## В. Н. Брицун\*, Н. В. Пикун, А. Б. Рябицкий, М. О. Лозинский

## ГЕТЕРОЦИКЛИЗАЦИИ 3-(R-АМИНО)-3-МЕТИЛТИО-1-ФЕНИЛПРОПЕНОНОВ И 5-БЕНЗОИЛ-6-МЕТИЛТИО-1,2-ДИГИДРОПИРИДИН-2-ОНОВ С 1,2- И 1,3-ДИНУКЛЕОФИЛЬНЫМИ РЕАГЕНТАМИ

Взаимодействием 3-(R-амино)-3-метилтио-1-фенилпропенонов и 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов с *N,N-* и *N,C-*1,2- и -1,3-динуклеофилами, протекающим региоспецифически по типу [3+2]и [3+3]-циклоконденсаций, получены производные пиразола, бензимидазо[1,2-*a*]пиридина, бензимидазо[1,2-*a*]пиримидина, имидазо[1,2-*a*]пиримидина, [1,2,4]триазоло[4,3-*b*]пиридазина и 6,7-дигидро-2*H*-пиразоло[3,4-*b*]пиридина. Проанализирована региоселективность проведенных реакций.

Ключевые слова: 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-оны, 6-амино-5-бензоил-1-метил-3-этоксикарбонил-1,2-дигидропиридин-2-он, 3-(R-амино)-3-метилтио-1-фенилпропеноны, 1-R<sup>1</sup>-5-(R-амино)-3-фенилпиразолы, бензимидазо[1,2-*a*]пиридины, бензимидазо[1,2-*a*]пиримидины, 6,7-дигидро-2*H*-пиразоло[3,4-*b*]пиридины,1,2,4-триазол, [1,2,4]триазоло[4,3-*b*]пиридазины, гетероциклизация, [3+2]- и [3+3]-циклоконденсации.

3-Алкилтио-3-(R-амино)-1-арилпропеноны могут реагировать как с электрофильными, так и с нуклеофильными и полицентровыми реагентами. Вследствие этого они являются ценными исходными соединениями для синтеза азотсодержащих гетероциклов – производных пиримидина, пиррола, пиридина, изоксазола и хинолина [1–5]. В реакциях с нуклеофилами эти субстраты реагируют по двум реакционным центрам – карбонильной группе и С-3 [5]. Относительная лёгкость протекания таких гетероциклизаций обусловлена хорошей нуклеофугностью алкилтиогруппы 3-алкилтио-3-(R-амино)-1-арилпропенонов. Вместе с тем наличие конкурирующих реакционных центров может приводить к неселективному осуществлению реакций 3-алкилтио-3-(R-амино)-1-арилпропенонов с несимметричными динуклеофилами. Следует отметить, что, за исключением работы [5], исследований по данной тематике не проводилось.

Фрагмент 3-алкилтио-3-(R-амино)-1-арилпропенонов входит в структуру 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов, аннелирование которых азотсодержащими динуклеофильными реагентами изучалось нами ранее [6, 7]. Однако полученные данные нуждаются в дополнении и обобщении.

Целью настоящей работы является исследование региоселективности и выяснение закономерностей циклоконденсаций 3-(R-амино)-3-метилтио-1-фенилпропенонов и 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов с азотсодержащими динуклеофильными реагентами несимметричного строения.

Гетероциклизации 3-(R-амино)-3-метилтио-1-фенилропенонов **1а,b** с азотсодержащими динуклеофилами осуществляются в достаточно жёстких

условиях – в кипящем гексаноле. Мы установили, что пропеноны **1a,b** реагируют с замещёнными гидразинами **2a,b**, 2-аминоимидазолом (**4a**) и 2-аминобензимидазолом (**4b**), 4-амино-1,2,4-триазолом (**6**), 2-цианометилбензимидазолом (**8**) региоспецифически, с образованием лишь одного продукта в каждом случае (табл. 1–3).



1a, 3a,b, 5b, 7a, 9 R = Me; 1b, 3c, 5a,c, 7b R = Ph; 2a, 3a R<sup>1</sup> = Me; 2b, 3b,c R<sup>1</sup> = Ph; 4a, 5a R<sup>2</sup> = H; 4b, 5b,c R<sup>2</sup> + R<sup>2</sup> =  $\delta$  eH30

Так как спектры ЯМР <sup>1</sup>Н соединений **За-с** (табл. 2) малоинформативны и не позволяют выяснить, являются ли они 1,3- или 1,5-дизамещёнными пиразолами, то идентификация этих соединений была проведена встречным синтезом.

В отличие от 5-ариламино-1,3-дизамещенных пиразолов [8, 9], 1,5-диалкил-3-ариламинопиразолы менее доступны [10].

Реакцией 2-бензоилтиоацетамидов 10а, b с гидразинами 2а, b по методике [8] нами были синтезированы 1,3-дизамещённые пиразолы 3а, c. Спектральные и физические свойства соединений 3а, c, полученных из исходных реагентов 1а, b и 10а, b, оказались идентичными. Это даёт нам право утверждать, что продуктами гетероциклизации 3-(R-амино)-3-метилтио-1-фенилпропенонов 1а, b с гидразинами 2а, b являются пиразолы 3а-c. Следует отметить, что пиразолы такой структуры были синтезированы ранее циклоконденсацией 2-ацилацетамидов с гидразинами и реактивом Лоуссона [11], однако с меньшими выходами.

Ph 
$$\rightarrow$$
 NHR  $2a,b$   
O S  $AcOH$   
10a,b  
10a R = Me, b R = Ph

1184

Строение продуктов гетероциклизации 3-метилтио-3-(R-амино)-1-фенилпропенонов **1a,b** с 2-аминоимидазолами **4a,b** и 2-(цианометил)бензимидазолом (**8**) было подтверждено данными спектроскопии ЯМР <sup>1</sup>Н. В спектрах бензимидазо[1,2-*a*]пиримидинов **5b,c** сигналы протонов H-6 находятся в диапазоне 7.03–7.31 м. д., тогда как в случае пиридо[1,2-*a*]бензимидазола **9** сигнал протона H-9 смещён в сильное поле (6.14 м. д.) вследствие экранирования, обусловленного влиянием кольцевых  $\pi$ -электронных токов фенильного кольца.

Можно сделать вывод, что атом углерода карбонильной группы субстрата **1**а,**b** реагирует с экзоциклическим атомом азота реагента **4**а,**b**, а в случае отсутствия такового (бензимидазол **8**) – с эндоциклическим атомом азота. Исходя из этих данных, есть основания полагать, что продуктами реакции пропенонов **1**а,**b** с 4-амино-1,2,4-триазолом (**6**), по всей видимости, являются [1,2,4]триазоло[4,3-b]пиридазины **7**а,**b**.

Таблица 1

| Соеди-      | Брутто-формула       | <u>Найдено,</u> %<br>Вычислено, % |                     |                       | Т. пл., °С*             | Выход, |
|-------------|----------------------|-----------------------------------|---------------------|-----------------------|-------------------------|--------|
| пение       |                      | С                                 | Н                   | Ν                     |                         | 70     |
| 3a          | $C_{11}H_{13}N_3$    | <u>70.34</u><br>70.56             | <u>7.19</u><br>7.00 | <u>22.13</u><br>22.44 | 54–57                   | 57     |
| 3b          | $C_{16}H_{15}N_3$    | <u>77.09</u><br>77.08             | <u>6.11</u><br>6.06 | <u>17.08</u><br>16.85 | 101–103<br>106–108 [12] | 61     |
| 3c          | $C_{21}H_{17}N_3$    | <u>80.88</u><br>81.00             | <u>5.78</u><br>5.50 | <u>13.25</u><br>13.49 | 150–153                 | 68     |
| 5a          | $C_{18}H_{14}N_4$    | <u>75.36</u><br>75.51             | <u>5.20</u><br>4.93 | <u>19.73</u><br>19.57 | 272–278                 | 66     |
| 5b          | $C_{17}H_{14}N_4$    | <u>74.40</u><br>74.43             | <u>5.32</u><br>5.14 | <u>20.65</u><br>20.42 | 297–300                 | 60     |
| 5c          | $C_{22}H_{16}N_4$    | <u>78.73</u><br>78.55             | <u>4.52</u><br>4.79 | <u>16.47</u><br>16.66 | 328–331                 | 52     |
| 7a          | $C_{12}H_{11}N_5$    | <u>64.04</u><br>63.99             | <u>5.05</u><br>4.92 | <u>30.85</u><br>31.09 | 268–270                 | 45     |
| 7b          | $C_{17}H_{13}N_5$    | <u>70.79</u><br>71.07             | <u>4.66</u><br>4.56 | <u>24.53</u><br>24.37 | 307–309                 | 49     |
| 9           | $C_{19}H_{14}N_4$    | <u>76.72</u><br>76.49             | <u>5.01</u><br>4.73 | <u>18.59</u><br>18.78 | 305–308                 | 37     |
| <b>13</b> a | $C_{17}H_{17}N_3O_3$ | <u>65.67</u><br>65.58             | <u>5.38</u><br>5.50 | <u>13.72</u><br>13.50 | 161–164                 | 73     |
| 13b         | $C_{22}H_{19}N_3O_3$ | <u>71.03</u><br>70.76             | <u>5.28</u><br>5.13 | <u>11.26</u><br>11.25 | 170–172                 | 79     |
| 13c         | $C_{23}H_{21}N_3O_3$ | <u>71.46</u><br>71.30             | <u>5.47</u><br>5.46 | <u>11.13</u><br>10.85 | 131–133                 | 53     |
| 15          | $C_{16}H_{16}N_2O_4$ | <u>64.15</u><br>63.99             | <u>5.08</u><br>5.37 | <u>9.36</u><br>9.33   | 295–298                 | 51     |
| 16          | $C_2H_3N_3$          | <u>35.04</u><br>34.78             | <u>4.24</u><br>4.38 | <u>61.11</u><br>60.84 | 116–118<br>119–121 [13] | 29     |

Характеристики синтезированных соединений

\* Соединения **3а,b**, **13а,c** перекристаллизованы из 2-пропанола, **3с**, **13b**, **16** – из этанола, **5а-с**, **7а,b**, **9**, **15** – из ДМСО.

В работах [6, 7] мы изучали региоселективность гетероциклизаций 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов **11а,b**, содержащих фрагмент 3-(R-амино)-3-метилтио-1-фенилпропенонов **1а,b**. С целью выяснения различий и сходств реакций структурно близких соединений **1а,b** и **11а,b** мы исследовали циклоконденсации **11а,b** с замещёнными гидразинами **2а,b** и 4-амино-1,2,4-триазолом (**6**).

Циклами, образующимися при реакции 1,2-дигидропиридин-2-онов **11а,b** с гидразинами **2а,b**, могут быть как 1-R<sup>1</sup>-7-алкил-3-фенил-5-этоксикарбонил-6,7-дигидро-1*H*-пиразоло[3,4-*b*]пиридин-6-оны **12а–с**, так и 2-R<sup>1</sup>-7-алкил-3-фенил-5-этоксикарбонил-6,7-дигидро-2*H*-пиразоло[3,4-*b*]пиридин-6-оны **13а–с**. Выяснилось, что взаимодействие происходит селективно с образованием только соединений **13а–с**.



11a, 12a,b, 13a,b, 14a,b, 15 R = Me; 11b, 12c, 13c, 14c R = Et; 12a, 13a R<sup>1</sup> = Me; 12b,c, 13b,c R<sup>1</sup> = Ph

ИК спектры синтезированных соединений

Таблица 2

| Соединение  | ν, cm <sup>-1</sup>                                        |
|-------------|------------------------------------------------------------|
| <b>3</b> a  | 3400, 3100, 3000, 2900, 1590, 1520, 1500, 1460, 1370       |
| 3b          | 3250, 3100, 3000, 2950, 1600, 1560, 1500, 1470, 1420, 1360 |
| 3c          | 3200, 3100, 3000, 1605, 1550, 1490, 1460, 1410             |
| 5a          | 3100, 3000, 1620, 1570, 1490, 1400                         |
| 5b          | 3100, 2950, 1615, 1560, 1500                               |
| 5c          | 3100, 3000, 1610, 1580, 1500                               |
| 7a          | 3280, 3000, 2900, 1620, 1580, 1540, 1510                   |
| 7b          | 3100, 3000, 1610, 1580, 1550                               |
| 9           | 3300, 3100, 3000, 2200, 1640, 1610, 1540                   |
| <b>13</b> a | 3000, 2900, 1710, 1650, 1630, 1560, 1520                   |
| 13b         | 3000, 2850, 1710, 1640, 1600, 1560                         |
| 13c         | 3000, 2900, 1715, 1650, 1610, 1550                         |
| 15          | 3350, 3200, 3000, 1720, 1660, 1580, 1500, 1390             |

Структуры полученных продуктов определялись методами 2D-спектроскопии (экспериментами NOESY и HETCOR). В качестве объекта взято соединение, которому могла быть приписана структура **12a** или **13a**. В спектре HETCOR дальних гетероядерных корреляций <sup>13</sup>C<sup>-1</sup>H проявляется спин-спиновое взаимодействие C(3)–NCH<sub>3</sub>, осуществляющееся через три связи. Положение сигнала атома C(3) (140.9 м. д.) доказывается наличием дальней корреляции C(3)–H-2',6'. Такое взаимодействие возможно лишь для изомера **13a**.



Основные корреляции и отнесение сигналов в спектрах <sup>1</sup>Н и <sup>13</sup>С соединения 13а

Для этого же соединения **13а** нами определены пространственные корреляции  ${}^{1}\text{H}{-}^{1}\text{H}$  с применением гомоядерного эффекта Оверхаузера (эксперимент NOESY). В спектре ЯМР  ${}^{1}\text{H}$  сигналы протонов фенильной группы проявляются в виде неразрешенного мультиплета (7.52–7.73 м. д.), тогда как в спектре NOESY наблюдается корреляционный пик, доказывающий взаимодействие протонов группы N(2)–CH<sub>3</sub> (3.94 м. д.) с протонами фенильной группы через пространство. Это возможно лишь в случае изомера **13а** вследствие близости пространственного расположения соответствующих молекулярных фрагментов. Следовательно, образование пиразоло-[3,4-*b*]пиридин-6-онов **13а–с** однозначно подтверждено методами 2D-спектроскопии.

При взаимодействии 1,2-дигидропиридин-2-она **11а,b** с 4-амино-1,2,4триазолом (**6**), подобно конденсациям с 2-аминоазолами [**6**, 7], предполагалось синтезировать пиридо[3,2-e][1,2,4]триазоло[4,3-b]пиридазин-7-оны **14а–с**. Но выяснилось, что реализуется иной путь – продуктами реакции являются 6-амино-5-бензоил-1-метил-3-этоксикарбонил-1,2-дигидропиридин-2-он (**15**) и 1,2,4-триазол (**16**). В спектре ЯМР <sup>1</sup>Н соединения **15** сигналы группы NH<sub>2</sub> проявляются в виде двух уширенных синглетов, находящихся достаточно далеко друг от друга (8.53 и 10.33 м. д.). Очевидно протон первичной аминогруппы, находящийся в слабом поле, образует прочную водородную связь с атомом кислорода бензоильной группы.

Таким образом, в данном превращении 4-амино-1,2,4-триазол (6) является переносчиком аминогруппы. О подобных реакциях для производных 4-амино-1,2,4-триазола сообщалось в работе [13], в которой образование 1,2,4-триазола наблюдалось при термолизе тетрафторбората 1-(1',2',4'триазол-4'-ил)-2,4,6-триметилпиридиния. Спектры ЯМР <sup>1</sup>Н синтезированных соединений

| Соеди-<br>нение | Химические сдвиги, $\delta$ , м. д. ( $J$ , $\Gamma$ ц)*                                                                                                                                                                                                                       |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3a              | 2.72 (3H, д, <i>J</i> = 2.9, NHC <u>H</u> <sub>3</sub> ); 3.56 (3H, с, 1-CH <sub>3</sub> ); 5.52 (1H, уш. с, NHMe); 5.72 (1H, с, H-4); 7.21 (1H, м, H Ph); 7.33 (2H, м, H Ph); 7.67 (2H, м, H Ph)                                                                              |  |  |
| 3b              | 2.75 (3H, д, <i>J</i> = 3.2, NHC <u>H</u> <sub>3</sub> ); 5.53 (1H, уш. с, NHMe); 5.94 (1H, с, H-4);<br>7.28 (4H, м, H Ph); 7.50 (2H, м, H Ph); 7.62 (2H, м, H Ph); 7.78 (2H, м, H Ph)                                                                                         |  |  |
| 3c              | 6.68 (1H, c, H-4); 6.75 (1H, м, H Ph); 6.88 (2H, м, H Ph); 7.16 (2H, м, H Ph);<br>7.32–7.49 (6H, м, H Ph); 7.67 (2H, м, H Ph); 7.88 (2H, м, H Ph); 8.08 (1H, c, NHPh)                                                                                                          |  |  |
| 5a              | 6.67 (1H, c, H-6); 7.29–7.63 (9H, м, H Ar); 7.95 (2H, м, H Ar); 8.07 (1H, д,<br>J = 2.6, H-3); 9.70 (1H, уш. с, NHPh)                                                                                                                                                          |  |  |
| 5b              | 3.21 (3H, д, <i>J</i> = 3.6, NHC <u>H</u> <sub>3</sub> ); 6.71 (1H, c, H-3); 7.31 (1H, м, H-6); 7.43–7.60 (5H, м, H Ar + NHMe); 7.73 (1H, м, H Ar); 8.28 (2H, м, H Ar); 8.45 (1H, м, H Ar)<br>H Ar)                                                                            |  |  |
| 5c              | 6.63 (1H, c, H-3); 7.03 (3H, м, H Ar); 7.27–7.46 (8H, м, H Ar); 7.79 (2H, м, H Ar); 8.77 (1H, м, H Ar); 12.82 (1H, уш. с, NHPh)                                                                                                                                                |  |  |
| 7a              | 2.86 (3H, д, <i>J</i> = 3.5, NHC <u>H</u> <sub>3</sub> ); 7.03 (1H, c, H-7); 7.27 (1H, уш. c, NHMe); 7.55 (3H, м, H Ph); 8.12 (2H, м, H Ph); 9.11 (1H, c, H-3)                                                                                                                 |  |  |
| 7b              | 7.03 (1H, м, H Ar); 7.30–7.38 (3H, м, H Ar); 7.59 (3H, м, H Ar); 7.75 (2H, м, H Ar); 8.26 (2H, м, H Ar); 9.28 (1H, с, H-3); 9.62 (1H, уш. с, NHPh)                                                                                                                             |  |  |
| 9               | 3.04 (3H, д, <i>J</i> = 3.2, NHC <u>H</u> <sub>3</sub> ); 6.14 (1H, м, H-9); 6.40 (1H, с, H-2); 6.78 (1H, м, H Ar); 7.23 (1H, м, H Ar); 7.57–7.71 (7H, м, H Ar + NHMe)                                                                                                         |  |  |
| 13a**           | 1.26 (3H, т, <i>J</i> = 6.9, OCH <sub>2</sub> C <u>H</u> <sub>3</sub> ); 3.49 (3H, с, 7-CH <sub>3</sub> ); 3.94 (3H, с, 2-CH <sub>3</sub> ); 4.19 (2H, к, <i>J</i> = 6.9, OC <u>H</u> <sub>2</sub> CH <sub>3</sub> ); 7.52–7.73 (5H, м, H Ph); 8.04 (1H, с, H-4)               |  |  |
| 13b             | 1.28 (3H, т, <i>J</i> = 6.8, OCH <sub>2</sub> C <u>H</u> <sub>3</sub> ); 3.54 (3H, с, 7-CH <sub>3</sub> ); 4.22 (2H, к, <i>J</i> = 6.8, OC <u>H<sub>2</sub>CH<sub>3</sub>); 7.30–7.52 (10H, м, H Ph); 8.12 (1H, с, H-4)</u>                                                    |  |  |
| 13c             | 1.28 (6H, м, 2CH <sub>2</sub> C <u>H</u> <sub>3</sub> ); 4.23 (4H, м, 2C <u>H</u> <sub>2</sub> CH <sub>3</sub> ); 7.32–7.53 (10H, м, H Ph); 8.12 (1H, с, H-4)                                                                                                                  |  |  |
| 15              | 1.16 (3H, т, <i>J</i> = 6.4, OCH <sub>2</sub> CH <sub>3</sub> ); 3.38 (3H, с, 1-CH <sub>3</sub> ); 4.07 (2H, к, <i>J</i> = 6.4, OC <u>H<sub>2</sub>CH<sub>3</sub></u> ); 7.46–7.52 (5H, м, H Ph); 8.20 (1H, с, H-4); 8.53 (1H, уш. с, NH); 10.33 (1H, уш. с, NH <sup></sup> O) |  |  |

\* Для узких мультиплетов указаны их центры.

Результаты, полученные нами в этой работе и ранее [6, 7], позволяют в определённой степени сравнить реакционную способность и региоселективность реакций 3-(R-амино)-3-метилтио-1-фенилпропенонов **1а,b** и содержащих такой же структурный фрагмент 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-он **11а,b** по отношению к динуклеофильным реагентам. Гетероциклизации производных 1,2-дигидропиридин-2-она **11а,b** осуществляются в более мягких условиях, чем подобные реакции арилпропенонов **1а,b**, и характеризуются иной хемоселективностью. Если циклоконденсации азотсодержащих 1,2- и 1,3-динуклеофильных реагентов с 1,2-дигидропиридин-2-онами **11а,b** протекают, соответственно, как реакции экзоциклической и эндоциклической амино-

<sup>\*\*</sup> Спектр ЯМР <sup>13</sup>С (DMSO-d<sub>6</sub>) δ, м. д.: 14.1 (OCH<sub>2</sub><u>C</u>H<sub>3</sub>); 28.4 (7-CH<sub>3</sub>); 37.9 (2-CH<sub>3</sub>); 60.3 (O<u>C</u>H<sub>2</sub>CH<sub>3</sub>); 102.8 (C-4); 117.9 (C-5); 126.8, 129.2, 129.3, 129.8 (C Ph); 135.5 (C-3a); 140.9 (C-3); 149.9 (C-7a); 158.4 (C-6); 164.6 (C=O).

групп динуклеофила, соответственно, по атому С-6 пиридонового кольца и бензоильному фрагменту, то для 3-(R-амино)-3-метилтио-1-фенилпропенонов **1**а,**b** наблюдается иная направленность гетероциклизаций. Реакции экзоциклической и эндоциклической аминогрупп динуклеофила осуществляются по карбонильной группе и атому С-3 субстратов **1**а,**b**. Данное явление обусловлено тем, что в замещённых 1,2-дигидропиридин-2-онах **11**а,**b** енаминный фрагмент является частью  $\pi$ -дефицитного гетероцикла. Это дополнительно понижает электронную плотность на атоме С-6 и способствует атаке экзоциклической аминогруппы нуклеофила именно по этому реакционному центру.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе UR-20 в таблетках КВг. Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С записаны на приборе Varian Gemini 2000 (400 и 100 МГц соответственно) в растворе ДМСО-d<sub>6</sub>, внутренний стандарт ТМС. 2D-Эксперименты проведены по методикам [14, 15] с использованием стандартных настроек. В спектре NOESY время смешивания составляло 0.7 с, в спектрах HETCOR значения КССВ  ${}^{1}J_{CH} = 140$  и  ${}^{n}J_{CH} = 8$  Гц.

1-R<sup>1</sup>-5-(R-амино)-3-фенилпиразолы За-с, 4-(R-амино)-2-фенилбензимидазо[1,2-*а*]пиримидины 5b,с, 8-(R-амино)-6-фенил[1,2,4]триазоло[4,3-*b*]пиридазины 7а,b, 3-метиламино-1-фенил-3,4-дигидропиридо[1,2-*a*]бензимидазол-4-карбонитрил (9). Раствор 2 ммоль 3-(R-амино)-3-метилтио-1-фенилпропенона 1а,b и 2 ммоль соответствующего реагента 2а,b, 4а,b, 6 или 8 в 15 мл 1-гексанола кипятят с обратным холодильником 3 ч. Отгоняют 12 мл 1-гексанола и охлаждают. Осадок отфильтровывают и сушат.

Встречный синтез 1-метил-5-метиламино-3-фенилпиразола (3а) и 1,3-дифенил-5-фениламинопиразола (3с). Соединения 3а,с получают реакцией тиоацетамидов 10а,b с гидразинами 2а,b в АсОН по методике [8].

*N*,7-Дифенилимидазо[1,2-*a*]пиримидин-5-амин (5а). Раствор 0.538 г (2 ммоль) 3-метилтио-1-фенил-3-фениламинопропенона (1b), 0.264 г (1 ммоль) сульфата 2-аминоимидазола (4а) и 0.136 г (2 ммоль) этилата натрия в 5 мл безводного этанола кипятят 6 ч. Охлаждают, отфильтровывают осадок соединения 5а, промывают его водой (2×5 мл) и сушат.

**7-R-2-R<sup>1</sup>-3-Фенил-5-этоксикарбонил-6,7-дигидро-2***Н***-пиразоло[3,4-***b***]пиридин-6-оны 13а-с получают гетероциклизацией 1-алкил-5-бензоил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-онов 11а,b с гидразинами 2а,b по методике [7].** 

Реакция 5-бензоил-1-метил-6-метилтио-3-этоксикарбонил-1,2-дигидропиридин-2-она (11а) с 4-амино-1,2,4-триазолом (6). Раствор 0.662 г (2 ммоль) соединения 11а и 0.168 г (2 ммоль) аминотриазола 6 в 5 мл 1-гексанола кипятят 3 ч. Охлаждают и отфильтровывают осадок, сушат и получают 0.306 г 6-амино-5-бензоил-1-метил-3-этоксикарбонил-1,2-дигидропиридин-2-она (15). Фильтрат упаривают и экстрагируют горячей (50–60 °C) водой (2×5 мл). Водный экстракт упаривают до объёма 1 мл, охлаждают и отфильтровывают осадок 0.039 г 1,2,4-триазола (16).

## СПИСОК ЛИТЕРАТУРЫ

- 1. H. Junjappa, H. Ila, C. V. Asokan, *Tetrahedron*, 46, 5423 (1990).
- P. K. Mahata, C. Venkatesh, U. K. Syam Kumar, H. Ila, H. Junjappa, J. Org. Chem., 68, 3966 (2003).
- 3. H. Schirok, C. Alonso-Alija, M. Michels, Synthesis, 3085 (2005).
- 4. S. Chakrabarti, K. Panda, N. C. Misra, H. Ila, H. Junjappa, Synlett, 1437 (2005).
- 5. A. Rahman, J. N. Vishwakarma, R. D. Yadav, H. Ila, H. Junjappa, *Synthesis*, 247 (1984).
- 6. В. Н. Брицун, А. Н. Есипенко, В. В. Пироженко, М. О. Лозинский, *XTC*, 1216 (2008). [*Chem. Heterocycl. Comp.*, **44**, 979 (2008)].
- В. Н. Брицун, А. Н. Есипенко, А. Н. Чернега, Э. Б. Русанов, М. О. Лозинский, *ХГС*, 1660 (2007). [*Chem. Heterocycl. Comp.*, 43, 1411 (2007)].
- В. Н. Брицун, И. М. Базавова, В. Н. Боднер, А. Н. Чернега, М. О. Лозинский, XTC, 120 (2005). [Chem. Heterocycl. Comp., 41, 105 (2005)].
- 9. А. Н. Борисевич, П. С. Пелькис, *ХГС*, 312 (1969). [*Chem. Heterocycl. Comp.*, **5**, 237 (1969)].
- И. Б. Дзвинчук, С. А. Карташов, А. В. Выпирайленко, У. Доллер, М. О. Лозинский, *XTC*, 679 (2004). [*Chem. Heterocycl. Comp.*, 40, 570 (2004)].
- 11. D. S. Dodd, R. M. Martinez, Tetrahedron Lett., 45, 4265 (2004).
- 12. S. Plescia, G. Daidone, V. Sprio, E. Aiello, J. Heterocycl. Chem., 15, 1339 (1978).
- R. A. Abramovitch, J. M. Beckert, H. H. Gibson, A. Belcher, G. Hundt, T. Sierra, S. Olivella, W. T. Pennington, A. Sole, *J. Org. Chem.*, 66, 1242 (2001).
- 14. A. Bax, G. A. Morris, J. Magn. Reson., 42, 501 (1981).
- 15. D. J. States, R. A. Haberkorn, D. J. Ruben, J. Magn. Reson., 48, 286 (1982).

Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02094, Украина e-mail: ioch@ioch.kiev.ua Поступило 18.02.2011