. химии*, **41**, 215 (1996).
- 17. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. J. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- 18. R. Taylor, O. Kennard, J. Am. Chem. Soc., 104, 5063 (1982).
- S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, *maXus.* Computer Program for the Solution and Refinement of Crystal Structures. Brucker Nonius, The Netherlands, Mac Science, Japan & The University of Glasgow, 1999.
- Z. Otwinowski, W. Minor, *Methods in Enzimology*, vol. 276, *Macromolecular Crystallography*, part A, C. W. Carter, Jr, R. M. Sweet (Eds.), Academic Press, New York, 1997, p. 307.

Институт неорганической химии Рижского технического университета, ул. Миера, 34, Саласпилс LV-2169, Латвия e-mail: elga@nki.lv Поступило 23.05.2011

^а Латвийский институт органического синтеза, ул. Айзкрауклес, 21, Рига LV-2006, Латвия e-mail: serg@osi.lv