Посвящается светлой памяти нашего друга Эдмунда Лукевица, которого мы знали, ценили и любили как яркую, энергичную, многогранно талантливую личность, Учёного с большой буквы, блистательного руководителя, широкоэрудированного химика, внёсшего определяющий вклад в создание и развитие нового направления в химии кремния – кремнийбиоорганической химии.

А. А. Николин^а, Д. Е. Архипов⁶, А. Г. Шипов^а, Е. П. Крамарова^а, Н. А. Ковальчук⁶, А. А. Корлюков⁶*, В. В. Негребецкий^а, Ю. И. Бауков^а*, А. Р. Бассиндэйл^в, П. Г. Тэйлор^в, А. Боуден^в, С. Ю. Быликин^{а,в}

ПЕНТАКООРДИНИРОВАННЫЕ ХЛОРСИЛАНЫ С *С,О*-ХЕЛАТНЫМИ ЛИГАНДАМИ НА ОСНОВЕ *N*-МЕТИЛ-*N*'-ОРГАНОСУЛЬФОНИЛПРОЛИНАМИДОВ

Взаимодействием амидов RSO2-Pro-NHMe с ClCH2SiMe2Cl в присутствии (Me₃Si)₂NH пентакоординированные синтезированы хлорсиланы RSO₂-Pro-N(Me)CH₂SiMe₂Cl с органосульфонильной группой (R = Me, Ph, 4-ClC₆H₄, $4-BrC_6H_4$, $4-MeC_6H_4$, $4-O_2NC_6H_4$), связанной с атомом азота пролина. Альтернативный способ получения этих соединений включает на первой стадии циклосилилметилирование метиламида пролина диметилхлорметилхлорсиланом с образонеизвестной ранее гетероциклической 2-сила-5-пиперазиноновой ванием системы. Синтезированный таким образом бициклический силациклан, представляющий собой 2-сила-5-пиперазинон, конденсированный с остатком пролина, далее под действием сульфохлоридов RSO₂Cl даёт с расщеплением связи Si-N силацикла целевые хлорсиланы. Их гидролиз в зависимости от условий силилоксонийхлоридам [RSO₂-Proприводит либо к N(Me)CH₂SiMe₂OH₂]Cl, либо к дисилоксанам [RSO₂-Pro-N(Me)CH₂SiMe₂]₂O.

По данным PCA, в хлоридах и силилоксонийхлоридах атом Si пентакоординирован за счёт образования внутримолекулярной координационной связи O→Si и имеет искажённую тригонально-бипирамидальную конфигурацию. Дисилоксаны и бициклический-сила-5-пиперазинон, по данным ЯМР ²⁹Si, содержат тетракоординированный атом кремния.

Ключевые слова: силацикланы, соединения пентакоординированного кремния, рентгеноструктурное исследование, синтез.

Типичные представители соединений кремния с нестандартным типом координации, пентакоординированные C,O-хелаты, содержащие амидометильные и родственные бидентатные моноанионные лиганды (LCH₂), относятся к достаточно хорошо изученным гиперкоординированным комплексам [1–4]. В зависимости от природы монодентатных лигандов у Si и заместителей в пятичленном хелатном цикле прочность внутримолекулярной координационной связи $O \rightarrow Si$ в этих внутрикомплексных соединениях варьирует в весьма широких пределах [1–11]. Изучение особенностей строения пентакоординированных C,O-хелатов с координационным узлом SiC₃OX (X = Hal, OAlk, OAr, $\frac{1}{2}O$, OTf) [5, 10, 12–17] позволило использовать их в качестве моделей для исследования проблемы гипервалентности [2, 18–19] и моделирования пути S_N реакций у атома кремния [1–5, 7–10, 20, 21].

Важное место среди *C*,*O*-хелатных комплексов занимают хлорсиланы, особенно монохлорсиланы типа LCH₂SiMe₂Cl, для получения которых разработаны весьма эффективные общие методы [2, 12–17]; на их основе, кроме того, осуществлён синтез других производных пентакоординированного кремния. К настоящему времени Кембриджский банк структурных данных [22] содержит сведения о приблизительно 50 нейтральных и ионных пентакоординированных *C*,*O*-моно- и бисхелатных комплексах кремния с амидометильными и родственными лигандами, 20 из которых представляют собой хлорсиланы.

Тем не менее следует заметить, что среди известных к настоящему времени различных типов пентакоординированных хлорсиланов отсутствуют *С,О*-хелаты с аминокислотными фрагментами, входящими в состав заместителя у амидного атома углерода. В настоящем сообщении приводятся данные о синтезе, некоторых химических свойствах и рентгеноструктурном исследовании пентакоординированных хлорсиланов RSO₂-Pro-N(Me)CH₂SiMe₂Cl с органосульфонильной группой, связанной с атомом азота пролина, а также продуктов их частичного гидролиза – силилоксонийхлоридов [RSO₂-Pro-N(Me)CH₂SiMe₂OH₂]Cl.

Для синтеза целевых *N*-метил-*N*-(диметилхлорсилилметил)-*N*⁻органосульфонилпролинамидов мы использовали метод прямого *N*-диметилхлорсилилметилирования амидов и лактамов системой ClCH₂SiMe₂Cl-(Me₃Si)₂NH в условиях термодинамического контроля [17]. Отметим, что подобные реакции с производными 2-аминокислот, за исключением 2,5-пиперазиндиона [23], ранее не рассматривались.

$$\begin{array}{c} & \overbrace{\text{N}_{\text{SO}_{2}\text{R}}^{\text{N}} \text{NHMe}} & \overbrace{\text{-Me}_{3}\text{SiCl}, -\text{NH}_{4}\text{Cl}}^{\text{Cl}} & \overbrace{\text{N}_{\text{I}}^{\text{N}} \text{Si}_{2}\text{R}}^{\text{O}} & \overbrace{\text{Me}}^{\text{Me}} \\ & \overbrace{\text{SO}_{2}\text{R}}^{\text{I}} \text{NHMe} & \overbrace{\text{-Me}}^{\text{N}} \text{SiCl}, -\text{NH}_{4}\text{Cl} & \overbrace{\text{SO}_{2}\text{R}}^{\text{N}} \stackrel{\text{N}_{\text{I}}^{\text{N}} \text{Si}_{2}^{\text{Cl}} \\ & \overbrace{\text{Me}}^{\text{N}} \text{Me} \\ & \overbrace{\text{Me}}^{\text{I}} \\ & \overbrace{\text{R}}^{\text{I}} \text{R} = \text{Me}, \mathbf{b} \text{R} = \text{Ph}, \mathbf{c} \text{R} = 4\text{-MeC}_{6}\text{H}_{4}, \mathbf{d} \text{R} = 4\text{-ClC}_{6}\text{H}_{4}, \mathbf{e} \text{R} = 4\text{-BrC}_{6}\text{H}_{4}, \mathbf{f} \text{R} = 4\text{-O}_{2}\text{NC}_{6}\text{H}_{4} \end{array}$$

Контроль по ИК спектрам за ходом реакций *N*-метил-*N'*-(органосульфонил)пролинамидов **1a**–**f** с ClCH₂SiMe₂Cl в присутствии (Me₃Si)₂NH показал, что их взаимодействие при кипячении в бензоле или толуоле в течение 7–14 ч при соотношении амида и ClCH₂SiMe₂Cl 1:1 приводит к образованию смеси исходного амида **1** и хлорида **2**, $v_{(NCO)} \sim 1680$ и ~1605 см⁻¹ соответственно. Препаративно хлорсиланы **2a–f** удаётся выделить, используя соотношение амида и ClCH₂SiMe₂Cl равное 1:2. Реакция метиламида (*S*)-**1с** с ClCH₂SiMe₂Cl была осуществлена также в присутствии Et₃N по способу [13]. Контроль за ходом процесса по ИК спектрам показал, что в этом случае реакция полностью протекает за 3 ч в кипящем бензоле при соотношении метиламида и ClCH₂SiMe₂Cl 1:1. Однако выход соединения (*S*)-**2с** оказался ниже, чем при использовании системы ClCH₂SiMe₂Cl–(Me₃Si)₂NH. В случае энантиомеров производных пролина сохранение конфигурации было подтверждено рентгенодифракционными исследованиями монокристаллов.

Состав и строение легкогидролизующихся уже при непродолжитель-

a

ном контакте с воздухом гигроскопичных хлорсиланов **2** было установлено на основании данных элементного анализа (кроме соединений (*S*)-**2b**, **2f**), ИК, ЯМР ¹H, ¹³C и ²⁹Si (для соединения (*S*)-**2c**) спектроскопии и PCA.

Низкочастотный сдвиг полосы поглощения, отвечающей NCO фрагменту в ИК спектрах хлорсиланов 2 (до ~1605 см⁻¹), относительно исходных метиламидов 1, а также наличие второй, менее интенсивной, полосы поглощения (при ~1510 см⁻¹) указывают на их (O \rightarrow Si)-хелатное строение [15].

Нами предложен ещё один путь к C,O-хелатам типа **2**, реализованный на основе метиламида (S)-пролина ((S)-**3**), в котором в отличие от пролинамидов **1** имеется свободная группа NH пролина. Силилметилирование амида (S)-**3** системой ClCH₂SiMe₂Cl–(Me₃Si)₂NH или его обработка ClCH₂SiMe₂Cl в присутствии Et₃N привели к ранее неизвестному бициклическому силациклану (S)-**4**. Можно предположить, что в этих реакциях первоначально образуется продукт *N*-диметилхлорсилилметилирования по амидному атому азота, хлорсилан **A** (или/и его *N*-TMC-производное при использовании гексаметилдисилазана), который подвергается термическому разложению с отщеплением HCl (соответственно Me₃SiCl) в ходе фракционирования, что и приводит к целевому силациклану (S)-**4**.

Силациклан (S)-4 характеризуется в ИК спектре полосой валентных колебаний при ~1640 см⁻¹ (NCO), а в спектре ЯМР ²⁹Si обычным для тетракоординированного атома Si с сопоставимым окружением значением химического сдвига кремния (~4 м. д.) [4, 24–26].

Последующее взаимодействие силациклана (*S*)-4 с сульфохлоридами привело к получению ($O \rightarrow Si$)-хелатных хлорсиланов (*S*)-2b,c с выходами, сопоставимыми с таковыми для соединений **2**, полученных ранее.

Мы уже отмечали высокую склонность хлорсиланов 2 к гидролизу, в заметной степени превышающую таковую для известных C,O-хелатных пентакоординированных хлорсиланов [15, 28]. Так, результатом перекристаллизации на воздухе оказалось образование силилоксонийхлоридов [RSO₂-Pro-N(Me)CH₂SiMe₂OH₂]Cl **5а–f**. Ранее для описания процесса образования различных соединений при гидролизе пентакоординированных C,O-хелатных хлорсиланов A' на основании установления строения промежуточных и конечных продуктов гидролиза была предложена приведённая ниже общая последовательность превращений [25, 28].

На первой стадии гидролиза образуется силилоксонийхлорид (гидрохлорид силанола) **B**, который в результате отщепления воды даёт протонированный дисилоксан **C**. В результате отщепления HCl (обычно при добавлении его акцептора) последний превращается в дисилоксан **D**.

В спектрах ЯМР ¹Н хлорсиланов **2** в растворе CDCl₃ через некоторое время после растворения регистрируется уширенный сигнал в интервале 6–8 м. д., отнесённый нами к сигналу группы $-OH_2^+$. В спектрах ЯМР ¹³С сигнал группы C=O (в области 170–172 м. д.) сильно уширяется, что делает в большинстве случаев его точное наблюдение невозможным. С учётом сильнопольного положения сигнала в спектре ЯМР ²⁹Si (от –33 до –36 м. д.) полученные данные, по нашему мнению, свидетельствуют об образовании в этих условиях продуктов первой стадии гидролиза хлорсиланов **2** – силилоксонийхлоридов **5**.

На пентакоординированное состояние кремния в растворах хлорсиланов 2 указывают величины его химического сдвига в спектрах $\text{ЯМР}^{29}\text{Si}$ (от –33 до –36 м. д., CDCl_3), что соответствует таковому в близких по структуре *C*,*O*-хелатных пентакоординированных монохлорсиланах [4, 26]. Как найдено нами методом $\text{ЯМP}^{29}\text{Si}$ CP/MAS на примере комплексов **5a**,**f** и (*S*)-**5c**, в твёрдой фазе силилоксонийхлориды **5** характеризуются, как и следовало ожидать, ещё более сильнопольным сдвигом сигнала кремния (–40.2, –42.2 и –43.4 м. д. соответственно).

Характер координационного взаимодействия О—Si в силилоксонийхлоридах **5** в растворе установлен нами на основании значений "координационного вклада", позволяющих оценить степень такого взаимодействия путём использования разности химических сдвигов пентакоординированного комплекса и модельного соединения с тетракоординированным атомом Si: $-\Delta \delta = \delta Si(V) - \delta Si(IV)$ [4, 26, 27]. В качестве модельного соединения взят Me₃SiCl ($\delta Si(IV)$ 29.9 м. д.). Сравнение рассчитанных таким образом для комплексов **5a**, (*S*)-**5b–e**, **5f** значений $-\Delta \delta$ (62.7, 63.4, 63.9, 62.9, 65.9, 66.7 м. д. соответственно) с аналогичными значениями для *С,О*-хелатных *N*-(монохлорсилилметил)амидов с пентакоординированным атомом Si (65–75 м. д.) [4, 27] указывает на реализацию в растворах силилоксонийхлоридов 5 координационного взаимодействия $O \rightarrow Si$, степень которого близка к таковому в случае упоминавшихся нейтральных C,O-хелатных силилметильных производных амидов типа **A**.

Продукты заключительной стадии приведённых превращений – дисилоксаны 6, были получены гидролизом монохлорсиланов 2 в присутствии основания (NaHCO₃).

$$RSO_2-Pro-N(Me)CH_2SiMe_2Cl \xrightarrow{H_2O, NaHCO_3} [RSO_2-Pro-N(Me)CH_2SiMe_2]_2O$$
2a,f, (S)-2b-e 6a,f, (S,S)-6b-e

Состав и строение полученных дисилоксанов **6а–f** установлено на основании данных элементного анализа (кроме соединений (*S*,*S*)-**6b** и **6f**) и спектральных методов (ИК, ЯМР ¹H, ¹³C, ²⁹Si спектроскопии). ИК спектры дисилоксанов **6** характеризуются наличием интенсивной полосы поглощения несвязанной амидной группы при 1650 см⁻¹; сигнал тетракоординированного атома Si в спектрах ЯМР ²⁹Si регистрируется в характерной для дисилоксанов узкой области (4–5 м. д.) [4, 29].

Мы обнаружили, что дисилоксаны 6 легко вступают в реакцию с электрофильными агентами. В качестве примера можно привести взаимодействие соединений (S,S)-6с и 6f с SOCl₂, легко протекающее уже при комнатной температуре и приводящее к образованию с высокими выходами хлорсиланов (S)-2с и 2f соответственно, синтез которых другими способами описан выше.

Строение хлорсиланов **2а–f** и силилоксонийхлоридов **5а,с,d,f** установлено методом РСА. Атом кремния во всех структурах имеет искажённую тригонально-бипирамидальную (ТБП) геометрию. Значение выхода атома Si из плоскости экваториальных атомов варьирует в интервале 0.01–0.08 Å (табл. 1 и 2, рис. 1–10). Таким образом, в рамках метода структурных корреляций строение координационного узла атома Si соответствует переходному состоянию S_N 2-реакции при тетраэдрическом атоме кремния.

В рамках данного подхода атом O(1) рассматривается как нуклеофил, а экзоциклический заместитель (X = OH₂, Cl) как уходящая группа. Разность между стандартными значениями длин связей Si–O и Si–Cl (1.64 и 2.07 Å [30]) и их экспериментальными значениями для **2a–f**, **5a,c,d,f**, т. е. относительное удлинение связей, составляет 0.23–0.31 и 0.20–0.29 Å для X = OH₂ и X = Cl соответственно. В свою очередь, длина координационной связи Si(1)–O(1) варьирует в интервале 1.91–2.01 Å. Анализ длин связей Si(1)–O(1) в хлорсиланах **2a–f** свидетельствует о том, что прямой зависимости между длинами этих связей и электроноакцепторным влиянием (индуктивным эффектом) *N*-органосульфонилпролинового заместителя не наблюдается. Наименьшая длина связи Si–O наблюдается в соединении **2a**, а наибольшая – в соединении (*S*)-**2b**. По-видимому, в структурах хлорсиланов **2a–f** кроме индуктивного эффекта на длину связи заметное влияние оказывают также слабые межмолекулярные взаимодействия в кристалле.

Структуры, аналогичные комплексам **5а–d**, ранее обсуждались для двух солей с (бензоиламидо)метильным лигандом [28]. В данных солях длины связей Si(1)–O(1) на 0.03–0.08 Å больше, чем в **5а–d**, тогда как длина связи Si(1)–O(1) отличается незначительно (на 0.01–0.03 Å). Последнее

Таблица 1

Соединение	<i>l</i> , Å							A &*	
	Si(1)–Cl(1)	Si(1)-O(1)	Si(1)–Me _{cp.}	Si(1)–C(3)	C(4)–O(1)	C(4)–N(1)	O(1)–Si(1)–Cl(1)	$\Delta_{\rm Si}, {\rm A}^*$	
2a	2.353(1)	1.927(2)	1.859(3)	1.891(3)	1.266(3)	1.317(3)	170.35(6)	0.045(1)	
(S)- 2b	2.283(1)	2.007(2)	1.860(2)	1.891(2)	1.267(3)	1.311(3)	170.56(5)	0.070(1)	
(S)-2c	2.312(1)	1.945(1)	1.860(2)	1.895(2)	1.273(2)	1.319(2)	172.20(4)	0.066(1)	
(S)-2d	2.256(2)	1.983(2)	1.843(4)	1.891(4)	1.272(4)	1.308(4)	170.69(9)	0.066(1)	
(S)-2e	2.271(1)	1.969(1)	1.858(2)	1.895(2)	1.265(2)	1.315(2)	170.69(5)	0.061(1)	
2f	2.292(1)	1.971(1)	1.862(1)	1.900(1)	1.271(1)	1.317(1)	171.15(3)	0.081(1)	

Длины связей (*l*) в координационном полиэдре кремния и амидном фрагменте, валентный угол (ω) O(1)–Si(1)–Cl(1) и выход атома Si из плоскости (Δ_{Si}) экваториальных заместителей в соединениях 2a–f

* Выход атома кремния из плоскости экваториальных заместителей; положительное число означает отклонение в сторону атома хлора.

Таблица 2

Длины связей (*I*) в координационном полиэдре кремния и амидном фрагменте, валентный угол (ω) O(1W)–Si(1)–O(1) и выход атома Si из плоскости (Δ_{si}) экваториальных заместителей в соединениях 5a,c,d,f

Соединение	<i>l</i> , Å							۸Å*	
	Si(1)-O(1W)	Si(1)–O(1)	Si(1)–Me _{cp.}	Si(1)–C(3)	C(4)–O(1)	C(4)–N(1)	O(1W)-Si(1)-O(1)	Δ_{Si}, A^{+}	
5a	1.953(1)	1.907(1)	1.855(2)	1.886(1)	1.274(2)	1.314(2)	172.41(4)	0.006(1)	
(S)-5c	1.925(3)	1.911(3)	1.863(4)	1.891(4)	1.261(4)	1.314(4)	167.43(15)	0.032(1)	
(S)- 5d	1.878(4)	1.961(3)	1.852(5)	1.869(5)	1.249(5)	1.321(6)	171.18(17)	0.038(1)	
5f	1.914(1)	1.912(1)	1.857(1)	1.900(1)	1.274(1)	1.315(1)	170.56(4)	0.007(1)	

* Выход атома кремния из плоскости экваториальных заместителей; положительное число означает отклонение в сторону оксониевого атома кислорода.

Рис. 1. Общий вид комплекса **2а** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 2. Общий вид комплекса (*S*)-**2b** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 3. Общий вид комплекса (*S*)-2с в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 4. Общий вид комплекса (S)-2d в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 5. Общий вид комплекса (*S*)-**2**е в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 6. Общий вид комплекса **2f** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Атомы водорода не показаны

Рис. 7. Общий вид комплекса **5a** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Показаны только атомы водорода оксониевого фрагмента

Рис. 8. Общий вид комплекса (S)-5с в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Показаны только атомы водорода оксониевого фрагмента

обстоятельство можно объяснить влиянием кристаллической упаковки и наблюдаемыми различиями в системе водородных связей. Действительно, в структуре **5f** наблюдаются H-связанные димеры, тогда как в структуре (S)-**5c** за счёт связей O–H···Cl реализована спираль вдоль кристаллографической оси 6_5 . В структурах **5a** и (S)-**5d** катионы и анионы объединены в цепи. Величины межатомных расстояний O···Cl и H···Cl составляют 2.83– 3.06 и 2.00–2.21 Å соответственно.

В рамках формализма Холмса [31] возможно рассмотрение координационных полиэдров в качестве точек на поверхности потенциальной энергии гипотетической политопной перегруппировки. В ходе перегруппировки координационный полиэдр атома Si изменяется от идеальной ТБП до идеальной квадратной пирамиды (КП). Общая схема оценки координаты псевдовращения включает 1) вычисление всех диэдральных углов между гранями данного полиэдра (девять углов), 2) расчёт разницы между

Рис. 9. Общий вид комплекса (S)-5d в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Показаны только атомы водорода оксониевого фрагмента

Рис. 10. Общий вид комплекса **5f** в представлении атомов эллипсоидами тепловых колебаний с вероятностью 50%. Показаны только атомы водорода оксониевого фрагмента

соответствующими углами данного полиэдра и идеального полиэдра ТБП и КП, 3) суммирование полученных отклонений для ТБП и КП, 4) построение зависимости в координатах (отклонение от ТБП) – (100 – отклонение от КП).

Рассматривая серию комплексов с одинаковым координационным полиэдром, можно описать участок траектории псевдовращения. Величины отклонений от ТБП и КП представлены в табл. 3. Не для всех изученных комплексов наблюдается прямая зависимость отклонений от КП и ТБП, разница (Δ) достигает 6.57% для хлорида **2b**. Следует отметить, что координационные полиэдры кремния силилхлоридов сильнее (Δ_{max} 6.57%) отклоняются от координаты Берри, чем соответствующие полиэдры силилоксониев (Δ_{max} 3.12%). Отклонение полиэдров атома Si от идеальной ТБП лежит в достаточно узком интервале 10–18%. Таким образом, комплексы **2a,c**, **5a,c,d,f** с малыми Δ описывают начальную стадию псевдовращения Берри.

Т	а	б	Л	И	ц	а	3
---	---	---	---	---	---	---	---

Отклонения от тып и кп для комплексов 2а-1, за,с,u,i								
Полиэдр	Отклонение от ТБП, %	100 – отклонение от КП, %	Δ, %					
2a_ 1*	15.10	14.89	0.20					
2a_ 2*	13.38	11.74	1.64					
2b	14.32	7.75	6.57					
2c	10.21	9.90	0.31					
2d	12.22	6.79	5.44					
2e	12.06	7.00	5.06					
2f	14.38	9.01	5.37					
5a	10.98	7.87	3.12					
5c	18.23	18.23	0.00					
5d	10.15	10.15	0.00					
5f	13.25	13.09	0.16					
			-					

Отклонения от ТБП и КП для комплексов 2a-f, 5a,c,d,f

* 1 или 2 означают два кристаллографически независимых атома кремния.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры растворов соединений в различных растворителях и в твёрдой фазе (с использованием модуля неполного внутреннего отражения) записаны на спектрометре Bruker Tensor-27. Спектры ЯМР ¹H, ¹³C и ²⁹Si зарегистрированы на спектрометрах Bruker Avance II 300 (300, 75 и 60 МГц соответственно), Bruker Avance II 600 (600, 151 и 119 МГц соответственно), Jeol JNM-EX400 (для ²⁹Si 80 МГц) в импульсном режиме с последующим преобразованием Фурье, ²H-стабилизацией резонансных условий, внутренний стандарт ТМС. Спектры ЯМР ²⁹Si получены с использованием импульсной последовательности ¹H–²⁹Si HSQC, входящей в состав математического обеспечения спектрометра Bruker Avance II 600 [32]. Спектры ЯМР ²⁹Si CP/MAS в твёрдом состоянии зарегистрированы на спектрометре Jeol JNM-EX400.

Исходные моногидрат *N*-тозил-(*S*)-пролина ((*S*)-7c) [33], рацемический *N*-(4-нитрофенилсульфонил)пролин (7f), *N*-(4-хлорфенилсульфонил)-(*S*)-пролин ((*S*)-7d) [34], *N*-(4-бромфенилсульфонил)-(*S*)-пролин ((*S*)-7e) [35], *N*-метиламид-(*S*)-пролина ((*S*)-3) [36] синтезированы по описанным методикам, их физикохимические константы соответствуют литературным.

Этиловый эфир *N*-мезилпролина (7а). Смесь 75.8 г (0.5 моль) гидрохлорида пролина, 200 мл абс. ЕtOH и 140.0 г (1.3 моль) Me₃SiCl кипятят в течение 9 ч, после охлаждения до комнатной температуры нижний слой отделяют и упаривают в вакууме. Остаток смешивают с 20 мл ледяной воды и 100 мл эфира и при перемешивании и охлаждении льдом добавляют в течение 5 мин раствор 28.0 г (0.5 моль) KOH в 20 мл воды и затем порциями 250 г прокалённого K₂CO₃ до образования в нижнем слое густой, трудно перемешиваемой массы. Эфирный слой отделяют, густую массу промывают эфиром (2×50 мл), объединённые эфирные слои высушивают прокалённым MgSO₄, эфир упаривают в вакууме, остаток фракционируют. Выход 50.0 г (70%). Т. кип. 78–80 °C (13 мм рт. ст.) (лит. т. кип. 82–83 °C (17 мм рт. ст.) [38]). n_D^{20} 1.4484. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 1.15 (3H, т, ³*J* = 7.3, CH₂C<u>H</u>₃); 1.58–1.81 и 1.96–2.10 (4H, м, 3,4-CH₂); 2.40 (1H, уш. с, NH); 2.75–2.85 и 2.95–3.05 (2H, м, 5-CH₂); 3.39–3.58 (1H, м, 2-CH); 4.10 (2H, к, ³*J* = 7.3, C<u>H</u>₂CH₃).

К смеси 7.15 г (50 ммоль) полученного этилового эфира пролина и 5.05 г (50 ммоль) Еt₃N в 40 мл эфира при охлаждении и перемешивании добавляют по каплям 5.73 г (50 ммоль) MeSO₂Cl, перемешивают 2 ч, выпавший осадок отфильтровывают, промывают 15 мл эфира, фильтрат упаривают в вакууме. Фракционированием остатка получают 8.30 г (72%) соединения **7а**. Т. кип. 176–

177 °С (9 мм рт. ст.), т. пл. 31–32 °С. ИК спектр (CHCl₃), v, см⁻¹: 1745 (C=O), 1360 и 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.25 (3H, т, ³*J* = 7.3, CH₂C<u>H₃</u>); 1.85–2.11 и 2.14–2.37 (4H, м, 3,4-CH₂); 2.98 (3H, с, CH₃S); 3.31–3.61 (2H, м, 5-CH₂); 4.16 (2H, к, ³*J* = 7.3, C<u>H</u>₂CH₃); 4.37–4.51 (1H, м, 2-CH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 8.9 (CH₂<u>C</u>H₃); 19.4 (C-4); 25.7 (C-3); 32.7 (CH₃S); 43.0 (C-5); 55.3 (<u>C</u>H₂CH₃); 56.2 (C-2); 173.8 (C=O). Найдено, %: C 43.41; H 6.98; N 6.31. C₈H₁₅NO₄S. Вычислено, %: C 43.42; H 6.83; N 6.33.

Этиловый эфир *N*-фенилсульфонил-(*S*)-пролина ((*S*)-7b). К 7.15 г (50 ммоль) этилового эфира (*S*)-пролина и 5.05 г (50 ммоль) Et₃N в 40 мл эфира при охлаждении водой и перемешивании добавляют по каплям 8.83 г (50 ммоль) PhSO₂Cl. Реакционную смесь перемешивают 2 ч, выпавший осадок отфильтровывают, промывают 15 мл эфира. Фильтрат упаривают в вакууме, оставшееся масло закристаллизовывают растиранием в гептане. Выход 12.56 г (89%). Т. пл. 53–55 °C. [α]_D²⁵ –87.0° (*c* 3.0, CHCl₃). ИК спектр (CHCl₃), v, см⁻¹: 1750 (C=O), 1590 (Ph), 1360 и 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.24 (3H, т, ³*J* = 7.3, CH₂CH₃); 1.60–2.17 (4H, м, 3,4-CH₂); 3.25–3.55 (2H, м, 5-CH₂); 4.11–4.20 (2H, м, CH₂CH₃); 4.25–4.44 (1H, м, 2-CH); 7.45–7.67 (3H, м, H Ph); 7.87 (2H, д, ³*J* = 7.7, H Ph). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 14.0 (CH₂CH₃); 24.5 (C-4); 30.8 (C-3); 48.3 (C-5); 60.4 (CH₂CH₃); 61.2 (C-2); 127.3 (C-3,5 Ph); 128.9 (C-2,6 Ph); 132.7 (C-1 Ph); 138.3 (C-4 Ph); 171.9 (C=O). Найдено, %: C 55.23; H 6.08; N 5.01. C₁₃H₁₇NO₄S. Вычислено, %: C 55.11; H 6.05; N 4.94.

Этиловые эфиры *N*-арилсульфонилпролина 8с–f (общая методика). К 75 мл абс. EtOH при охлаждении до -15 °C и интенсивном перемешивании добавляют по каплям 23.8 г (0.2 моль) свежеперегнанного SOCl₂ и затем порциями 0.1 моль *N*-арилсульфонилпролина 7с–f. Реакционную смесь медленно доводят до кипения, кипятят 1.5 ч, охлаждают до 0 °C. Выпавшие кристаллы отфильтровывают, перекристаллизовывают из водного EtOH, высушивают на воздухе.

Этиловый эфир *N*-тозил-(*S*)-пролина ((*S*)-8c). Выход 25.3 г (85%), т. пл. 98–99 °C (EtOH), $[\alpha]_D^{25}$ –93.1° (*c* 3.47, CHCl₃). ИК спектр (КВг), v, см⁻¹: 1654 (с, С=О), 1600 (сл, Ar), 1360 (с), 1160 (с, SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.27 (3H, т, ³*J* = 7.3, CH₂CH₃,); 1.67–2.14 (4H, м, 3,4-CH₂); 2.43 (3H, с, CH₃); 3.24–3.39 и 3.41–3.57 (2H, м, 5-CH₂); 4.08–4.24 (2H, м, CH₂CH₃); 4.25–4.35 (1H, м, 2-CH); 7.34 (2H, д, ³*J* = 8.3, H Ar); 7.75 (2H, д, ³*J* = 8.3, H Ar). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 8.8 (CH₂CH₃); 16.3 (<u>C</u>H₃C₆H₄); 19.4 (C-4); 25.7 (C-3); 43.1 (C-5); 55.3 (<u>C</u>H₂CH₃); 56.0 (C-2); 127.1 (C-3,5 Ar); 128.3 (C-2,6 Ar); 144.2 (C-1 Ar); 156.4 (C-4 Ar); 173.8 (C=O). Найдено, %: C 56.47; H 6.33; N 4.61. C₁₄H₁₉NO₄S. Вычислено, %: C 56.55; H 6.44; N 4.71.

Этиловый эфир *N*-(4-хлорфенилсульфонил)-(*S*)-пролина ((*S*)-8d). Выход 28.4 г (89%), т. пл. 84–84.5 °C (ЕtOH), $[\alpha]_D^{25}$ –96.9° (*c* 1.4, CHCl₃). ИК спектр (КВг), v, см⁻¹: 1751 и 1569 (NCO), 1585 (Аг), 1346 и 1162 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.23 (3H, т, ³*J* = 7.3, CH₂CH₃); 1.68–2.12 (4H, м, 3,4-CH₂); 3.22–3.45 (2H, м, 5-CH₂); 4.03–4.19 (2H, м, CH₂CH₃); 4.23–4.31 (1H, м, 2-CH); 7.45 (2H, д, ³*J* = 8.7, H Ar); 7.78 (2H, д, ³*J* = 8.7, H Ar). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 8.9 (CH₂CH₃); 19.4 (C-4); 25.7 (C-3); 43.0 (C-5); 55.3 (<u>C</u>H₂CH₃); 56.2 (C-2); 127.1 (C-3,5 Ar); 128.3 (C-2,6 Ar); 144.2 (C-1 Ar); 156.4 (C-4 Ar); 173.8 (C=O). Найдено, %: C 49.22; H 5.13; N 4.35; S 9.91. C₁₃H₁₆CINO₄S. Вычислено, %: C 49.13; H 5.07; N 4.41; S 10.09.

Этиловый эфир *N*-(4-бромфенилсульфонил)-(*S*)-пролина ((*S*)-8e). Выход 33.7 г (93%), т. пл. 71–72 °C (EtOH), $[\alpha]_D^{25}$ –69.5° (*c* 2.72, CHCl₃). ИК спектр (KBr), v, см⁻¹: 1753 (NCO), 1585 (Ar, NCO), 1346 и 1162 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.21 (3H, т, ³*J* = 7.3, CH₂CH₃); 1.68–2.18 (4H, м, 3,4-CH₂); 3.25–3.51 (2H, м, 5-CH₂); 4.03–4.19 (2H, м, CH₂CH₃); 4.23–4.31 (1H, м, 2-CH); 7.63 (2H, д, ³*J* = 8.7, H Ar); 7.73 (2H, д, ³*J* = 8.7, H Ar). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 13.97 (CH₂CH₃); 24.5 (C-4); 30.8 (C-3); 48.2 (C-5); 60.4 (CH₂CH₃); 61.3 (C-2); 127.6 (C-4 Ar); 128.9 (C-3,5 Ar); 132.1 (C-2,6 Ar); 137.5 (C-1 Ar); 171.8 (C=O). Найдено, %: C 43.28; H 4.46; N 3.76; S 8.55. C₁₃H₁₆BrNO₄S. Вычислено, %: C 43.10; H 4.45; N 3.87; S 8.85.

Этиловый эфир *N*-(4-нитрофенилсульфонил)пролина (8f). Выход 29.1 г (88%), т. пл. 94–95 °С (ЕtOH). ИК спектр (CHCl₃), v, см⁻¹: 1747 (CO), 1600 (Ar), 1525 (NO₂), 1360 (NO₂, SO₂), 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.26 (3H, т, ³*J* = 7.3, CH₂C<u>H₃</u>); 1.80–2.32 (4H, м, 3,4-CH₂); 3.46 (2H, т, ³*J* = 6.2, 5-CH₂); 4.06–4.27 (2H, м, C<u>H</u>₂CH₃); 4.38–4.52 (1H, м, 2-CH); 8.08 (2H, д, ³*J* = 8.7, H Ar); 8.36 (2H, д, ³*J* = 8.7, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 9.1 (CH₂<u>C</u>H₃); 24.3 (C-4); 28.9 (C-3); 48.9 (C-5); 59.4 (<u>C</u>H₂CH₃); 61.4 (C-2); 124.6 (C-3,5 Ar); 128.9 (C-2,6 Ar); 142.6 (C-1 Ar); 149.8 (C-4 Ar); 172.5 (C=O). Найдено, %: C 47.49; H 4.35; N 8.60. C₁₃H₁₆N₂O₆S. Вычислено, %: C 47.55; H 4.19; N 8.53.

*N***'-(Арилсульфонил)-***N***-метилпролинамиды 1а–f (общая методика). Смесь 30 ммоль этилового эфира** *N***-арилсульфонилпролина 8а–f** и 30 мл 40% раствора MeNH₂ перемешивают при комнатной температуре 7 сут, выпавший осадок отфильтровывают и высушивают на воздухе.

*N***'-Мезил-***N***-метилпролинамид (1а).** Выход 6.2 г (95%), т. пл. 152–153 °С (ЕtOH). ИК спектр (CHCl₃), v, см⁻¹: 1670 и 1527 (NCO), 1360 и 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.81–2.20 и 2.22–2.49 (4H, м, 3,4-CH₂); 2.83 (3H, д, ³*J* = 4.5, CH₃N); 2.87 (3H, с, CH₃S); 3.29–3.42 и 3.44–3.63 (2H, м, 5-CH₂); 4.08–4.24 (1H, м, 2-CH); 6.76 (1H, уш. с, NH). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 24.8 (C-4); 26.5 (CH₃N); 30.8 (C-3); 34.6 (CH₃S); 49.6 (C-5); 62.5 (C-2); 171.8 (C=O). Найдено, %: С 40.88; H 6.81; N 13.50. С₇H₁₄N₂O₃S. Вычислено, %: С 40.76; H 6.84; N 13.58.

*N***-Метил-***N***^{*}-фенилсульфонил-(***S***)-пролинамид ((***S***)-1b). Выход 6.6 г (82%), т. пл. 130–131 °C (ЕtOH), [\alpha]_D^{25} –159.6° (***с* **2.8, CHCl₃). ИК спектр (КВг), v, см⁻¹: 1643 и 1570 (NCO), 1360 и 1160 (SO₂). Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (***J***, Гц): 1.46–1.67 и 2.10–2.20 (4H, м, 3,4-CH₂); 2.84 (3H, д, ³***J* **= 4.8, CH₃N); 3.12–3.18 и 3.52–3.57 (2H, м, 5-CH₂); 4.05–4.09 (1H, м, 2-CH); 6.92 (1H, уш. с, NH); 7.55 (2H, т, ³***J* **= 7.7, H Ar); 7.62 (1H, т, ³***J* **= 7.7, H Ar); 7.67 (2H, д, ³***J* **= 7.7, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 24.2 (C-4); 26.4 (CH₃N); 29.9 (C-3); 49.8 (C-5); 62.6 (C-2); 127.7 (C-3,5 Ar); 129.3 (C-2,6 Ar); 133.4 (C-1 Ar); 135.6 (C-4 Ar); 171.6 (C=O). Найдено, %: С 53.49; Н 6.02; N 10.33. C₁₂H₁₆N₂O₃S. Вычислено, %: С 53.71; Н 6.01; N 10.44.**

*N***-Метил-***N***'-тозил-(***S***)-пролинамид ((***S***)-1с). Выход 8.5 г (96%), т. пл. 123–125 °С (ЕtOAc–гексан, 1:5) (лит. т. пл. 122–124 °С [39]), [\alpha]_D^{25} –168.6° (***c* **3.71, CHCl₃). ИК спектр (КВг), v, см⁻¹: 1697 (Аг), 1654 и 1531 (NCO), 1360, 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (***J***, Гц): 1.14–1.83 и 2.04–2.28 (4H, м, 3,4-CH₂); 2.45 (3H, с, CH₃); 2.87 (3H, д, ³***J* **= 5.2, CH₃N); 3.07–3.26 и 3.47–3.66 (2H, м, 5-CH₂); 4.01–4.13 (1H, м, 2-CH); 6.95 (1H, уш. с, NH); 7.36 (2H, д, ³***J* **= 8.3, H Ar); 7.72 (2H, д, ³***J* **= 8.3, H Ar).**

N-Метил-*N*'-(4-хлорфенилсульфонил)-(*S*)-пролинамид ((*S*)-1d). Выход 8.7 г (95%), т. пл. 176–177 °С (EtOH), $[\alpha]_D^{25}$ –157.4° (*c* 4.4, CHCl₃). ИК спектр (KBr), v, см⁻¹: 1651 и 1568 (NCO), 1360 и 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.45–1.75 и 2.10–2.22 (4H, м, 3,4-CH₂); 2.81 (3H, д, ³*J* = 4.9, CH₃N); 3.09–3.18 и 3.45–3.57 (2H, м, 5-CH₂); 3.95–4.08 (1H, м, 2-CH); 6.80 (1H, уш. с, NH); 7.48 (2H, д, ³*J* = 8.8, H Ar); 7.72 (2H, д, ³*J* = 8.8, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 19.1 (C-4); 21.4 (CH₃N); 24.9 (C-3); 44.7 (C-5); 57.4 (C-2); 127.1 (C-3,5 Ar); 128.3 (C-2,6 Ar); 142.1 (C-1 Ar); 154.8 (C-4 Ar); 174.6 (C=O). Найдено, %: C 47.50; H 4.98; N 9.30. C₁₂H₁₅ClN₂O₃S. Вычислено, %: C 47.60; H 4.99; N 9.25.

N'-(4-Бромфенилсульфонил)-*N*-метил-(*S*)-пролинамид ((*S*)-1е). Выход 9.9 г (95%), т. пл. 151–153 °С (ЕtOH), $[\alpha]_D^{25}$ –146.3° (*c* 4.3, CHCl₃). ИК спектр (КВг), v, см⁻¹: 1650 (с) и 1534 (ср, NCO), 1600 (ср, Ar), 1360 (с) и 1160 (с, SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 1.45–1.80 и 2.10–2.25 (4H, м, 3,4-CH₂); 2.81 (3H, д, ³*J* = 4.9, CH₃N); 3.05–3.21 и 3.45–3.61 (2H, м, 5-CH₂); 3.95–4.08 (1H, м, 2-CH); 6.87 (1H, уш. с, NH); 7.69 (4H, м, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 24.4 (C-4); 26.4 (CH₃N); 30.2 (C-3); 50.1 (C-5); 62.8 (C-2); 128.8 (C-4 Ar); 129.3 (C-3,5 Ar); 132.8 (C-2,6 Ar); 134.8 (C-1 Ar); 171.4 (C=O). Найдено, %: C 41.60; H 4.39; N 8.15. C₁₂H₁₅BrN₂O₃S. Вычислено, %: C 41.51; H 4.35; N 8.07.

Параметры	2a	(S)- 2b	(S)-2c	(S)-2d	
Брутто-формула	C10H21ClN2O3SSi	C ₁₅ H ₂₃ ClN ₂ O ₃ SSi	C ₁₆ H ₂₅ ClN ₂ O ₃ SSi	$C_{15}H_{22}Cl_2N_2O_3SSi$	
Молекулярная масса	312.89	374.95	388.98	409.40	
Т, К	100	120	100	120	
Кристаллическая система	Моноклинная	Ромбическая	Ромбическая	Ромбическая	
Пространственная группа	$P2_1/c$	P2 ₁ 2 ₁ 2 ₁	$P2_{1}2_{1}2_{1}$	P2 ₁ 2 ₁ 2 ₁	
Z	8	4	4	4	
a, Å	27.313(3)	8.9868(12)	8.9215(7)	6.1905(13)	
b, Å	6.4692(7)	10.2203(14)	9.8213(7)	15.954(3)	
c, Å	17.758(2)	19.500(3)	22.0035(17)	19.724(4)	
α, град.	90.00	90.00	90.00	90.00	
β, град.	108.730(2)	90.00	90.00	90.00	
ү, град.	90.00	90.00	90.00	90.00	
V, Å ³	2971.6(6)	1791.0(4)	1928.0(3)	1948.1(7)	
$d_{\rm выч}$, г·см ⁻³	1.399	1.391	1.340	1.396	
μ, см ⁻¹	4.8	4.12	3.85	5.18	
F(000)	1328	792	824	856	
2θ _{max} , град.	61.28	60.06	61.04	56.00	
Число измеренных	38819	21007	25070	24230	
отражении Число независимых	9079	5195	5873	4713	
отражении Число отражений	8048	4439	5327	2590	
с <i>I > 2</i> б(<i>I</i>) Количество уточняемых	334	211	231	220	
параметров <i>R</i> 1	0.0448	0.0392	0.0339	0.0498	
wR2	0.1186	0.0809	0.0789	0.1027	
GOF	1.031	1.019	1.046	0.836	
Остаточная электронная плотность, е·Å ⁻³ (d _{min} /d _{max})	0.489/-0.669	0.345/-0.290	0.530/-0.359	0.530/-0.331	

Основные кристаллографические параметры

N-Метил-*N*'-(4-нитрофенилсульфонил)пролинамид (1f). Выход 8.7 г (92%), т. пл. 172–174 °C (EtOH). ИК спектр (CHCl₃), v, см⁻¹: 1670 (NCO), 1600 (Ar), 1525 (NCO, NO₂), 1360 (NO₂, SO₂), 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.48–2.00 и 2.15–2.34 (4H, м, 3,4-CH₂); 2.89 (3H, д, ³*J* = 4.9, CH₃N); 3.09–3.28 и 3.53–3.72 (2H, м, 5-CH₂); 4.04–4.18 (1H, м, 2-CH); 6.76 (1H, уш. с, NH); 8.05 (2H, д, ³*J* = 8.7, H Ar); 8.42 (2H, д, ³*J* = 8.7, H Ar). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 24.3 (C-4); 26.5 (CH₃N); 30.3 (C-3); 49.9 (C-5); 62.7 (C-2); 124.6 (C-3,5 Ar); 129.0 (C-2,6 Ar); 141.6 (C-1 Ar); 150.5 (C-4 Ar);

Таблица 4

для комплексов 2a-f, 5a,c,d,f

(<i>S</i>)-2e	2f	5a	(S)-5c	(S)-5d	5f
C ₁₅ H ₂₂ BrClN ₂ O ₃ SSi	C ₁₅ H ₂₂ ClN ₃ O ₅ SSi	C10H23CIN2O4SSi	C ₁₆ H ₂₇ ClN ₂ O ₄ SSi	$C_{15}H_{24}Cl_2N_2O_4SSi$	C17H27ClN4O6SSi
453.86 419.96 330.90		407.00	427.41	479.03	
100	100	100	100	100	100
Ромбическая	Триклинная	Ромбическая	Гексагональная	Ромбическая	Триклинная
$P2_{1}2_{1}2_{1}$	P-1	Pccn	P65	P212121	P-1
4	2	8	6	4	2
6.2013(2)	7.6960(6)	17.5647(11)	20.236(2)	7.347(3)	7.2288(2)
16.0629(6)	10.5853(7)	22.2442(13)	20.236(2)	12.831(5)	12.6485(4)
19.7753(8)	12.4199(9)	8.3790(5)	8.9741(11)	20.613(8)	13.9453(4)
90.00	98.187(2)	90.00	90.00	90.00	66.9260(10)
90.00	103.452(2)	90.00	90.00	90.00	82.6030(10)
90.00	91.136(2)	90.00	120.00	90.00	74.1310(10)
1969.83(13)	972.52(12)	3273.8(3)	3182.4(7)	1943.2(13)	1128.02(6)
1.530	1.434	1.343	1.274	1.461	1.410
24.05	3.96	4.44	3.56	5.26	3.56
928	440	1408	1296	896	504
61.14	64.24	63.94	52.00	55.98	62.32
26299	13858	44778	4165	15119	20933
6032	6703	5669	4165	4705	7268
5142	5554	4456	3921	2841	6033
220	238	181	243	229	276
0.0311	0.0322	0.0335	0.0533	0.0609	0.0355
0.0606	0.0863	0.0938	0.1498	0.1206	0.0963
0.965	1.003	1.004	1.070	1.005	1.019
0.429/-0.372	0.490/-0.373	0.490/-0.283	0.458/-0.473	0.425/-0.452	0.621/-0.359
	1	l i i i i i i i i i i i i i i i i i i i	1		1

170.9 (С=О). Найдено, %: С 46.03; Н 4.80; N 13.42. С₁₂Н₁₅N₃O₅S. Вычислено, %: С 46.00; Н 4.83; N 13.41.

N'-Мезил-*N***-метил-***N***-(диметилхлорсилилметил)пролинамид (2а)**. Смесь 2.17 г (10 ммоль) метиламида **1а**, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 10 мл толуола кипятят 4 ч, фильтруют горячим. Фильтрат охлаждают до комнатной температуры, выпавшие кристаллы отфильтровывают, про-мывают 5 мл эфира и высушивают. Выход 2.91 г (90%), т. пл. 115–118 °C (MeCN).

ИК спектр (КВг), v, см⁻¹: 1607, 1508 (NCO), 1325 и 1143 (SO₂). Найдено, %: С 38.44; Н 6.99; N 8.69. С₁₀H₂₁ClN₂O₃SSi. Вычислено, %: С 38.39; Н 6.76; N 8.95.

При кристаллизации части гигроскопичного соединения 2a из C₆H₆-MeCN без получают предохранения ОТ попадания влаги воздуха (N-мезил-Nметилпролинамидометил)диметилсилилоксонийхлорид (5a), т. пл. 88–90 °С (С₆Н₆-MeCN, 5:1). ИК спектр (KBr), v, см⁻¹: 1612, 1509 (NCO), 1325 и 1143 (SO₂). Спектр ЯМР ¹Н (CDCl₃), б, м. д.: 0.51 (6H, с, Si(CH₃)₂); 1.89–2.06 и 2.06–2.23 (4H, м, 3,4-CH₂); 2.84 (2H, M, NCH₂Si); 2.93 (3H, c, CH₃S); 3.15 (3H, c, CH₃N); 3.45–3.53 (2H, M, 5-CH₂); 4.79 (1Н, м, 2-СН). Спектр ЯМР ¹³С (CDCl₃), б, м. д.: 6.7, 6.9 (Si(CH₃)₂); 24.9 (С-4); 30.8 (C-3); 37.6 (CH₃N); 38.6 (CH₃S); 41.1 (CH₂Si); 48.2 (C-5); 56.9 (C-2); 172.1 (C=O). Спектр ЯМР ²⁹Si (CDCl₃), б, м. д.: -32.8. Спектр ЯМР ²⁹Si CP/MAS, б, м. д.: -40.3. Найдено, %: С 36.21; Н 6.98; N 8.59. С₁₀Н₂₃ClN₂O₄SSi. Вычислено, %: С 36.30; Н 7.01; N 8.47.

N-Метил-*N*-(диметилхлорсилилметил)-*N*'-фенилсульфонил-(*S*)-пролинамид ((*S*)-2b). А. Смесь 2.68 г (10 ммоль) соединения (*S*)-1b, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 10 мл PhMe кипятят 4 ч, фильтруют горячим, фильтрат охлаждают до комнатной температуры, растворитель упаривают в вакууме. Оставшееся масло кристаллизуют растиранием с 15 мл эфира. Кристаллы промывают 3 мл эфира и высушивают. Выход 3.2 г (87%), т. пл. 102–105 °C (C₆H₆–гептан, 1:1). ИК спектр (KBr), v, см⁻¹: 1606 (c), 1516 (сл, NCO), 1344 (с) и 1155 (с, SO₂).

Б. Смесь 1.00 г (5 ммоль) силациклана (*S*)-4 и 0.88 г (5 ммоль) PhSO₂Cl в 10 мл абсолютного C₆H₆ перемешивают 8 ч, растворитель удаляют в вакууме. Оставшееся масло закристаллизовывается при стоянии. Кристаллы промывают абсолютным эфиром. Выход 1.46 г (75%) соединения (*S*)-2b, т. пл. 102–105 °C (бензол), т. пл. смешанной пробы не даёт депрессии. ИК спектр (твёрдый, CHCl₃), v, см⁻¹: 1606 (c), 1516 (сл, NCO), 1344 (с) и 1155 (с, SO₂).

При кристаллизации части гигроскопичного соединения (S)-**2b** из смеси С₆H₆– гептан без предохранения от попадания влаги воздуха получают (О \rightarrow Si)-хелатный (N-метил-N-фенилсульфонил-(S)-пролинамидометил)диметилсилилоксоний-

хлорид ((*S*)-**5b**), т. пл. 83–85 °С (С₆H₆–гептан, 1:1), $[\alpha]_D^{25}$ –115.4° (*c* 0.57, MeCN). ИК спектр (CHCl₃), v, см⁻¹: 3100–2900 (OH, CH), 1609, 1508 (NCO), 1330 и 1155 (SO₂). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.52 (6H, уш. с, Si(CH₃)₂); 1.78–2.23 (4H, м, 3,4-CH₂); 2.86 (2H, с, CH₂Si); 3.27 (3H, с, CH₃N); 3.26–3.49 (2H, м, 5-CH₂); 4.72 (1H, уш. с, 2-CH); 7.48–7.73 (3H, м, H Ar); 7.56 (2H, д, ³*J* = 7.7, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 6.3 (Si(CH₃)₂); 25.0 (C-4); 30.6 (C-3); 37.0 (CH₃N); 44.7 (CH₂Si); 48.3 (C-5); 55.5 (C-2); 127.2 (C-2,6 Ar); 128.3 (C-1 Ar); 129.2 (C-3,5 Ar); 133.1 (C-4 Ar). Сигнал атома углерода группы С=О вследствие сильного уширения не наблюдается. Спектр ЯМР ²⁹Si (CDCl₃), δ , м. д.: –33.5. Найдено, %: C 46.04; H 6.41; N 6.96. C₁₅H₂₅ClN₂O₄SSi. Вычислено, %: C 45.85; H 6.41; N 7.13.

N-Метил-*N*-(диметилхлорсилилметил)-*N*^{*}-тозил-(*S*)-пролинамид ((*S*)-2c). A. Смесь 2.80 г (10 ммоль) метиламида (*S*)-1с, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 15 мл PhMe кипятят 8 ч. Горячую реакционную смесь фильтруют, фильтрат охлаждают до комнатной температуры, растворитель упаривают в вакууме. Оставшееся масло закристаллизовывают при перемешивании в эфире. Кристаллы промывают 3 мл эфира и высушивают. Выход 3.4 г (88%), т. пл. 100–102 °C (C₆H₆). ИК спектр (KBr), v, см⁻¹: 1608, 1510 (NCO), 1347 и 1156 (SO₂). Спектр ЯМР ¹H (C₆D₆), δ , м. д. (*J*, Гц): 0.90 и 0.91 (6H, два с, Si(CH₃)₂); 1.28–1.73 (4H, м, 3,4-CH₂); 2.11 (3H, с, CH₃); 2.63 (3H, с, CH₃N); 2.75 (2H, к, ²*J* = 12.4, CH₂Si); 3.17–3.28 (2H, м, 5-CH₂); 4.45–4.49 (1H, м, 2-CH); 7.07 (2H, д, ³*J* = 8.1, H Ar); 7.82 (2H, д, ³*J* = 8.1, H Ar). Спектр ЯМР ¹³C (C₆D₆); δ , м. д.: 8.0 (Si(CH₃)₂); 21.6 (<u>C</u>H₃C₆H₄); 25.4 (C-4); 30.7 (C-3); 36.6 (CH₃N); 45.7 (CH₂Si); 48.8 (C-5); 56.0 (C-2); 128.0 (C-2,6 Ar); 130.4 (C-3,5 Ar); 136.7 (C-1 Ar); 144.4 (C-4 Ar); 174.7 (C=O). Спектр ЯМР ²⁹Si (C₆D₆), δ, м. д.: –36.8. Найдено, %: C 49.17; H 6.55; N 6.98. C₁₆H₂₅ClN₂O₃SSi. Вычислено, %: C 49.40; H 6.48; N 7.20.

Б. К 2.80 г (10 ммоль) метиламида (S)-1с и 1.01 г (10 ммоль) Et₃N в 20 мл C₆H₆ добавляют по каплям при перемешивании 1.43 г (10 ммоль) Me₂Si(Cl)CH₂Cl в 5 мл C₆H₆, кипятят 3 ч, охлаждают до 20 °C, выпавший осадок отфильтровывают и промывают 15 мл эфира. Растворитель упаривают в вакууме, оставшееся масло кристаллизуют при перемешивании в эфире. Кристаллы промывают 2 мл эфира и перекристаллизовывают из C₆H₆. Выход 2.5 г (65%), т. пл. 100–102 °C. ИК спектр (KBr), v, см⁻¹: 1608, 1510 (NCO), 1347 и 1156 (SO₂).

В. Смесь 1.00 г (5 ммоль) силациклана (S)-4 и 0.96 г (5 ммоль) *п*-толуолсульфохлорида в 10 мл абс. С₆H₆ перемешивают 8 ч, растворитель упаривают в вакууме. Оставшееся масло закристаллизовывают при перемешивании в эфире, кристаллы промывают абсолютным эфиром. Выход 1.6 г (81%), т. пл. 100–102 °С (С₆H₆), т. пл. смешанной пробы 100–102 °С. ИК спектр (КВг), v, см⁻¹: 1608, 1510 (NCO), 1347 и 1156 (SO₂).

Г. К раствору 0.720 г (1.0 ммоль) дисилоксана (*S*,*S*)-**6**с в 5 мл C₆H₆ добавляют по каплям 0.178 г (1.5 ммоль) SOCl₂, перемешивают 30 мин, упаривают в вакууме. Оставшееся масло кристаллизуют при перемешивании в эфире, кристаллы промывают 1 мл эфира и высушивают. Выход 0.65 г (83%), т. пл. 100–102 °C (C₆H₆), т. пл. смешанной пробы 100–102 °C.

При кристаллизации 0.78 г (2 ммоль) неочищенного хлорида (*S*)-**2**с из 3 мл *о*-ксилола без предохранения от попадания влаги воздуха получают 0.75 г (92%) (*N*-метил-*N*-тозил-(*S*)-пролинамидометил)диметилсилилоксонийхлорида ((*S*)-**5**с), т. пл. 86–89 °С (*о*-ксилол), $[\alpha]_D^{25}$ –55.1° (*c* 1.48, CHCl₃). ИК спектр (CHCl₃), v. см⁻¹: 3000–2800 (OH, CH), 1611, 1509 (NCO), 1351, 1158 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.50 (6H, с, Si(CH₃)₂); 1.76–1.98 и 2.04–2.21 (4H, м, 3,4-CH₂); 2.45 (3H, с, CH₃); 2.87 (2H, с, CH₂Si); 3.27 (3H, с, CH₃N); 3.36–3.50 (2H, м, 5-CH₂); 4.66–4.77 (1H, м, 2-CH); 7.33 (2H, д, ³*J* = 8.5, H Ar); 7.73 (2H, д, ³*J* = 8.5, H Ar). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 5.0 (Si(CH₃)₂); 21.5 (<u>C</u>H₃C₆H₄); 25.0 (C-4); 30.6 (C-3); 37.0 (CH₃N); 44.7 (CH₂Si); 48.3 (C-5); 55.5 (C-2); 127.3 (C-2,6 Ar); 128.3 (C-1 Ar); 129.8 (C-3,5 Ar); 135.4 (C-4 Ar). Сигнал атома углерода группы C=O не наблюдается. Спектр ЯМР ²⁹Si (CDCl₃) δ , м. д.: –34.0. Спектр ЯМР ²⁹Si CP/MAS, δ , м. д.: –43.4. Найдено, %: C 47.93; H 6.65; N 6.44. C₁₆H₂₇ClN₂O₄SSi. Вычислено, %: C 47.22; H 6.69; N 6.88.

N-(Диметилхлорсилилметил)-*N*-метил-*N*'-(4-хлорфенилсульфонил)-(*S*)пролинамид ((*S*)-2d). Смесь 3.03 г (10 ммоль) метиламида (*S*)-1d, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 15 мл PhMe кипятят 5 ч, фильтруют горячим, фильтрат охлаждают до комнатной температуры и удаляют растворитель в вакууме. Оставшееся масло кристаллизуют при перемешивании в эфире. Кристаллы отфильтровывают, промывают 2 мл эфира и высушивают. Выход 3.3 г (80%), т. пл. 89–93 °C (C₆H₆–гептан, 1:1). ИК спектр (KBr), v, см⁻¹: 1605, 1500 (NCO), 1316 и 1152 (SO₂). Найдено, %: С 44.26; H 5.35; N 6.95; S 7.94. C₁₅H₂₂Cl₂N₂O₃SSi. Вычислено, %: С 44.01; H 5.42; N 6.84; S 7.83.

При кристаллизации 0.82 г (2 ммоль) гигроскопичного соединения (*S*)-2d из 3 мл смеси C₆H₆–гептан, 1:1, без предохранения от попадания влаги воздуха получают 0.80 г (94%) (*N*-метил-*N*-хлорфенилсульфонил-(*S*)-пролинамидометил)диметилсилилоксонийхлорид ((*S*)-5d), т. пл. 126–128 °C (C₆H₆–гептан, 1:1), $[\alpha]_D^{25}$ –22.2° (*c* 1.01, CHCl₃). ИК спектр (KBr), v, см⁻¹: 3000–2800 (OH, CH), 1610, 1501 (NCO), 1316 и 1152 (SO₂). Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.50 (6H, с, Si(CH₃)₂); 1.76–1.95 и 2.00–2.20 (4H, м, 3,4-CH₂); 2.90 (2H, с, CH₂Si); 3.25 (3H, с, CH₃N); 3.40–3.55 (2H, м, 5-CH₂); 4.70 (1H, уш. с, 2-CH); 7.45 (2H, д, ³*J* = 8.5, H Ar); 7.79

(2H, д, ³*J* = 8.5, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 3.9 (Si(CH₃)₂); 24.8 (C-4); 30.5 (C-3); 37.0 (CH₃N); 43.2 (CH₂Si); 48.2 (C-5); 55.8 (C-2); 128.5 (C-2,6 Ar); 129.4 (C-3,5 Ar); 136.6 (C-1 Ar); 139.4 (C-4 Ar); 173.7 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ, м. д.: -36.0. Найдено, %: С 42.28; H 5.54; N 6.30; S 7.41. C₁₅H₂₄Cl₂N₂O₄SSi. Вычислено, %: С 42.15; H 5.66; N 6.55; S 7.50.

*N***'-(4-Бромфенилсульфонил)-***N***-(диметилхлорсилилметил)-***N***-метил-(***S***)-пролинамид ((***S***)-2е). Смесь 3.47 г (10 ммоль) метиламида (***S***)-1е, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 15 мл РhМе кипятят 3 ч, отфильтровывают горячим от образовавшегося осадка, фильтрат охлаждают до комнатной температуры, выпавшие кристаллы отфильтровывают, промывают 5 мл эфира и высушивают. Выход 3.85 г (85%), т. пл. 127–129 °C (C₆H₆). ИК спектр (CHCl₃), v, см⁻¹: 1605, 1572 (Ar), 1519 (NCO), 1344 и 1156 (SO₂). Найдено, %: C 39.85; H 4.91; N 6.06; S 7.15. C₁₅H₂₂BrClN₂O₃SSi. Вычислено, %: C 39.70; H 4.89; N 6.17; S 7.07.**

При кристаллизации 0.91 г (2 ммоль) гигроскопичного соединения (*S*)-**2е** из 3 мл C₆H₆ без предохранения от попадания влаги воздуха получают 0.9 г (95%) (*N*-(4-бромфенилсульфонил)-*N*-метил-(*S*)-пролинамидометил)диметилсилилоксонийхлорид ((*S*)-**5е**), т. пл. 95–97 °C (C₆H₆), $[\alpha]_D^{25}$ –12.4° (*с* 3.25, CHCl₃). ИК спектр (KBr), v, см⁻¹: 3000–2800 (OH, CH), 1609, 1571 (Ar), 1510 (NCO), 1344 и 1156 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.52, 0.58 (6H, оба с, Si(CH₃)₂); 1.80– 1.90 и 2.10–2.25 (4H, м, 3,4-CH₂); 2.82 (1H, д, ²*J* = 14.8) и 2.92 (2H, д, ²*J* = 14.8, CH₂Si); 3.27 (3H, с, CH₃N); 3.38–3.49 (2H, м, 5-CH₂); 4.78 (1H, уш. с, 2-CH); 7.68 (2H, д, ³*J* = 8.3, H Ar); 7.78 (2H, д, ³*J* = 8.3, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 7.8 (уш. с, Si(CH₃)₂); 25.0 (C-4); 30.6 (C-3); 37.8 (уш. с, CH₃N); 40.5 (уш. с, CH₂Si); 48.2 (C-5); 55.5 (C-2); 128.8 (C-2,6 Ar); 132.4 (C-3,5 Ar). Сигналы атомов углерода C-1,4 Ar и группы C=O вследствие уширения не наблюдаются. Спектр ЯМР ²⁹Si (CDCl₃), δ , м. д.: –32.8. Найдено, %: С 38.44; H 5.19; N 6.07. C₁₅H₂₄BrClN₂O₄SSi. Вычислено, %: С 38.18; H 5.13; N 5.94.

N-(Диметилхлорсилилметил)-*N*-метил-*N*'-(4-нитрофенилсульфонил)пролинамид (2f). А. Смесь 3.12 г (10 ммоль) метиламида 1f, 1.61 г (10 ммоль) (Me₃Si)₂NH, 2.86 г (20 ммоль) Me₂Si(Cl)CH₂Cl в 15 мл PhMe кипятят 2 ч, фильтрат охлаждают до комнатной температуры, выпавшие кристаллы отфильтровывают, промывают 3 мл эфира и высушивают. Выход 3.99 г (95%), т. пл. 84–88 °C. ИК спектр (KBr), v, см⁻¹: 1606 (NCO), 1525 (NO₂, NCO), 1349 (NO₂, SO₂), 1160 (SO₂).

Б. К раствору 1.57 г (2.0 ммоль) дисилоксана **6f** в 10 мл C₆H₆ добавляют по каплям 0.30 г (2.5 ммоль) SOCl₂, перемешивают 15 мин, выпавший осадок отфильтровывают, промывают абсолютным эфиром. Выход 1.5 г (90%), т. пл. 84–88 °C, т. пл. смешанной пробы 84–88 °C. Спектр ЯМР ²⁹Si CP/MAS, δ , м. д.: –43.3.

При кристаллизации 0.84 г (2 ммоль) неочищенного хлорида **2f** из 3 мл MeCN без предохранения от попадания влаги воздуха получают 0.91 г (95%) моносольвата MeCN [*N*-метил-*N*⁻(4-нитрофенилсульфанил)пролинамидо-метил]диметилсилилоксонийхлорида (**5f**), т. пл. 98–102 °C (MeCN). ИК спектр (KBr), v, см⁻¹: 3000–2800 (OH, CH), 2260 (CN, MeCN), 1609 (NCO), 1527 (NO₂, NCO), 1348 (NO₂, SO₂), 1156 (SO₂). Спектр ЯМР ¹H (CD₃CN), δ , м. д. (*J*, Гц): 0.42 (6H, с, Si(CH₃)₂); 1.68–2.15 (4H, м, 3,4-CH₂); 2.80 (2H, с, CH₂Si); 3.18 (3H, с, CH₃N); 3.33–3.49 (2H, м, 5-CH₂); 4.70 (1H, м, 2-CH); 8.05 (2H, д, ³*J* = 8.8, H Ar); 8.37 (2H, д, ³*J* = 8.8, H Ar). Спектр ЯМР ¹³C (CD₃CN), δ , м. д.: 1.4 (Si(CH₃)₂); 25.5 (C-4); 31.4 (C-3); 37.5 (CH₃N); 45.2 (CH₂Si); 49.7 (C-5); 57.5 (C-2); 125.6 (C-2, 6 Ar); 128.2 (C-3, 5 Ar); 129.6 (C-1 Ar); 137.5 (C-4 Ar); 171.2 (C=O). Спектр ЯМР ²⁹Si (CD₃CN), δ , м. д.: -36.8. Спектр ЯМР ²⁹Si CP/MAS, δ , м. д.: -42.2. Найдено, %: C 42.57; H 5.28; N 11.56. C₁₇H₂₇CIN₄O₆SSi. Вычислено, %: C 42.62; H 5.68; N 11.70.

1,3-Бис(*N*-метил-*N*'-органосульфонилпролинамидометил)-1,1,3,3-тетраметил-1,3-дисилоксаны 6а-f (общая методика). К 10 ммоль хлорида 2 в 10 мл CHCl₃ при перемешивании добавляют раствор 1.26 г (15 ммоль) NaHCO₃ в 10 мл воды и перемешивают 1 сут. Органический слой отделяют, водный экстрагируют 10 мл CHCl₃, органический экстракт упаривают в вакууме, остаток кристаллизуют растиранием с 15 мл гептана, кристаллы отделяют и высушивают.

1,3-Бис(*N***'-мезил-***N***-метилпролинамидометил)-1,1,3,3-тетраметил-1,3-ди-силоксан (6а)**. Выход 2.65 г (93%), т. пл. 110–114 °С (гексан). ИК спектр (КВг), v, см⁻¹: 1640 (NCO), 1311 и 1145 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д.: 0.00–0.34 (12H, м, 2Si(CH₃)₂); 1.77–2.38 (8H, м, два 3,4-CH₂); 2.88 (4H, с, 2CH₂Si); 2.99 (6H, с, 2CH₃S); 3.06 (6H, с, 2CH₃N); 3.38–3.67 (4H, м, два 5-CH₂); 4.73–4.92 (2H, м, 2H-2). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 0.6 (Si(CH₃)₂); 24.8 (C-4); 30.8 (C-3); 37.7 (CH₃N); 39.2 (CH₃S); 41.9 (CH₂Si); 47.8 (C-5); 58.9 (C-2); 170.6 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ, м. д.: 4.8. Найдено, %: С 42.21; H 7.32; N 9.99. С₂₀H₄₂N₄O₇S₂Si₂. Вычислено, %: С 42.08; H 7.42; N 9.81.

1,3-Бис(*N*-метил-*N*'-фенилсульфонил-(*S*)-пролинамидометил)-**1,1,3,3-тетра**метил-**1,3-дисилоксан ((***S*,*S***)-6b**). Выход 3.3 г (95%), масло, n_D^{20} 1.5077, [α]_D²⁵ –39.3° (*c* 1.57, CHCl₃). ИК спектр (CHCl₃), v, см⁻¹: 1642 (NCO), 1571 и 1470 (Ar), 1348 и 1155 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.10–0.30 (12H, м, 2Si(CH₃)₂); 1.77–2.18 (8H, м, два 3,4-CH₂); 2.78 (4H, с, 2CH₂Si); 3.06 (6H, с, 2CH₃N); 3.38–3.47 (4H, м, два 5-CH₂); 4.80–4.89 (2H, м, два 2-CH) 7.55 (4H, т, ³*J* = 7.7, H Ar); 7.62 (2H, т, ³*J* = 7.7, H Ar); 7.67 (4H, д, ³*J* = 7.7, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 0.4 (Si(CH₃)₂); 24.8 (C-4); 30.8 (C-3); 37.7 (CH₃N); 41.9 (CH₂Si); 48.2 (C-5); 57.5 (C-2); 127.6 (C-2,6 Ar); 129.6 (C-3,5 Ar); 132.5 (C-1 Ar); 139.1 (C-4 Ar); 170.3 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ , м. д.: 4.8.

1,3-Бис(*N*-метил-*N*'-тозил-(*S*)-пролинамидометил)-1,1,3,3-тетраметил-1,3-дисилоксан ((*S*,*S*)-6с). Выход 3.24 г (90%), т. пл. 125–126 °С (гексан), $[\alpha]_D^{25}$ –58.2° (*с* 2.16, CHCl₃). ИК спектр (CHCl₃), v, см⁻¹: 1640 (NCO), 1600 и 1460 (Ar), 1336 и 1164 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.05–0.31 (12H, м, 2Si(CH₃)₂); 1.63–2.19 (8H, м, два 3,4-CH₂); 2.41 (6H, с, 2C<u>H</u>₃C₆H₄); 2.81–2.98 (4H, м, 2CH₂Si); 3.16 (6H, с, 2CH₃N); 3.32–3.54 (4H, м, два 5-CH₂); 4.79 (2H, уш. с, два 2-CH); 7.28 (4H, д, ³*J* = 7.6, H Ar); 7.78 (4H, д, ³*J* = 7.6, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 0.4 (Si(CH₃)₂); 21.6 (<u>C</u>H₃C₆H₄); 25.0 (C-4); 30.8 (C-3); 37.9 (CH₃N); 42.0 (CH₂Si); 48.4 (C-5); 57.5 (C-2); 127.6 (C-2,6 Ar); 129.6 (C-3,5 Ar); 136.2 (C-1 Ar); 143.4 (C-4 Ar); 170.3 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ , м. д.: 4.8. Найдено, %: C 53.01; H 7.19; N 7.60; S 8.75. C₃₂H₅₀N₄O₇S₂Si₂. Вычислено, %: C 53.15; H 6.97; N 7.75; S 8.87.

1,3-Бис[*N*-метил-*N*'-(**4**-хлорфенилсульфонил)-(*S*)-пролинамидометил]-**1,1,3,3-тетраметил 1,3-дисилоксан ((***S***,***S***)-6d). Выход 3.55 г (93%), т. пл. 120–124 °C (гептан), [\alpha]_D²⁵ –10.6° (***с* **3.41, CHCl₃). ИК спектр (CHCl₃), v, см⁻¹: 1649 и 1585 (NCO), 1470 (Ar), 1336 и 1164 (SO₂). Спектр ЯМР ¹Н (CDCl₃), \delta, м. д. (***J***, Гц): 0.10–0.25 (12H, м, 2Si(CH₃)₂); 1.79–2.19 (8H, м, два 3,4-CH₂); 2.82–2.90 (4H, м, 2CH₂Si); 3.12 (6H, с, 2CH₃N); 3.32–3.48 (4H, м, два 5-CH₂); 4.84 (2H, уш. с, два 2-CH); 7.44 (4H, д, ³***J* **= 7.6, H Ar); 7.85 (4H, д, ³***J* **= 7.6, H Ar). Спектр ЯМР ¹³С (CDCl₃), \delta, м. д.: 0.5 (Si(CH₃)₂); 25.0 (C-4); 30.7 (C-3); 37.8 (CH₃N); 41.9 (CH₂Si); 48.1 (C-5); 57.8 (C-2); 129.0 (C-2,3,5,6 Ar); 137.9 (C-1 Ar); 139.0 (C-4 Ar); 170.0 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) \delta, м. д.: 4.8. Найдено, %: C 47.28; H 5.93; N 7.47. C₃₀H₄₄Cl₂N₄O₇S₂Si₂. Вычислено, %: C 47.17; H 5.81; N 7.33.**

1,3-Бис[*N***'-(4-бромфенилсульфонил)***-N***-метил-(***S***)-пролинамидометил**]**-1,1,3,3-тетраметил-1,3-дисилоксан ((***S*,*S***)-6е**). Выход 4 г (94%), т. пл. 117–118 °С (гексан), [α]_D²⁵ +0.45° (*c* 2.66, CHCl₃). ИК спектр (CHCl₃), v, см⁻¹: 1643 (NCO), 1573 (NCO), 1470 (Ar), 1348 и 1155 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 0.15–0.30 (12H, м, 2Si(CH₃)₂); 1.81–2.19 (8H, м, два 3,4-CH₂); 2.82–2.94 (4H, м, 2CH₂Si); 3.18 (6H, с, 2CH₃N); 3.35–3.48 (4H, м, два 5-CH₂); 4.88 (2H, уш. с, два 2-CH); 7.64 (4H, д, ³*J* = 7.6, H Ar); 7.82 (4H, д, ³*J* = 7.6, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 0.5 (Si(CH₃)₂); 24.8 (C-4); 30.9 (C-3); 37.8 (CH₃N); 42.2 (CH₂Si);

1887

48.1 (С-5); 57.8 (С-2); 127.5 (С-1 Аг); 129.1 и 132.1 (С-2,3,5,6 Аг); 138.5 (С-4 Аг); 170.0 (С=О). Спектр ЯМР ²⁹Si (СDСl₃) δ, м. д.: 3.9. Найдено, %: С 42.05; Н 5.15; N 6.41. С₃₀Н₄₄Br₂N₄O₇S₂Si₂. Вычислено, %: С 42.25; Н 5.20; N 6.57.

1,3-Бис[*N*-метил-*N*'-(4-нитрофенилсульфонил)пролинамидометил]-1,1,3,3тетраметил-1,3-дисилоксан (6f). Выход 3.8 г (96%), т. пл. 141–146 °С (гептан). ИК спектр (КВг), v, см⁻¹: 1647 (NCO), 1525 (NO₂), 1350 (NO₂, SO₂), 1160 (SO₂). Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Гц): 0.03–0.33 (12H, м, 2Si(CH₃)₂); 1.78–2.35 (8H, м, два 3,4-CH₂); 2.76–2.91 (4H, м, 2CH₂Si); 3.13 (6H, с, 2CH₃N); 3.29–3.45 и 3.49–3.67 (4H, м, два 5-CH₂); 4.94 (2H, уш. с, два 2-CH); 8.12 (4H, д, ³*J* = 4.2, H Ar); 8.34 (4H, д, ³*J* = 4.2, H Ar). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 0.6 (Si(CH₃)₂); 25.0 (C-4); 30.9 (C-3); 37.8 (CH₃N); 41.9 (CH₂Si); 48.2 (C-5); 58.5 (C-2); 124.0 (C-2,6 Ar); 128.9 (C-3,5 Ar); 145.5 (C-1 Ar); 150.0 (C-4 Ar); 170.0 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ, м. д.: 4.8.

2,2,4-Триметил-1,4-диаза-2-силабицикло[4.3.0]нонан-5-он ((*S*)-4). А. К смеси 50 мл абсолютного эфира, 12.8 г (100 ммоль) метиламида (*S*)-3 и 11.0 г (110 ммоль) абс. Еt₃N, по каплям добавляют 15.7 г (110 ммоль) Me₂Si(Cl)CH₂Cl в 10 мл абсолютного эфира, кипятят 4 ч, выпавший осадок отфильтровывают, промывают эфиром, фильтрат упаривают в вакууме, остаток фракционируют. Выход 10 г (50%), густое масло, т. кип. 138–140 °C (12 мм рт. ст.). ИК спектр (CHCl₃), v, см⁻¹: 1641 (NCO). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 0.00–0.30 (6H, с, Si(CH₃)₂); 1.56–2.56 (4H, м, 7,8-CH₂); 2.75 (2H, с, CH₂Si); 2.98 (3H, с, CH₃N); 3.26–3.38 (2H, м, 9-CH₂); 3.55–3.65 (1H, м, H-6). Спектр ЯМР ¹³C (CDCl₃), δ , м. д.: 0.5 (Si(CH₃)₂); 26.5 (C-8); 30.8 (C-7); 37.0 (CH₃N); 41.6 (C-3); 47.9 (C-9); 58.1 (C-6); 173.2 (C=O). Спектр ЯМР ²⁹Si (CDCl₃) δ , м. д.: 4.3. Найдено, %: C 54.20; H 9.22; N 14.00. C₉H₁₈N₂OSi. Вычислено, %: C 54.50; H 9.15; N 14.12.

Б. Смесь 12.80 г (100 ммоль) метиламида (*S*)-**3** и 24.15 г (150 ммоль) (Me₃Si)₂NH кипятят 6 ч, добавляют 15.73 г (110 ммоль) Me₂Si(Cl)CH₂Cl и 12.07 г (75 ммоль) (Me₃Si)₂NH, кипятят ещё 6 ч, температуру доводят до комнатной и упаривают в вакууме, остаток фракционируют. Выход 8.0 г (40%), т. кип. 138–142 °C (12 мм рт. ст.), $[\alpha]_D^{25}$ –50.6° (*c* 4.57, CH₂Cl₂). Спектральные характеристики образцов соединения (*S*)-**4**, полученных двумя способами, совпадают.

Рентгеноструктурное исследование соединений 2а–f, 5а,c,d,f. Монокристаллы для РСА получены кристаллизацией образцов 2а и 5f из MeCN; (S)-2b, (S)-2d и (S)-5d – из смеси C_6H_6 -гептан, 5:1; силилхлоридов (S)-2c,e – из C_6H_6 , силилоксонийхлоридов 5а и (S)-5c – из смеси C_6H_6 -MeCN, 5:1, и *о*-ксилола соответственно. В случае силилхлорида 2f были использованы кристаллы, выпавшие непосредственно из реакционной смеси.

Основные кристаллографические данные и результаты уточнения 10 исследованных методом РСА комплексов приведены в таблице 4. Структуры решены прямым методом и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода алкильных и арильных фрагментов рассчитаны исходя из геометрических соображений и включены в уточнение со значениями эквивалентных тепловых параметров, зависимыми от связанных с ними атомов углерода ($U_{eq}(H) = 1.2U_{eq}(C)$, $1.5U_{eq}(C_{Me})$). Атомы H в оксониевых фрагментах выявлены из разностных Фурье-синтезов электронной плотности, величины их тепловых параметров уточнены аналогично ($U_{eq}(H) = 1.5U_{eq}(O)$). Все расчёты выполнены по программному комплексу SHELXTL-97 V.5.10 [37]. Координаты атомов и их температурные параметры для соединений **2a–f**, **5а, с, d, f** депонированы в Кембриджском банке структурных данных (ССDC 833653–833662).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты №№ 09-03-00669, 10-03-00824 и 11-03-00655) в рамках деятельности Научно-образовательного центра РГМУ.

- D. Kost, I. Kalikhman, in *The Chemistry of Organic Silicon Compounds*, Z. Rappoport and Y. Apeloig (Eds.), J. Willey, Chichester, 1998, vol. 2, part 1, p. 1339.
- 2. М. Г. Воронков, В. А. Пестунович, Ю. И. Бауков, *Металлоорг. химия*, **4**, 1210 (1991).
- 3. C. Chuit, R. J. P. Corriu, C. Reyé, J. C. Young, Chem. Rev., 93, 1371 (1993).
- 4. В. В. Негребецкий, Ю. И. Бауков, Изв. АН, Сер. хим., **11**, 1912 (1997).
- A. A. Macharashvili, V. E. Shklover, Yu. T. Struchkov, G. I. Oleneva, E. P. Kramarova, A. G. Shipov, Yu. I. Baukov, J. Chem. Soc., Chem. Commun., 683 (1988).
- 6. D. Kummer, S. H. Abdel Halim, Z. Anorg. Allg. Chem., 622, 57 (1996).
- V. F. Sidorkin, V. V. Vladimirov, M. G. Voronkov, V. A. Pestunovich, J. Mol. Struct. (Theochem.), 228, 1 (1991).
- 8. Ю. Э. Овчинников, А. А. Мачарашвили, Ю. Т. Стручков, А. Г. Шипов, Ю. И. Бауков, *ЖСХ*, **35**, 1 (1994).
- A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, *J. Organomet. Chem.*, 606, 125 (2000).
- 10. A. R. Bassindale, D. J. Parker, P. G. Taylor, N. Auner, B. Herrschaft, J. Organomet. Chem., 667, 66 (2003).
- B. Gostevskii, G. Silbert, K. Adear, A. Sivaramakrishna, D. Stalke, S. Deuerlein, N. Kocher, M. G. Voronkov, I. Kalikhman, D. Kost, *Organometallics*, 24, 2913 (2005).
- 12. K. D. Onan, A. T. McPhail, C. H. Yoder, R. W. Hillyard, J. Chem. Soc., Chem. Commun., 209 (1978).
- 13. R. W. Hillyard, C. M. Ryan, C. H. Yoder, J. Organomet. Chem., 153, 369 (1978).
- 14. C. H. Yoder, C. M. Ryan, G. F. Martin, P. S. Ho, J. Organomet. Chem., 190, 1 (1980).
- Ю. И. Бауков, Е. П. Крамарова, А. Г. Шипов, Г. И. Оленева, О. Б. Артамкина, А. И. Албанов, М. Г. Воронков, В. А. Пестунович, *ЖОХ*, **59**, 127 (1989).
- V. V. Negrebetsky, P. G. Taylor, E. P. Kramarova, S. Yu. Bylikin, I. Yu. Belavin, A. G. Shipov, A. R. Bassindale, Yu. I. Baukov, *J. Organomet. Chem.*, 691, 3976 (2006).
- 17. А. Г. Шипов, Е. П. Крамарова, Ю. И. Бауков, ЖОХ, 64, 1220 (1994).
- V. F. Sidorkin, E. F. Belogolova, V. A. Pestunovich, J. Mol. Struct., 538, 59 (2001).
- 19. V. A. Pestunovich, V. F. Sidorkin, M. G. Voronkov, *Progress in Organosilicon Chemistry*, Gordon and Breach, New York, 1995, p. 69.
- 20. A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, 2099 (1999).
- A. R. Bassindale, S. J. Glynn, P. G. Taylor, N. Auner, B. Herrschaft, J. Organomet. Chem., 619, 132 (2001).
- 22. Cambridge Structural Database (CSD), Release 2010.
- 23. А. О. Мозжухин, М. Ю. Антипин, Ю. Т. Стручков, А. Г. Шипов, Е. П. Крамарова, Ю. И. Бауков, *Металлоорг. химия*, **5**, 906 (1992).
- I. D. Kalikhman, A. I. Albanov, O. B. Bannikova, L. I. Belousova, M. G. Voronkov, V. A. Pestunovich, A. G. Shipov, E. P. Kramarova, Yu. I. Baukov, *J. Organomet. Chem.*, 361, 147 (1989).
- 25. V. A. Pestunovich, S. V. Kirpichenko, N. F. Lazareva, A. I. Albanov, M. G. Voronkov, J. Organomet. Chem., 692, 2160 (2007).
- 26. В. А. Пестунович, Автореф. дис. докт. хим. наук, Иркутск, 1985.
- 27. В. В. Негребецкий, С. Н. Тандура, Ю. И. Бауков, Успехи химии, 78, 24 (2009).

- A. A. Korlyukov, S. A. Pogozhikh, Yu. E. Ovchinnikov, K. A. Lyssenko, M. Yu. Antipin, A. G. Shipov, O. A. Zamyshlyaeva, E. P. Kramarova, Vad. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, *J. Organomet. Chem.*, 691, 3962 (2006).
- 29. Vad. V. Negrebetsky, A. G. Shipov, E. P. Kramarova, V. V. Negrebetsky, Yu. I. Baukov, J. Organomet. Chem., 530, 1 (1997).
- 30. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- 31. R. R. Holmes, J. A. Deiters, J. Am. Chem. Soc., 99, 3318 (1977).
- 32. W. S. Brey, *Pulse Methods in 1D and 2D Liquid-phase NMR*, Academic Press, New York, 1988, p. 561.
- 33. N. Izumiya, Bull. Chem. Soc. Japan, 26, 53 (1953).
- 34. J. De Ruiter, A. N. Brubaker, M. A. Garner, J. M. Barksdale, C. A. Mayfield, *J. Pharm. Sci.*, **76**, 149 (1987).
- 35. R. Korukonda, N. Guan, J. T. Dalton, J. Liu, I. O. Donkor, *J. Med. Chem.*, **49**, 5282 (2006).
- 36. J. K. Chang, H. Sievertsson, B. Currie, K. Folkers, J. Med. Chem., 14, 484 (1971).
- 37. G. M. Sheldrick, Acta Cryst. A, 64, 112 (2008).
- 38. А. А. Потехин, *Свойства органических соединений*. Справочник, Химия, Ленинград, 1984, с. 298.
- 39. R. R. Hill, S. A. Moore, D. R. Roberts, Photochem. Photobiol., 81, 1439 (2005).

^а Российский государственный медицинский университет, ул. Островитянова, 1, Москва 117997, Россия e-mail: baukov@rgmu.ru Поступило 28.06.2011

⁶ Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 11991, Россия e-mail: alex@xrlab.ineos.ac.ru

^в Открытый университет, MK7 6AA Милтон Кейнс, Волтон Холл, Великобритания e-mail: a.bassindale@open.ac.uk