Г. В. Барышников^{*}, Б. Ф. Минаев, В. А. Минаева, А. Т. Подгорная

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ДИМЕРИЗАЦИИ РОДАНИНА В РАЗЛИЧНЫХ ТАУТОМЕРНЫХ ФОРМАХ

Методом DFT рассчитаны относительная стабильность димеров и энергии межмолекулярного взаимодействия в них. Анализ электронной плотности показал наличие водородных связей в димерах. Для симметричных димеров определены энергии отдельных водородных связей. В рамках модели поляризуемого континуума рассчитаны энергии сольватации (гидратации) исследуемых структур. Показано влияние димеризации на положение полос поглощения в ИК спектрах.

Ключевые слова: димеры роданина, роданин, метод QTAIM, водородная связь, теория функционала плотности, энергия сольватации.

Особый интерес для медицины, биохимии и фотохимии представляют роданин (2-тиоксотиазолидин-4-он) и его производные, которые являются традиционными реагентами в аналитической и координационной химии. Производные роданина по метиленовой группе (илиденроданины) обладают антибактериальной [1], противогрибковой [2–4], антидиабетической [5] и антираковой [6] активностью. Это объясняет использование роданина для производства лекарственных препаратов [5].

Свободный роданин применяется для синтеза индолиновых, трифениламиновых и фенотиазиновых красителей-сенсибилизаторов для солнечных батарей [7]. Роданиновая группировка в составе красителя исполняет роль акцептора электронной плотности. Роданин также образует прочные окрашенные координационные соединения с ионами многих тяжёлых металлов (Pd²⁺, Pt²⁺ [8], Ag⁺, Au⁺ [9], Cu⁺ [10], Ni²⁺, Co²⁺ [11], Cu²⁺, Hg²⁺, Au³⁺, Ru³⁺ [12]), что используется при их спектрофотометрическом определении.

Благодаря наличию в молекуле функциональных групп – кетонной и тиокетонной, а также активного атома водорода связи NH (константа диссоциации $K_{\pi} = 10^{-8}$ в воде [13, 14]), роданин может существовать в трёх таутомерных формах: кетонной, енольной и тиоенольной [13–17]. Енольный и тиоенольный таутомеры способны образовывать по два ротамера, а с учётом возможности диссоциации роданина по связи CH метиленовой группы суммарное количество его таутомеров и ротамеров достигает одиннадцати [17]. Таким образом, можно предположить существование большого разнообразия димерных комплексов, способных образовываться в кристаллах, растворах и газовой фазе.

Некоторые из предсказанных нами димеров экспериментально зафиксированы в монокристаллических образцах роданина методом рентгеноструктурного анализа [13], что позволяет говорить о перспективах идентификации других димерных комплексов. В данной работе представлены результаты квантовохимического моделирования разнообразных димеров роданина. Полученные данные позволяют понять на системном уровне закономерности димеризации и могут быть полезны для развития химии роданина и илиденроданинов, а также при определении димеров роданина методами ИК спектроскопии. Работа также расширяет круг возможных димеров роданина по сравнению с исследованными ранее [13].

Метод расчёта. Предварительную оптимизацию геометрий димеров проводили методом самосогласованного поля Хартри–Фока [18] в полуэмпирическом приближении РМЗ [19]. Окончательную оптимизацию и расчёты ИК спектров осуществляли в рамках теории функционала плотности (DFT) с применением гибридного обменно-корреляционного функционала B3LYP [20, 21] в базисе 6-31+G(d) [22]. Отсутствие мнимых частот в рассчитанных ИК спектрах поглощения димеров свидетельствовало об устойчивости полученных структур.

Расчёты проводили без учёта влияния среды, что вполне допустимо для поставленной задачи и соответствует поиску димеров в пара́х и кристаллах роданина. Для определения энергий сольватации димеров роданина расчёты выполняли в рамках модели поляризуемого континуума (PCM) [23] с использованием оптимизированной геометрии молекул в газовой фазе.

Наличие Н-связей и межмолекулярных взаимодействий между молекулами роданина установлено на основе анализа функций распределения электронной плотности в димерах методом Бейдера [24], причём критическая точка (3, -1) между двумя валентно несвязанными атомами указывала на образование Н-связи. Топологию электронной плотности анализировали при помощи программного пакета AIMAll [25]. Расчёты в рамках DFT проводили с использованием программного комплекса GAUSSIAN 03 [26] на суперкомпьютере PDC в Высшей королевской технической школе (Стокгольм, Швеция).

Строение и стабильность димеров роданина. Согласно данным РСА кристаллов роданина и илиденроданинов [13, 14, 27–29], роданиновый цикл в кристаллических образцах существует преимущественно в форме 2-тиоксотиазолидин-4-она **1a** (рис. 1). Данный факт подтверждён в ряде работ теоретического характера [16, 17, 30, 31].

Присутствие полярного растворителя значительно облегчает разрыв связи N–H и миграцию протона к кетонной или тиокетонной группе, что приводит к образованию разнообразных таутомеров и ротамеров, которые пребывают в динамическом равновесии, и существует вероятность их ассоциации в димеры. В данной статье описаны наиболее устойчивые димеры, образованные роданином и двумя его таутомерами **1b** и **1c** (рис. 1) в устойчивых ротамерных формах.

Строение и свойства таутомеров и ротамеров роданина подробно обсуждены в работе [17]. Рассчитанные нами геометрические параметры соединений **1а–с** (табл. 1) хорошо совпадают с данными работы [17], что свидетельствует об эффективности выбранного нами метода расчёта.

Рис. 1. Строение молекулы роданина (1а) и его таутомеров 1b и 1c

Все рассчитанные димеры можно разделить на три типа (рис. 2):

- 1) димеры, образованные свободным роданином (2а-d);
- 2) димеры, образованные таутомерами роданина (2е-g,l,m);
- 3) смешанные димеры, образованные роданином и одним из его таутомеров (**2h-k**).

По типу межмолекулярного взаимодействия эти димеры можно разделить на симметричные и асимметричные. К симметричным следует отнести структуры **2a**,**d**–**g**, в которых реализуются две одинаковые H-связи. Все остальные структуры (**2b**,**c**,**h**–**m**) относятся к асимметричным, так как в них реализуются неоднотипные H-связи.

Рассчитанные геометрические параметры всех димеров приведены в табл. 2 и 3. Следует заметить, что нами исследованы только ди-H-связанные димеры, так как они в большей мере стабилизированы за счёт межмолекулярного взаимодействия, чем моно-H-связанные димеры.

Таблица 1

Chara		<i>l</i> , Å		VEOT	ω, град				
Связь	1a	1b	1c	91011	1a	1b	1c		
S(1)–C(2)	1.771	1.803	1.784	S(1)C(2)N(3)	109.4	111.9	119.5		
C(2)–N(3)	1.381	1.393	1.290	C(2)N(3)C(4)	120.2	112.8	112.1		
N(3)–C(4)	1.389	1.287	1.406	N(3)C(4)C(5)	110.2	121.0	113.4		
C(4)–C(5)	1.525	1.504	1.548	C(4)C(5)S(1)	107.0	102.8	106.7		
C(5)–S(1)	1.836	1.826	1.824	C(5)S(1)C(2)	93.2	91.6	88.4		
C(2)–S(6)	1.642	1.637	1.752	S(1)C(2)S(6)	125.3	122.8	117.1		
C(4)–O(7)	1.213	1.334	1.211	S(6)C(2)N(3)	125.3	125.3	123.4		
N(3)–H(8)	1.016	_	-	C(2)N(3)H(8)	119.6	_	_		
O(7)–H(8)	_	0.977	-	H(8)N(3)C(4)	120.2	_	_		
S(6)–H(8)	_	_	1.350	N(3)C(4)O(7)	124.5	122.6	124.7		
				O(7)C(4)C(5)	125.3	116.4	122.0		
				C(4)O(7)H(8)	_	108.1	—		
				C(2)S(6)H(8)	-	-	94.1		

Длины связей (l) и углы между связями (ω) для основного состояния молекулы роданина и двух его таутомеров, рассчитанные методом DFT B3LYP/6-31+G(d)

Энергии межмолекулярного взаимодействия в димерах рассчитаны с учётом энергий нулевых колебаний по формуле:

$$E_{\rm MB} = (E_{\rm tot} + E_{\rm ZPE})_{\rm dim} - \sum_{\rm mon} (E_{\rm tot} + E_{\rm ZPE})_{\rm mon} , \qquad (1)$$

где $E_{\rm MB}$ – энергия межмолекулярного взаимодействия; $(E_{\rm tot} + E_{\rm ZPE})_{\rm dim}$ – полная энергия димера с учетом энергии нулевых колебаний; $(E_{\rm tot} + E_{\rm ZPE})_{\rm mon}$ – полная энергия мономера с учетом энергии нулевых колебаний; суммирование в формуле (1) включает оба мономера. Отметим, что сумма полной энергии и энергии нулевых колебаний соответствует энергии Гиббса (*G*) при температуре 0 К.

Расчёт энергии межмолекулярного взаимодействия по формуле (1) учитывает также энергию деформации мономеров при образовании димера. Однако энергия деформации мономеров входит в полную энергию димера в неявном виде. Оценить вклад деформационной энергии в энергию межмолекулярного взаимодействия в явном виде проблематично. Применяя корреляционную зависимость [32], мы нашли, что поправка на деформацию мономеров довольно мала и не даёт новых качественных результатов. Усреднённое значение этой поправки составило 3 ккал/моль, причём для слабосвязанных димеров оно не превышает 1.5 ккал/моль (для димера 2c - 0.8, для 2d - 1.5 ккал/моль).

Для симметричных димеров можно рассчитать энергию одной H-связи $(E_{\text{H-bond}} = E_{\text{MB}}/2)$. Рассчитанные энергетические параметры всех димеров, а также молекул **1а–с** приведены в табл. 4. Относительные энергии Гиббса димеров (ΔG) рассчитаны относительно энергии Гиббса основного состояния димера **2a**, а относительные энергии Гиббса молекул **1а–с** – относительно энергии Гиббса основного состояния роданина **1a**.

Расчёты показывают, что наиболее устойчивым среди всех исследуемых димеров является димер **2a**. Согласно данным PCA [13, 14], роданин и его производные в кристаллическом состоянии существуют именно в форме таких димеров. Энергия H-связывания в этом димере составляет -9.58 ккал/моль. В работе [13] стабилизационная энергия H-связывания в аналогичном димере метилиденроданина, по данным метода RHF/6-31G*, составляет -10.3 ккал/моль, что близко к нашему значению.

Энергия димера 2b очень близка к энергии димера 2a, что свидетельствует о возможности существования роданина в кристалле также и в форме димера 2b. Однако экспериментальное подтверждение существования димеров типа 2b отсутствует. Димер 2d также близок по энергии к димерам 2a и 2b, а в работе [33] даже рассчитаны колебательные спектры такого димера и проведено их сравнение с колебательными спектрами димера 2a.

С точки зрения типа межмолекулярного взаимодействия интересен димер 2c. В нём проявляется ван-дер-ваальсовое взаимодействие (C_2)S····O=C между циклическим атомом серы и карбонильным атомом кислорода. Анализ электронной плотности методом Бейдера [24] показывает наличие крити-ческой точки (3, -1) между взаимодействующими атомами. Электронная плотность в критической точке составляет 0.00458 е⁻ (табл. 5), что свидетельствует об очень малой прочности связи. Действительно, если

Рис. 2. Строение димеров роданина 2а-т

2h

2m

[OH---O=C] [NH---N]

(длины межмолекулярных связей приведены в ангстремах)

G							l,	Å						
Связь	2a	2 a [27]	2b	2c	2d	2e	2f	2g	2h	2i	2j	2k	21	2m
S(1)–C(2)	1.775	1.740	1.775	1.776	1.769	1.795	1.782	1.789	1.780	1.779	1.796	1.796	1.801	1.795
C(2)–N(3)	1.384	1.370	1.384	1.378	1.369	1.367	1.303	1.393	1.300	1.300	1.392	1.394	1.371	1.386
N(3)–C(4)	1.374	1.380	1.373	1.385	1.393	1.295	1.398	1.309	1.407	1.407	1.301	1.300	1.296	1.303
C(4)–C(5)	1.521	1.510	1.521	1.526	1.527	1.511	1.542	1.507	1.543	1.543	1.507	1.507	1.512	1.509
C(5)-S(1)	1.833	1.820	1.833	1.833	1.833	1.829	1.824	1.825	1.823	1.825	1.823	1.824	1.826	1.825
C(2)–S(6)	1.639	1.640	1.639	1.642	1.654	1.658	1.735	1.640	1.742	1.742	1.639	1.638	1.653	1.643
C(4)–O(7)	1.225	1.230	1.224	1.216	1.211	1.314	1.215	1.299	1.210	1.210	1.312	1.313	1.314	1.304
N(3)–H(8)	1.030	-	1.029	1.026	1.030	-	-	-	-	-	-	-	-	-
O(7)–H(8)	-	-	-	-	-	1.003	-	1.030	-	-	1.004	1.007	1.005	1.020
S(6)–H(8)	-	-	_	_	_	_	1.376	-	1.368	1.373	_	-	-	-
S(1')–C(2')	1.775	1.740	1.769	1.765	1.769	1.795	1.782	1.789	1.778	1.770	1.776	1.765	1.785	1.776
C(2')–N(3')	1.384	1.370	1.369	1.377	1.369	1.367	1.303	1.393	1.386	1.366	1.393	1.362	1.297	1.309
N(3')–C(4')	1.374	1.380	1.393	1.391	1.393	1.295	1.398	1.309	1.372	1.394	1.365	1.400	1.373	1.404
C(4')–C(5')	1.521	1.510	1.527	1.524	1.527	1.511	1.542	1.507	1.522	1.528	1.518	1.528	1.539	1.539
C(5')–S(1')	1.833	1.820	1.832	1.836	1.833	1.829	1.824	1.825	1.832	1.832	1.830	1.831	1.829	1.823
C(2')–S(6')	1.639	1.640	1.656	1.651	1.654	1.658	1.735	1.640	1.637	1.657	1.633	1.664	1.739	1.731
C(4')–O(7')	1.225	1.230	1.211	1.212	1.212	1.314	1.215	1.299	1.226	1.211	1.231	1.208	1.230	1.212
N(3')–H(8')	1.030	-	1.030	1.016	1.030	-	-	-	1.033	1.036	1.032	1.036	-	-
O(7')–H(8')	-	-	—	-	_	1.003	_	1.030	_	-	_	_	-	_
S(6')–H(8')	-	-	—	—	-	—	1.375	-	-	-	-	-	1.367	1.387

Длины связей (l) для основного состояния димеров роданина, рассчитанные методом B3LYP/6-31+G(d)

Таблица 2

Chaor	о, град													
Связь	2a	2 a [27]	2b	2c	2d	2e	2f	2g	2h	2i	2j	2k	21	2m
S(1)C(2)N(3)	109.6	118.8	109.5	109.6	110.4	113.0	117.9	111.9	118.5	118.4	112.2	112.0	112.7	112.1
C(2)N(3)C(4)	119.4	116.8	119.6	119.8	119.4	113.6	113.2	114.0	112.5	112.7	113.1	113.2	113.5	113.9
N(3)C(4)C(5)	111.4	112.3	111.3	110.6	110.5	119.1	113.4	118.4	113.3	113.2	119.6	119.6	119.4	118.7
C(4)C(5)S(1)	106.6	106.3	106.6	106.9	107.0	103.5	106.4	104.0	106.5	106.5	103.6	103.5	103.5	103.8
C(5)S(1)C(2)	93.0	92.7	93.0	93.0	92.8	90.7	89.2	91.7	89.0	89.0	91.5	91.5	90.9	91.4
S(1)C(2)S(6)	124.8	_	125.1	124.7	123.3	123.2	117.5	123.4	117.0	117.3	122.8	123.1	122.6	123.3
S(6)C(2)N(3)	125.6	124.8	125.4	125.7	126.2	123.7	124.6	124.7	124.6	124.2	124.9	124.8	124.7	124.6
C(2)N(3)H(8)	121.2	_	120.9	120.3	120.7	-	-	_	_	-	-	-	_	_
H(8)N(3)C(4)	119.4	_	119.5	119.9	119.9	-	-	_	_	-	-	-	_	_
N(3)C(4)O(7)	124.8	123.3	124.7	124.6	124.5	123.7	124.0	124.5	124.3	124.2	124.1	124.0	124.0	124.3
O(7)C(4)C(5)	123.8	_	124.0	124.8	125.0	117.1	122.6	117.1	122.4	122.6	116.3	116.4	116.7	117.0
C(4)O(7)H(8)	_	_	_	_	_	112.0	-	112.3	_	-	111.3	111.2	112.5	112.4
C(2)S(6)H(8)	_	_	_	_	_	_	95.6	_	95.5	95.2	_	_	_	_
S(1')C(2')N(3)'	109.6	118.8	110.6	110.0	110.4	113.0	117.9	111.9	109.5	110.7	109.5	111.3	118.1	117.5
C(2')N(3')C(4')	119.4	116.8	119.1	119.9	119.4	113.6	113.2	114.0	119.3	119.0	119.0	118.6	113.1	113.3
N(3')C(4')C(5')	111.4	112.3	110.6	109.9	110.5	119.1	113.4	118.4	111.5	110.5	112.1	110.5	114.2	113.2
C(4')C(5')S(1')	106.6	106.3	106.9	107.3	107.0	103.5	106.4	104.0	106.6	106.9	106.5	107	106.0	106.5
C(5')S(1')C(2')	93.0	92.7	92.7	92.8	92.8	90.7	89.2	91.7	93.0	92.6	93.0	92.5	88.5	89.6
S(1')C(2')S(6')	124.8	_	122.9	126.0	123.3	123.2	117.5	123.4	124.6	123.3	124.6	122.0	119.3	117.2
S(6')C(2')N(3')	125.6	124.8	126.5	124.0	126.2	123.7	124.6	124.7	125.8	126.0	126.0	126.7	122.6	125.4
C(2')N(3')H(8')	121.2	-	120.7	119.9	120.7	-	-	-	121.2	120.5	121.5	120.5	-	_
H(8')N(3')C(4')	119.4	_	120.1	120.2	119.9	-	-	-	119.5	120.4	119.5	120.8	_	_
N(3')C(4')O(7')	124.8	123.3	124.6	124.3	124.5	123.7	124.0	124.5	124.8	124.7	125.3	124.8	123.9	124.0
O(7')C(4')C(5')	123.8	-	124.8	125.7	125.0	117.1	122.6	117.1	123.6	124.8	122.6	124.7	122.0	122.8
C(4')O(7')H(8')	-	-	-	-	-	112.0	-	112.3	-	-	-	-	_	-
C(2')S(6')H(8')	-	_	-	-	-	-	95.6	_	-	-	-	-	95.0	95.7

Углы между связями (@) для основного состояния димеров роданина, рассчитанные методом B3LYP/6-31+G(d)

Таблица З

энергию связи NH···S=C принять равной 3 ккал/моль, как в симметричном димере 2d (табл. 4), то энергия взаимодействия (C_2)S···O=C составит всего 0.1 ккал/моль. Однако даже такого слабого взаимодействия достаточно для стабилизации димера 2c в виде планарной структуры, отвечающей локальному минимуму на гиперповерхности потенциальной энергии.

С точки зрения типа межмолекулярного взаимодействия интересен димер **2c**. В нём проявляется ван-дер-ваальсовое взаимодействие $(C_2)S\cdots O=C$ между циклическим атомом серы и карбонильным атомом кислорода. Анализ электронной плотности методом Бейдера [24] показывает наличие крити-ческой точки (3, -1) между взаимодействующими атомами. Электронная плотность в критической точке составляет 0.00458 e⁻ (табл. 5), что свидетельствует об очень малой прочности связи. Действительно, если энергию связи NH····S=C принять равной 3 ккал/моль, как в симметричном димере **2d** (табл. 4), то энергия взаимодействия (C₂)S····O=C составит всего 0.1 ккал/моль. Однако даже такого слабого взаимодействия достаточно для стабилизации димера **2c** в виде планарной структуры, отвечающей локальному минимуму на гиперповерхности потенциальной энергии.

Среди димеров 2e-m, которые могут существовать в растворах или в газовой фазе, наиболее прочно связанным является димер 2g. В нём реализуется двойное взаимодействие ОН····N (рис. 2), которое стабилизирует димер на 22.8 ккал/моль (табл. 4). Образование такого димера вполне вероятно, если создать благоприятные условия для таутомеризации роданина. Для этого необходимо управлять температурой, учитывая, что реакции таутомеризации роданина в значительной мере эндотермичны [17]. Повышение температуры растворов роданина или его производных будет способствовать таутомерным превращениям, но сольватационные эффекты будут стабилизировать образованные тауто-меры и препятствовать образованию димеров.

Таблица 4

Система	ΔG , ккал/моль	$E_{_{ m MB}},$ ккал/моль	E _{H-bond} , ккал/моль
2a	0	-9.6	-4.8
2b	1.4	-8.2	_
2c	6.5	-3.1	_
2d	3.5	-6.0	-3.0
2e	29.9	-13.9	-7.0
2f	25.1	-10.5	-5.2
2g	21.1	-22.8	-11.4
2h	14.5	-8.1	_
2i	14.7	-7.9	_
2i	13.5	-13.2	_
2k	15.4	-11.4	_
21	28.3	-11.5	-
2m	23.2	-16.5	-
1 a	0	-	_
1b	17.1	_	_
1c	13.0	-	-

Энергетические параметры для основного состояния димеров роданина и его таутомеров, рассчитанные методом B3LYP/6-31+G(d) в вакуумном приближении

	Тип	_	1(A . T.T.T.) 8		
Димер	взаимодействия	ρ, e	<i>l</i> (A–KT), A	l(B-K1), A	
2a	NH _[A] ··· _[B] O=C	0.0281	0.686	1.213	
	$NH_{[A]}$ ··· _[B] O=C	0.0281	0.686	1.213	
2b	$NH_{[A]}$ ··· _[B] $O=C$	0.0297	0.671	1.199	
	$NH_{[A]}$ ··· _[B] S=C	0.0181	0.809	1.632	
2c	$NH_{[A]}$ {[B]}S=C	0.0151	0.842	1.670	
	$(C)_2 S_{[A]} \cdots_{[B]} O = C$	0.0046	1.833	1.662	
2d	$NH_{[A]}$ {[B]}S=C	0.0187	0.802	1.624	
	$NH_{[A]}$ {[B]}S=C	0.0187	0.802	1.624	
2e	$OH_{[A]}$ ··· _[B] S=C	0.0222	0.751	1.591	
	$OH_{[A]}$ {[B]}S=C	0.0222	0.751	1.591	
2f	$\mathrm{SH}_{[\mathrm{A}]}\cdots_{[\mathrm{B}]}\mathrm{N}$	0.0308	0.712	1.257	
	$\mathrm{SH}_{[\mathrm{A}]}\cdots_{[\mathrm{B}]}\mathrm{N}$	0.0308	0.712	1.257	
2g	$OH_{[A]}$ {[B]}N	0.0572	0.531	1.131	
	$OH_{[A]}$ ···_{[B]}N	0.0572	0.531	1.131	
2h	$SH_{[A]}$ ··· $_{[B]}O=C$	0.0301	0.711	1.203	
	$NH_{[A]}$ {[B]}N	0.0247	0.723	1.310	
2i	$SH_{[A]}$ ··· $_{[B]}S=C$	0.0209	0.834	1.589	
	$NH_{[A]}$ ···_{[B]}N	0.0299	0.679	1.264	
2ј	$OH_{[A]}$ ··· _[B] $O=C$	0.0474	0.557	1.106	
	$\mathrm{NH}_{\mathrm{[A]}}\cdots_{\mathrm{[B]}}\mathrm{N}$	0.0213	0.759	1.353	
2k	$OH_{[A]}$ ··· $_{[B]}S=C$	0.0328	0.677	1.479	
	$\mathrm{NH}_{\mathrm{[A]}}\cdots_{\mathrm{[B]}}\mathrm{N}$	0.0275	0.698	1.289	
21	$SH_{[A]}$ ··· $_{[B]}S=C$	0.0114	0.963	1.766	
	$OH_{[A]}$ ··· _[B] $O=C$	0.0393	0.598	1.155	
2m	$OH_{[A]}$ ··· $_{[B]}N$	0.0500	0.557	1.156	
	$SH_{[A]}$ ··· _[B] N	0.0388	0.656	1.211	

Найденные методом Бейдера электронные плотности (р) в критических точках (КТ) связей и расстояния от ядер взаимодействующих атомов до КТ (*l*(A–KT), *l*(B–KT)) для димеров роданина

Однако вероятностное распределение частиц в растворе по скоростям и энергиям, а также дальнейшее повышение температуры позволяют преодолеть барьер димеризации, в результате чего и образуется димер, который стабилизируется за счёт межмолекулярного взаимодействия и сольватации. При описанных условиях вероятность образования димеров **2е-m** существует, а их стабильность пропорциональна энергии межмолекулярного взаимодействия (табл. 4).

Сольватация димеров роданина. Расчёт энергии сольватации важен в первую очередь для оценки стабильности образующихся в растворе димеров. Энергия сольватации димеров рассчитывалась по формуле:

$$E_{\rm solv} = (E_{\rm tot}^{\rm PCM} + E_{\rm non-el}) - E_{\rm tot}^{\rm gas \, phase}, \qquad (2)$$

где $E_{\text{tot}}^{\text{gas phase}}$ – полная энергия димера в газовой фазе, $E_{\text{tot}}^{\text{PCM}}$ – полная энергия димера в водном растворе по данным расчёта в приближении PCM, а $E_{\text{non-el}}$ – оценённый при этом неэлектростатический вклад в энергию сольватации.

Систе - ма	$E_{ m rel, solv},$ ккал/моль	$E_{ m solv}$, ккал/моль	μ, D	Систе- ма	$E_{ m rel,solv},$ ккал/моль	$E_{ m solv},$ ккал/моль	μ, D
2a	0	-4.46	0.00	2i	19.06	-2.83	2.42
2b	1.64	-4.39	5.03	2ј	14.67	-3.60	9.68
2c	2.73	-8.82	6.07	2k	16.83	-3.72	4.95
2d	3.64	-4.26	0.04	21	34.36	-1.28	5.62
2e	34.10	-1.61	0.00	2m	27.93	-2.71	5.01
2f	33.54	-0.90	0.01	1a	0	-8.51	3.11
2g	22.69	-4.03	0.01	1b	14.87	-11.08	7.73
2h	18.73	-2.77	5.48	1c	16.67	-7.25	4.54

Энергетические параметры и дипольные моменты (µ) для основного состояния димеров роданина и его таутомеров, рассчитанные методом B3LYP/6-31+G(d) в рамках модели PCM

В полную энергию димера $E_{\text{tot}}^{\text{PCM}}$ входит энергия электростатического (кулоновского) взаимодействия, которая для всех димеров отрицательна и колеблется в пределах от -10 до -25 ккал/моль. Энергия неэлектростатического взаимодействия ($E_{\text{non-el}}$) во всех случаях положительна и включает в себя энергию образования полости (энергию кавитации) и дисперсионно-отталкивательную энергию.

В целом, для всех димеров роданина электростатическое взаимодействие имеет больший вклад в энергию сольватации, чем неэлектростатическое взаимодействие. Поэтому энергия сольватации отрицательна и стабилизирует все димеры (табл. 6).

Как видно из табл. 6, наиболее сильно сольватируется димер 2c, который имеет высокий дипольный момент. Это легко объяснить, так как димер и растворитель сильнополярны и между ними возникает сильное стабилизирующее диполь-дипольное взаимодействие, что прослеживается и для димеров 2b, j, k, Обратная закономерность характерна для димеров 2gи 2f, энергия сольватации (стабилизация) и дипольный момент которых невелики. Высокие значения $E_{rel,solv}$ для обоих димеров (табл. 6) показывают, что возможность их образования в растворе мала, как и димеров 2g, l, m. Для димеров 2a, d, g-i, l, m соответствие между дипольными моментами и энергиями сольватации отсутствует. Это объясняется тем, что энергии сольватации димеров рассчитаны для равновесной геометрии в газофазном расчёте, т. е. пренебрежением изменениями геометрии при сольватации.

ИК спектры димеров роданина. В рассчитанных ИК спектрах исследуемых димеров и мономолекул все колебательные моды характеризуются вещественными значениями частот гармонических колебаний. Наибольший интерес представляют моды валентных колебаний (v) групп, участвующих в межмолекулярном взаимодействии, а именно групп C=O, C=S, N-H, O-H и S-H. Полученные данные могут быть полезны при идентификации исследуемых димеров. Результаты расчётов в сравнении с опытными данными приведены в табл. 7.

Таблица 7

Система	$v, \mathrm{cm}^{-1} (I, \mathrm{кm/моль})$									
Chiefenau	C=O	C=S	N–H	S–H	O–H					
2a	1780 (1480);	1092 (259);	3361 (1832);	_	_					
	1766 (0)	1089 (0)	3333 (0)							
2b	1818(443);	1069 (115);	3343 (2024);	-	_					
	1772 (746)	1092 (130)	3314 (34)							
2c	1801 (527);	1082 (165);	3582.92 (66);	-	-					
	1819 (586)	1084 (52)	3399.95 (868)							
2d	1818 (896);	1075 (232);	3331 (2196);	-	-					
	1818 (0)	1069 (0)	3306 (0)							
2e	_	1050 (686);	_	-	3201 (3528);					
• •		1052 (0)			3162 (0)					
2f	1788 (614);	—	-	2374(2267);	—					
•	1789 (0)	1077 (471)		2333 (0.2)	2710 ((525))					
2g	_	10//(4/1); 1072(0)	_	_	2/19 (6525);					
•	1700 (014)	1073 (0)	2222 (10.40)	24(1)((2))	2580 (0)					
2h	1760 (644);	1090 (105)	3293 (1040)	2461 (634)	—					
. .	1808 (419)	10(7(00)	2220 (12(0)	2207 (002)						
21	1823(514); 1803(101)	1067 (88);	3220 (1266)	2387 (893)	_					
2:	1754 (207)	1003(37) 1050(266):	2222 (1172)		2128 (1407)					
2 j	1/34 (807)	1039(200), 1003(01)	5525 (1172)	—	5158 (1497)					
217	1829 (382)	1055(51) 1061(313)	3232 (1653)	_	3064 (1575)					
28	1029 (302)	1001(313), 1059(72)	5252 (1055)		5004 (1575)					
21	1738 (516)	1046(312)	_	2490 (531)	3154 (1690)					
2m	1800 (351)	1066 (256)	_	2206 (1434)	2831 (2959)					
19	1815 (551)	1086(122)	3586 (63)	-						
1a 1b	-	1038(219)	-	_	3669 (98)					
10 1e	1808 (368)	-	_	2691 (0.6)	-					
10	1770	1082	3150	2091 (0.0)	—					
2a [0-11]	1770	1062	5150	–	_					

Рассчитанные частоты (v) и ИК интенсивности (I) для основного состояния димеров роданина и его таутомеров

Валентным колебаниям группы С=О в общем случае соответствует диапазон частот 1735–1830 см⁻¹. Согласно данным Беллами [34], валентные колебания карбонильной группы циклических алифатических кетонов с пятичленным циклом проявляются в более узком диапазоне 1740–1750 см⁻¹, что хорошо совпадает с результатами расчётов. На положение полосы $v_{C=O}$ сильно влияет участие этой группы в димеризации. Колебания свободной группы С=О хорошо воспроизводятся в ИК спектрах димеров **2b,d,h,i,k,m** при частоте около 1820 см⁻¹ (табл. 7). В димере **2f** группы С=О не участвуют в Н-связывании, но их колебания проявляются при меньших частотах (1788, 1789 см⁻¹). Заметим, что колебание при 1789 см⁻¹ ($v_{C=O}$ в фазе) запрещено в ИК спектре, но является активным в спектре рамановского комбинационного рассеяния.

Колебания связанных групп C=O (димеры **2a,b,h,j,l**) проявляются при относительно более низких частотах в диапазоне 1735–1780 см⁻¹. По данным [8–11], полоса $v_{C=O}$ в свободном роданине (существует преимущественно в форме димера **2a**) проявляется при 1770 см⁻¹, что согласуется

с рассчитанным значением 1780 см⁻¹. В ИК спектре димера **2с** одна группа C=O участвует в слабом межмолекулярном взаимодействии (C)₂S····O=C, поэтому её валентное колебание также слабо смещено в сторону больших частот и проявляется при 1801 см⁻¹. Однако этого достаточно для отчётливого расщепления полосы $v_{C=O}$ в ИК спектре (табл. 7).

Расщепление полосы $v_{C=O}$ наблюдается также в ИК спектрах димеров **2b,h**,i. Для димеров **2b,h** расщепление вызвано участием одной группы C=O в димеризации. Для димера **2i** расщепление обусловлено неплоской структурой димера, что также объясняет высокую интенсивность синфазного колебания при 1823 см⁻¹ (табл. 7). В случае планарной структуры можно было бы предположить запрет этого колебания, как и в планарных димерах **2a,d,f**, в которых синфазные валентные колебания групп C=O не активны в ИК спектре.

Валентные колебания группы C=S в ИК спектрах димеров, подобно валентным колебаниям группы C=O, проявляются в узкой области частот 1038–1092 см⁻¹. По данным [8–11, 35, 36], полосы валентных колебаний группы C=S в свободном роданине (димер **2a**) проявляются при 1082, 1089 и 1080 см⁻¹ соответственно, что совпадает с рассчитанным нами диапазоном.

В целом поведение полосы $v_{C=S}$ при димеризации очень похоже на поведение полосы $v_{C=O}$: колебания групп C=S, участвующих в межмолекулярном взаимодействии, наблюдаются при относительно меньшей частоте (~1070 см⁻¹), а колебания свободных групп C=S при более высоких частотах (~1090 см⁻¹). Рассчитанные данные указывают на существенную зависимость частоты валентных колебаний группы C=S от строения мономолекулы. Как видно из табл. 7, в таутомере **1b** значение $v_{C=S}$ существенно падает, по сравнению с аналогичной величиной в свободном роданине **1a**.

Аналогичное явление наблюдается при димеризации. Если тиокетонная группа молекулы **1b** не участвует в межмолекулярном взаимодействии (димеры **2g,j,k,m**), частота колебания группы C=S понижается до 1060–1070 см⁻¹. Если же группа C=S молекулы **1b** участвует в H-связывании, то частота падает до 1046 и 1050 см⁻¹ (димеры **2e** и **2l** соответственно). В димере **2i**, который содержит лишь одну группу C=S, образуются две соответствующие колебательные моды, что обусловлено смешиванием колебаний $v_{C=S}$ и v_{C-S} (мода при 1067 см⁻¹ – $v_{C=S}$ и v_{C-S} в противофазе, мода при 1065 см⁻¹ – $v_{C=S}$ и v_{C-S} в фазе).

По расчётным данным, валентные колебания группы N–H проявляются в высокочастотной области ИК спектров димеров в диапазоне $3230-3400 \text{ см}^{-1}$. По данным [8–11, 35, 36], валентные колебания групп N–H в свободном роданине (димер **2a**) проявляются при 3150, 3184, 3160 см⁻¹, что неплохо совпадает с рассчитанным диапазоном. Завышение расчётных частот валентных колебаний группы N–H вызвано погрешностями метода DFT, который даёт большую силовую постоянную данных колебаний.

На положение полосы v_{N-H} сильно влияет H-связывание, которое приводит к сильному смещению (~200 см⁻¹) частоты колебания группы N-H в сторону меньших частот, чем в молекуле **1a** (табл. 7). Для димеров **2a–d** полоса v_{N-H} обусловлена двумя колебательными модами. В димерах **2a,b,d** проявляются колебания v_{N-H} в фазе и в противофазе, 1544

причём синфазные колебания запрещены. В димере **2с** данная полоса принадлежит отдельным колебаниям $v_{N(3)-H(8)}$ и $v_{N(3')-H(8')}$, причём основной вклад в интенсивность полосы вносит колебание ассоциированной группы N(3)–H(8) ($\tilde{\nu} = 3400 \text{ см}^{-1}$). Ассоциация группы N–H также сильно повышает интенсивность её валентного колебания, которая варьируется в диапазоне 860–2025 км/моль (63 км/моль в молекуле **1а**, табл. 7).

Довольно специфическими являются валентные колебания групп О–Н и N–H. Данные колебания образуют полосы высокой интенсивности в высокочастотной области ИК спектра: валентные колебания групп О–Н проявляются в области 2580–3200 см⁻¹, а групп S–H – в области 2200–2500 см⁻¹. Согласно Беллами [34], валентные колебания групп О–H, участвующих в межмолекулярных водородных связях, дают интенсивные полосы в диапазоне 3200–3450 см⁻¹, что не совсем совпадает с рассчитанной областью. Это связано с тем, что водородные связи ОН···O=C, ОН···S=C, ОН····N в димерах очень прочны, что приводит к сильной поляризации связей О–H и увеличению их длины (1.003–1.030 Å по расчётным данным в сравнении с типичной длиной 0.970 Å [37]). В свою очередь, это вызывает смещение соответствующих частот колебаний в низкочастотную область.

На частоту валентных колебаний групп S–H, согласно [34], ассоциация практически не влияет, и они проявляются в узком диапазоне частот 2550–2600 см⁻¹. Однако в случае роданина димеризация, видимо, всё же влияет на частоту данных колебаний, что приводит к их смещению в область 2200–2500 см⁻¹. Наличие характеристических полос v_{O-H} и v_{S-H} в экспериментальных спектрах роданина и его производных может прямо свидетельствовать о наличии таутомеров типа **1b** и **1c**, а также соответствующих им димеров (рис. 2).

Таким образом, методами квантовой химии (DFT и QTAIM) установлены относительные устойчивости, особенности строения и спектральные (ИК) свойства тринадцати димеров роданина и его таутомеров. Полученные результаты хорошо согласуются с опытными данными по строению и спектральным свойствам роданина и илиденроданинов. Образование таутомеров и их димеров – процесс эндотермичный, но сольватация и Н-связывание способствуют стабилизации таких димеров.

Авторы выражают глубокую благодарность заведующему лабораторией теоретической химии Высшей королевской технической школы (Стокгольм, Швеция) профессору Хансу Огрену за предоставленную возможность использования ресурсов суперкомпьютера PDC.

СПИСОК ЛИТЕРАТУРЫ

- R. Bryk, B. Gold, A. Venugopal, J. Singh, R. Samy, K. Pupek, H. Cao, C. Popescu, M. Gurney, S. Hotha, J. Cherian, K. Rhee, L. Ly, P. J. Converse, S. Ehrt, O. Vandal, X. Jiang, J. Schneider, G. Lin, C. Nathan, *Cell Host Microbe*, 3, 137 (2008).
- M. Sortino, P. Delgado, S. Juárez, J. Quiroga, R. Abonía, B. Insuasty, M. Nogueras, L. Rodero, F. M. Garibotto, R. D. Enriz, S. A. Zacchino, *Bioorg. Med. Chem.*, 15, 484 (2007).

- M. G. Orchard, J. C. Neuss, C. M. S. Galley, A. Carr, D. W. Porter, P. Smith, D. I. C. Scopes, D. Haydon, K. Vousden, C. R. Stubberfield, K. Young, M. Page, *Bioorg. Med. Chem. Lett.*, 14, 3975 (2004).
- J. Dolezel, P. Hirsova, V. Opletalova, J. Dohnal, V. Marcela, J. Kunes, J. Jampilek, *Molecules*, 14, 4197 (2009).
- 5. Р. Б. Лесик, Б. С. Зіменковський, Н. Я. Троцько, Ukr. Bioorg. Acta, 1, 29 (2004).
- A. J. Russell, I. M. Westwood, M. H. J. Crawford, J. Robinson, A. Kawamura, C. Redfield, N. Laurieri, E. D. Lowe, S. G. Davies, E. Sim, *Bioorg. Med. Chem.*, 17, 905 (2009).
- 7. A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem., Int. Ed., 48, 2474 (2009).
- 8. A. C. Fabretti, G. C. Franchini, G. Peyronel, Transition Met. Chem., 3, 355 (1978).
- 9. A. C. Fabretti, G. Peyronel, Transition Met. Chem. 2, 224 (1977).
- 10. A. C. Fabretti, G. Peyronel, G. C. Franchini, Transition Met. Chem., 3, 125 (1978).
- 11. A. C. Fabretti, G. Peyronel, Transition Met. Chem., 2, 207 (1977).
- 12. E. Tang, G. Yang, J. Yin, Spectrochim. Acta, Part A, 59, 651 (2003).
- 13. R. J. Loncharich, J. S. Nissen, D. B. Boyd, *Struct. Chem.*, 7, 37 (1996).
- 14. D. B. Boyd, J. Mol. Struct.: THEOCHEM, 401, 227 (1997).
- 15. V. Enchev, I. Petkov, S. Chorbadjiev, Struct. Chem., 5, 225 (1994).
- 16. D. Tahmassebi, J. Mol. Struct.: THEOCHEM, 638, 11 (2003).
- 17. A. G. Al-Sehemi, T. M. El-Gogary, J. Mol. Struct.: THEOCHEM, 907, 66 (2009).
- 18. M. J. S. Dewar, W. Theil, J. Am. Chem. Soc., 99, 4899 (1977).
- 19. J. J. P. Stewart, J. Comput. Chem., 10, 209 (1989).
- 20. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
- 21. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785 (1988).
- M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys., 77, 3654 (1982).
- 23. S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys., 55, 117 (1981).
- 24. R. W. F. Bader, *Atoms in Molecules. A Quantum Theory*, Oxford University Press, Oxford, 1990.
- 25. T. A. Keith, AIMAll (Version 10.07.25), aim.tkgristmill.com (2010).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomeri, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, *Revision C.02*, Gaussian, Inc., Wallingford, CT (2004).
- 27. D. Van der Helm, A. E. Lessor, L. L. Merritt, Acta Crystallogr., 15, 1227 (1962).
- 28. E. Barreiro, J. S. Casas, M. D. Couce, A. Sánchez, J. Sordo, J. M. Varela, E. M. Vázquez-López, *Cryst. Growth Des.*, 7, 1964 (2007).
- D. Shahwar, M. N. Tahir, M. A. Raza, B. Iqbal, S. Naz, Acta Crystallogr., E65, 02637 (2009).
- V. Enchev, S. Chorbadjiev, B. Jordanov, XTC, 1268 (2002). [Chem. Heterocycl. Comp., 38, 1110 (2002)].
- 31. J. Ray, N. Panja, P. K. Nandi, J. J. Martin, W. E. Jones, Jr., *J. Mol. Struct.*, **874**, 121 (2008).

¹⁵⁴⁶

- 32. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 285, 170 (1998).
- 33. V. I. Yakimenko, R. S. Lebedev, Russ. Phys. J., 16, 1162, (1973).
- 34. Л. Беллами, Инфракрасные спектры молекул, пер. с англ., Изд-во иностр. лит., Москва, 1985.
- 35. K. A. V'yunov, A. I. Ginak, G. Sochilin, J. Appl. Spectrosc., 27, 1592 (1977).
- N. Playá, A. Macías, J. M. Varela, A. Sánchez, J. S. Casas, J. Sordo, *Polyhedron*, 10, 1465 (1991).
- 37. А. Гордон, Р. Форд, Спутник химика, пер. с англ., Мир, Москва, 1976.

Черкасский национальный университет им. Б. Хмельницкого, бул. Шевченко, 81, Черкассы 18031, Украина e-mail: glebchem@rambler.ru Поступило 1.12.2010 После доработки 27.03.2011