С. А. Чумаченко, О. В. Шаблыкин, А. Н. Василенко, В. С. Броварец*

СИНТЕЗ И НЕКОТОРЫЕ СВОЙСТВА 5-АЛКИЛАМИНО-2-(ФТАЛИМИДОАЛКИЛ)-1,3-ОКСАЗОЛ-4-КАРБОНИТРИЛОВ

Синтезированы 5-алкиламино-1,3-оксазол-4-карбонитрилы, содержащие в положении 2 оксазольного цикла 2-фталимидоэтильный или 3-фталимидопропильный заместитель. При взаимодействии 5-(морфолин-4-ил)-2-(2-фталимидоэтил)-1,3-оксазол-4-карбонитрила с гидразингидратом образуется 2-(2-аминоэтил)-5-(морфолин-4-ил)-1,3-оксазол-4-карбонитрил, а в случае его 3-фталимидопропильного аналога – продукт рециклизации – 3-амино-2-(морфолин-4-илкарбонил)-6,7-дигидро-5*H*-пирроло[1,2-*a*]имидазол.

Ключевые слова: 5-алкиламино-2-(фталимидоалкил)-1,3-оксазол-4-карбонитрилы, 2-(2-аминоэтил)-5-(морфолин-4-ил)-1,3-оксазол-4-карбонитрил, 2-(морфолин-4-илкарбонил)-6,7-дигидро-5*H*-пирроло[1,2-*a*]имидазол-3-амин, рециклизация.

Интенсивное развитие химии функциональных производных 1,3-оксазола в последнее двадцатилетие связано с поисками эффективных биологически активных веществ. Роль производных 1,3-оксазола в процессах жизнедеятельности оказалась гораздо значительнее, чем предполагалось ранее, поскольку из природных объектов были выделены многочисленные производные оксазольного ряда [1–4]. К тому же большое количество синтезированных производных оксазола проявляют высокую цитостатическую, антимикробную, иммуностимулирующую, анальгетическую и другие виды биологической активности [5]. По этой причине функционализация оксазольного цикла представляется одним из наиболее важных направлений синтеза новых соединений, перспективных для поиска разнообразных биоактивных препаратов.

Целью настоящей работы является синтез 2-фталимидоалкилзамещенных оксазолов для получения соответствующих аминов после снятия защитной фталимидной группы. Для этого нами использован известный метод синтеза замещенных 5-аминооксазолов из амидов карбоновых кислот и хлораля [6]. В этой конденсации нами впервые использованы амиды фталимидоалкилкарбоновых кислот [7]. Выбор фталимидной защитной группы не случаен, поскольку она является устойчивой к хлористому тионилу и водно-щелочному раствору цианида калия, используемых при обработке различных стадий реакций в цепи превращений, приведенных в схеме получения соединений **5**. Важно также, что 5-аминооксазольный фрагмент устойчив к действию гидразингидрата в условиях снятия фталимидной группы.

Мы установили, что фталимидопропиоамид (1a) и фталимидобутироамид (1b) легко реагируют с хлоралем и дают с высокими выходами соответствующие гидроксиметильные производные 2a,b (табл. 1). При взаимодействии последних с хлористым тионилом образуются соединения **3а,b**, обработка которых водным раствором цианида калия в ацетоне приводит к 3,3-дихлор-2-фталимидоациламиноакрилонитрилам **4а,b** с хорошими выходами. По аналогии с уже известной гетероциклизацией [8, 9] акрилонитрилы **4а,b** были использованы для получения замещенных 5-алкиламинооксазолов **5а–j**.

1a–4a, **5a–e** n = 2; **1b–4b**, **5f–j** n = 3; **5a,f** R = H, $R^1 = PhCH_2$; **b,g** R = H, $R^1 = Ph(CH_2)_2$; **c,h** $R+R^1 = -(CH_2)_5-;$ **d,i** $R+R^1 = -(CH_2)_2N(Me)(CH_2)_2-;$ **e,j** $R+R^1 = -(CH_2)_2O(CH_2)_2-$

На примере соединений **5е**, **ј** показано существенное отличие в химическом поведении 2-аминоэтил- и 2-аминопропилоксазолов, образующихся при снятии фталимидной защиты. При кипячении соединения **5e** с небольшим избытком гидразингидрата со средним выходом образуется 2-(2-аминоэтил)-5-(морфолин-4-ил)-1,3-оксазол-4-карбонитрил (6), структура которого доказана спектральными и масс-спектрометрическим методами (табл. 2, 3), а также превращением в соответствующие амиды **7а,b** и диоксазолилзамещенные этиламины **8а,b**.

7a $R^2 = Ph$, **b** $R^2 = 4$ -MeC₆H₄; **8a** $R^3 = Me$, **b** $R^3 = Ph$

Таблица	1
---------	---

	Г	Найдено, %				Demos	
соеди- нение	брутто- формула	Вычислено, %			Т. пл., ⁰С*	выход, %	
2	C U CINO	C	H	N	Cl	140 142	75
2a	$C_{13}H_{11}C_{13}N_2O_4$	<u>42.85</u> 42.71	$\frac{5.14}{3.03}$	<u>7.52</u> 7.66	<u>29.18</u> 29.09	140-142	/5
2b	$C_{14}H_{13}Cl_3N_2O_4$	<u>44.39</u> 44.29	<u>3.57</u> 3.45	<u>7.41</u> 7.38	$\frac{28.10}{28.02}$	150-152	82
3 a	$C_{13}H_{10}Cl_4N_2O_3$	<u>40.57</u> 40.66	$\frac{2.65}{2.62}$	<u>7.33</u> 7.29	<u>36.99</u> 36.93	180–182	64
3b	$C_{14}H_{12}Cl_4N_2O_3$	<u>42.12</u> 42.24	$\frac{2.89}{3.04}$	<u>7.13</u> 7.04	<u>35.68</u> 35.62	145–147	68
4 a	$C_{14}H_9Cl_2N_3O_3$	<u>49.76</u> 49.73	$\frac{2.52}{2.68}$	$\frac{12.44}{12.43}$	$\frac{20.99}{20.97}$	177–179	85
4b	$C_{15}H_{11}Cl_2N_3O_3$	<u>51.17</u> 51.16	<u>3.27</u> 3.15	<u>11.85</u> 11.93	$\frac{20.03}{20.13}$	193–195	88
5a	$C_{21}H_{16}N_4O_3$	<u>67.79</u> 67.73	$\frac{4.30}{4.33}$	<u>15.09</u> 15.05	-	118–120	75
5b	$C_{22}H_{18}N_4O_3$	<u>68.34</u> 68.38	<u>4.75</u> 4.70	<u>14.60</u> 14.50	-	122–124	78
5c	$C_{19}H_{18}N_4O_3$	<u>65.00</u> 65.13	<u>5.11</u> 5.18	<u>16.03</u> 15.99	-	105–107	75
5d	$C_{19}H_{19}N_5O_3$	<u>62.31</u> 62.46	<u>5.22</u> 5.24	<u>19.05</u> 19.17	-	107–109	74
5e	$C_{18}H_{16}N_4O_4$	<u>61.24</u> 61.36	<u>4.63</u> 4.58	<u>16.05</u> 15.90	-	151–153	80
5f	$C_{22}H_{18}N_4O_3$	<u>68.24</u> 68.38	<u>4.71</u> 4.70	<u>14.57</u> 14.50	-	114–115	80
5g	$C_{23}H_{20}N_4O_3$	<u>68.97</u> 68.99	<u>5.20</u> 5.03	<u>14.11</u> 13.99	-	106–108	81
5h	$C_{20}H_{20}N_4O_3$	<u>65.84</u> 65.92	<u>5.41</u> 5.53	<u>15.47</u> 15.37	-	Масло	87
5i	$C_{20}H_{21}N_5O_3$	<u>63.33</u> 63.31	<u>5.69</u> 5.58	<u>18.45</u> 18.46	-	105–106	77
5j	$C_{19}H_{18}N_4O_4$	<u>62.38</u> 62.29	<u>4.85</u> 4.95	<u>15.27</u> 15.29	-	106–108	85
6	$C_{10}H_{14}N_4O_2$	<u>54.15</u> 54.04	<u>6.21</u> 6.35	<u>25.34</u> 25.21	-	Масло	52
7a	$C_{17}H_{18}N_4O_3$	<u>62.64</u> 62.57	<u>5.68</u> 5.56	<u>17.09</u> 17.17	-	119–121	77
7b	$C_{18}H_{20}N_4O_3$	<u>63.40</u> 63.52	<u>5.84</u> 5.92	<u>16.39</u> 16.46	-	147–149	68
8a	$C_{15}H_{16}N_6O_3$	<u>54.69</u> 54.87	<u>4.83</u> 4.91	<u>25.67</u> 25.60	-	Масло	43
8b	$C_{20}H_{18}N_6O_3$	<u>61.44</u> 61.53	<u>4.66</u> 4.65	<u>21.59</u> 21.53	-	200–203 (разл.)	38
11	$C_{11}H_{16}N_4O_2$	<u>55.83</u> 55.92	<u>6.69</u> 6.83	<u>23.88</u> 23.71	-	231–233	65
12a	$C_{18}H_{20}N_4O_3$	<u>63.59</u> 63.52	<u>5.96</u> 5.92	<u>16.31</u> 16.46	-	161–163	32
12b	$C_{19}H_{22}N_4O_3$	<u>64.45</u> 64.39	<u>6.46</u> 6.26	<u>15.95</u> 15.81	_	187–189	30

Характеристики синтезированных соединений

* Растворитель: EtOH (соединения 2а,b), PhMe (соединения 3а,b, 4а,b), EtOH-H₂O, 1:1 (соединения 5а-g,i,j, 11), 2-PrOH (соединения 7а,b, 8b, 12a,b).

В случае гидразинолиза 2-(3-фталимидопропил)-1,3-оксазол-4-карбонитрила 5ј сначала, по-видимому, образуется амин 9, который вследствие выгодного расположения аминопропильного фрагмента по отношению к оксазольному циклу, склонен к внутримолекулярной атаке первичной аминогруппы по атому С-2 оксазола. При этом происходит расщепление оксазольного кольца и одновременное образование пирролидинового фрагмента соединения 10. Подобное превращение наблюдалось ранее для производных 2-(3-аминопропил)-4,5-дифенил-1,3-оксазола [10, 11]. В интермедиате 10, содержащем нуклеофильный амидиновый фрагмент, далее происходит внутримолекулярная атака нитрильной группы, что приводит к образованию амина 11.

12a $R^2 = Ph$, **b** $R^2 = 4-MeC_6H_4$

Соединение 11 так же легко, как и соединение 6, подвергается ацилированию хлорангидридами карбоновых кислот с образованием амидов 12а, b, что указывает на наличие аминофункции в исходном соединении 11.

Такой неожиданный результат превращения соединения 5 с образованием продукта рециклизации 11 нуждался в весомых спектральных и химических доказательствах. Спектры ЯМР соединений 6 и 11 существенно различаются. Так, в спектрах ЯМР ¹Н аминов 6 и 11 сигналы метиленовых протонов NCH₂ в последнем заметно сдвинуты в более слабое поле по сравнению с соединением 6 (табл. 2). Спектр ЯМР ¹³С амина 6 содержит сигналы при 85.0 (С-4 оксазол) и 116.5 м. д. (СN), а в спектре соединения 11 в области 70-120 м. д. наблюдается только один сигнал при 115.6 м. д. (C-NH₂), который можно ошибочно отнести к нитрильной группе. Однако это не согласуется с данными ИК спектра соединения 11, в котором отсутствует сигнал нитрильной группы в области 2100–2300 см⁻¹ (табл. 3).

Существенным доказательством структуры полученных соединений является сравнение спектральных характеристик амидов 7 и 12. Так, в спектрах ЯМР ¹Н сигнал протона амидной группы соединений 7а, b представляет собой триплет, а соединений **12а,b** – синглет (табл. 2). Химические сдвиги и мультиплетность амидных протонов указывают на наличие фрагмента C(O)NHCH₂ в соединениях 7а,b, а в соединениях 12а,b – фрагмента C(O)NHC, где <u>C</u> - *sp*²-гибридизированный атом углерода. В спектрах ЯМР¹³С соединения 7а присутствует сигнал углерода нитрильной группы при 116.5 м. д., а в соединении 12а он не наблюдается.

Таблица 2

Спектры ЯМР ¹Н синтезированных соединений

Соеди-	Химические сдвиги, б, м. д. (Ј, Гц)
1	2
2a	2.66 (2H, т, <i>J</i> = 6.5, CH ₂); 3.74–3.88 (2H, м, NCH ₂); 5.73 (1H, д. д, <i>J</i> = 5.9, <i>J</i> = 8.9, CH); 7.69 (1H, д, <i>J</i> = 5.9, OH); 7.77–7.91 (4H, м, H Ar); 8.89 (1H, д, <i>J</i> = 8.9, NH)
2b	1.83–1.88 (2H, м, CH ₂); 2.28 (2H, т, <i>J</i> = 7.8, CH ₂); 3.61 (2H, т, <i>J</i> = 7.0, NCH ₂); 5.73 (1H, д. д, <i>J</i> = 5.5, <i>J</i> = 9.0, CH); 7.65 (1H, д, <i>J</i> = 5.5, OH); 7.79–7.93 (4H, м, H Ar); 8.69 (1H, д, <i>J</i> = 9.0, NH)
3 a	2.74–2.92 (2H, м, CH ₂); 3.93–4.21 (2H, м, NCH ₂); 6.54 (1H, д, <i>J</i> = 9.5, CH); 6.83 (1H, д, <i>J</i> = 9.5, NH); 7.68–7.80 (2H, м, H Ar); 7.80–7.95 (2H, м, H Ar)
3b	1.98–2.16 (2H, м, CH ₂); 2.38 (2H, т, <i>J</i> = 6.5, CH ₂); 3.88–3.72 (2H, м, NCH ₂); 6.59 (1H, д, <i>J</i> = 10.0, CH); 7.54 (1H, д, <i>J</i> = 10.0, NH); 7.71–7.79 (2H, м, H Ar); 7.82–7.92 (2H, м, H Ar)
4 a	2,74–2.91 (2H, м, CH ₂); 3,94–4.17 (2H, м, NCH ₂); 7.73–7.80 (2H, м, H Ar); 7.80–7.86 (2H, м, H Ar)
4b	2.03–2.16 (2H, м, CH ₂); 2.41 (2H, т, <i>J</i> = 6.0, CH ₂); 3.83 (2H, т, <i>J</i> = 5.5, NCH ₂); 7.73–7.82 (2H, м, H Ar); 7.82–7.95 (4H, м, H Ar); 8.14 (1H, уш. с, NH)
5a	2.93 (2H, т, <i>J</i> = 5.8, CH ₂); 3.86 (2H, т, <i>J</i> = 5.8, NCH ₂); 4.38 (2H, д, <i>J</i> = 5.5, CH ₂); 7.22–7.41 (5H, м, H Ar); 7.79–7.94 (4H, м, H Ar); 8.68 (1H, уш. т, <i>J</i> = 5.0, NH)
5b	2.81 (2H, т, <i>J</i> = 6.4, CH ₂); 2.91 (2H, т, <i>J</i> = 5.7, CH ₂); 3.35–3.43 (2H, м, CH ₂); 3.86 (2H, т, <i>J</i> = 5.7, NCH ₂); 7.13–7.36 (5H, м, H Ar); 7.76–7.94 (4H, м, H Ar); 8.24 (1H, уш. т, <i>J</i> = 5.5, NH)
5c	1.38–1.67 (6H, м, 3CH ₂ пиперидин); 2.95 (2H, т, <i>J</i> = 6.0, CH ₂); 3.25–3.41 (4H, м, 2CH ₂ пиперидин); 3.87 (2H, т, <i>J</i> = 6.0, NCH ₂); 7.72–7.97 (4H, м, H Ar)
5d	2.25 (3H, c, CH ₃); 2.39–2.48 (4H, м, 2CH ₂); 2.97 (2H, т, <i>J</i> = 6.5, CH ₂); 3.31–3.42 (4H, м, 2CH ₂); 3.88 (2H, т, <i>J</i> = 6.5, NCH ₂); 7.72–7.96 (4H, м, H Ar)
5e	2.98 (2H, т, <i>J</i> = 6.0, CH ₂); 3.30–3.39 (4H, м, 2CH ₂ морфолин); 3.61–3.70 (4H, м, 2CH ₂ морфолин); 3.89 (2H, т, <i>J</i> = 6.0, NCH ₂); 7.78–7.96 (4H, м, H Ar)
5f	1.87–2.04 (2H, м, CH ₂); 2.64 (2H, т, <i>J</i> = 7.0, CH ₂); 3.66 (2H, т, <i>J</i> = 6.3, NCH ₂); 4.40 (2H, д, <i>J</i> = 5.5, CH ₂); 7.19–7.43 (5H, м, H Ar); 7.73–7.92 (4H, м, H Ar); 8.61 (1H, уш. т, <i>J</i> = 5.0, NH)
5g	1.91–2.02 (2H, м, CH ₂); 2.62 (2H, т, <i>J</i> = 7.3, CH ₂); 2.82 (2H, т, <i>J</i> = 7.3, CH ₂); 3.40 (2H, т, <i>J</i> = 6.0, CH ₂); 3.66 (2H, т, <i>J</i> = 6.5, NCH ₂); 7.15–7.34 (5H, м, H Ar); 7.76–7.89 (4H, м, H Ar); 8.15 (1H, т, <i>J</i> = 5.5, NH)
5h	1.49–1.65 (6H, м, 3CH ₂ пиперидин); 1.94–2.06 (2H, м, CH ₂); 2.66 (2H, т, <i>J</i> = 6.8, CH ₂); 3.31–3.40 (4H, м, 2CH ₂ пиперидин); 3.67 (2H, т, <i>J</i> = 6.3, NCH ₂); 7.77–7.88 (4H, м, H Ar)
5i	1.93–2.06 (2H, м, CH ₂); 2.25 (3H, с, CH ₃); 2.38–2.49 (4H, м, 2CH ₂); 2.67 (2H, т, <i>J</i> = 7.0, CH ₂); 3.31–3.44 (4H, м, 2CH ₂); 3.67 (2H, т, <i>J</i> = 6.3, NCH ₂); 7.77–7.90 (4H, м, H Ar)
5j	1.95–2.08 (2H, м, CH ₂); 2.70 (2H, т, <i>J</i> = 7.0, CH ₂); 3.35–3.44 (4H, м, 2CH ₂ морфолин); 3.63–3.77 (6H, м, NCH ₂ , 2CH ₂ морфолин); 7.77–7.92 (4H, м, H Ar)
6	2.65 (2H, т, <i>J</i> = 7.0, CH ₂); 2.83 (2H, т, <i>J</i> = 7.0, NCH ₂); 3.35–3.55 (4H, м, 2CH ₂ морфолин); 3.64–3.86 (4H, м, 2CH ₂ морфолин)
7a	2.89 (2H, т, <i>J</i> = 6.2, CH ₂); 3.39 (4H, м, 2CH ₂ морфолин); 3.57 (2H, м, NCH ₂); 3.68 (4H, м, 2CH ₂ морфолин); 7.40–7.63 (3H, м, H Ar); 7.75–7.92 (2H, м, H Ar); 8.63 (1H, т, <i>J</i> = 5.5, NH)
7b	2.35 (3H, c, CH ₃); 2.88 (2H, т, <i>J</i> = 5.8, CH ₂); 3.38–3.45 (4H, м, 2CH ₂ морфолин); 3.51–3.59 (2H, м, NCH ₂); 3.63–3.73 (4H, м, 2CH ₂ морфолин); 7.27 (2H, д, <i>J</i> = 7.0, H Ar); 7.73 (2H, д, <i>J</i> = 7.0, H Ar); 8.56 (1H, т, <i>J</i> = 5.0, NH)

1	2
8a	2.25 (3H, c, CH ₃); 2.91 (2H, т, <i>J</i> = 6.0, CH ₂); 3.39–3.48 (4H, м, 2CH ₂ морфолин); 3.52–3.60 (2H, м, NCH ₂); 3.67–3.76 (4H, м, 2CH ₂ морфолин); 8.18 (1H, уш. т, <i>J</i> = 5.0, NH)
8b	2.97 (2H, т, <i>J</i> = 4.0, CH ₂); 3.29–3.43 (4H, м, 2CH ₂ морфолин); 3.60–3.75 (6H, м, NCH ₂ , 2CH ₂ морфолин); 7.42–7.59 (3H, м, H Ar); 7.71–7.85 (2H, м, H Ar); 8.60 (1H, уш. с, NH)
11	2.39–2.48 (2H, м, CH ₂); 2.61 (2H, т, <i>J</i> = 7.0, CH ₂); 3.50–3.64 (4H, м, 2CH ₂ морфолин); 3.74 (2H, т, <i>J</i> = 7.0, NCH ₂); 3.78–4.12 (4H, м, 2CH ₂ морфолин); 6.60 (2H, уш. с, NH ₂)
12a	2.50 (2H, м, CH ₂); 2.80 (2H, т, <i>J</i> = 6.0, CH ₂); 3.55–3.69 (8H, м, 4CH ₂ морфолин); 4.09 (2H, т, <i>J</i> = 5.0, NCH ₂); 7.49–7.72 (3H, м, H Ar); 7.91–8.03 (2H, м, H Ar); 10.84 (1H, c, NH)
12b	2.30–2.44 (5H, м, CH ₃ , CH ₂); 2.77 (2H, т, <i>J</i> = 6.0, CH ₂); 3.48–3.71 (8H, м, 4CH ₂ морфолин); 4.06 (2H, т, <i>J</i> = 5.0, NCH ₂); 7.35 (2H, д, <i>J</i> = 6.0, H Ar); 7.85 (2H, д, <i>J</i> = 6.0, H Ar); 10.77 (1H, c, NH)

ИК и масс-спектры соединений 2-8, 11 и 12

Таблица З

Соеди-		m/z		
нение	C=O	CN	NH	$[M+H]^+$
2a	1640, 1709 пл	_	3056-3515	365
2b	1666, 1713 пл	-	3111-3529	379
3a	1652, 1715 пл	-	3106-3358	383
3 b	1667, 1717 пл	-	3214-3378	397
4 a	1670, 1704 пл	2232	3176-3335	338
4b	1669, 1699 пл	2234	3089-3347	352
5a	1657*, 1716 пл	2213	3091-3316	373
5b	1645*, 1710 пл	2209	3027-3305	387
5c	1642*, 1721 пл	2231	-	351
5d	1632*, 1716 пл	2210	-	366
5e	1636*, 1713 пл	2206	-	353
5f	1652*, 1718 пл	2218	3066-3466	387
5g	1652*, 1708 пл	2212	3057-3472	401
5h	1645*, 1711 пл	2214	-	365
5i	1636*, 1703 пл	2215	-	380
5j	1624*, 1715 пл	2217	-	367
6	1636*	2213	3072	223
7a	1631 пл**	2209	3061-3385	327
7b	1633 пл**	2214	3129-3456	341
8 a	1638 пл*	2216 пл	3087-3324	329
8b	1656 пл*	2218 пл	3114-3298	391
11	1622	-	3327, 3429	237
12a	1625, 1676	-	3025-3215	341
12b	1623, 1673	-	3027-3345	355

* Полоса обусловлена 5-амино-1,3-оксазольным фрагментом [8]. ** Наложение полос поглощения 5-амино-1,3-оксазольного фрагмента и С=О амидной группы.

Для соединений **7a** и **12a** также был использован комплексный анализ ЯМР (NOESY, COSY, HSQC, HMBC) (рисунок, табл. 4). На образование пирролидинового цикла за счет аминопропильного фрагмента в соединении **12a** указывают корреляции HMBC 7-C<u>H</u>₂ с C-7a, 6-C<u>H</u>₂ с C-7a и 5-C<u>H</u>₂ с C-7a. Следует отметить, что для C-2 и C-3 не удалось найти корреляций в спектрах HMBC, поэтому они были отнесены по остаточному принципу. Нахождение аминоэтильного фрагмента в боковой цепи гетероцикла **7a** подтверждается корреляциями NOESY CON<u>H</u> с NC<u>H</u>₂, NC<u>H</u>₂ с C<u>H</u>₂C и HMBC NC<u>H</u>₂ с C=O, NC<u>H</u>₂ с C-2, NC<u>H</u>₂ с C<u>H</u>₂C.

Основные корреляции и отнесение сигналов в спектрах 1 Н и 13 С соединений 7a (a) и 12a (b)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Vertex 70 в таблетках КВг (соединения **2a,b–4a,b, 5a–g,i,j, 7a,b, 8b, 11** и **12a,b**) и CHCl₃ (соединения **5h, 6, 8a**). Спектры ЯМР ¹Н и ¹³С получены на приборе Bruker Avance DRX-500 (500 и 125 МГц соответственно), в растворе ДМСО-d₆ (соединения **2a,b, 5a–j, 6, 7a,b, 8a,b, 11, 12a,b**) и CDCl₃ (соединения **3a,b, 4a,b**), внутренний стандарт ТМС. Спектры COSY, NOESY, HSQC и HMBC измеряли, используя стандартную методику с градиентным выделением сигнала. Для спектров NOESY $\tau_{mix} = 500$ мс, а для спектров HMBC – $\tau_{mix} = 125$ мс. Температура измерений 20 °C. Хромато-массспектры записаны на высокоэффективном жидкостном хроматографе Agilent 1100 Series, оснащённом диодной матрицей с масс-селективным детектором Agilent LC/MSD SL. Параметры хромато-масс-анализа: колонка Zorbax SB-C18 1.8 мкм, 4.6×15 мм; растворители А – ацетонитрил–вода, 95:5, 0.1% трифторуксусной кислоты, Б – 0.1% водная трифторуксусная кислота; поток элюента – 3 мл/мин; объём впрыскивания – 1 мкл; УФ детекторы – 215, 254, 285 нм; метод иониза-1244

ции – химическая ионизация при атмосферном давлении (APCI). Температуры плавления измерялись на приборе Fisher-Johns.

Амиды 1а, b синтезированы по известной методике [7].

1-(3-Фталимидоалканоиламино)-2,2,2-трихлорэтанолы 2а,b (общая методика). Смесь 0.5 моль амида **1а** или **1b** и 182 г (1.1 моль) хлоральгидрата нагревают на масляной бане (95–100 °C) 5 ч. Реакционную смесь охлаждают, тщательно промывают водой и очищают перекристаллизацией.

1-(3-Фталимидоалканоиламино)-1,2,2,2-тетрахлорэтаны За,b (общая методика). К суспензии 5 ммоль соединения **2а** или **2b** в 50 мл сухого толуола при перемешивании прибавляют 0.8 мл (11 ммоль) тионилхлорида. Смесь кипятят при перемешивании 2 ч. Растворитель удаляют при пониженном давлении, осадок очищают перекристаллизацией.

2-(3-Фталимидоалканоиламино)-3,3-дихлоракрилонитрилы 4а,b. К суспензии 0.715 г (11 ммоль) КСN в 15 мл ацетона охлажденной до –15 °С при перемешивании прибавляют порциями 5 ммоль соединения **3а** или **3b**. Затем к реакционной смеси прибавляют по каплям 3 мл воды. Суспензию перемешивают 1 ч при –5 °С, после чего температуру смеси доводят до комнатной. К реакционной смеси прибавляют 50 мл воды, осадок отфильтровывают, промывают водой и очищают перекристаллизацией.

5-Алкиламино-2-(2-фталимидоэтил)-1,3-оксазол-4-карбонитрилы 5а-е (общая методика). К суспензии 1.685 г (5 ммоль) соединения **4a** в 20 мл ацетонитрила при перемешивании и охлаждении до 0 °С прибавляют 1.5 мл (11 ммоль) триэтиламина, затем 5 ммоль соответствующего амина. Перемешивают 12 ч, ацетонитрил удаляют при пониженном давлении, остаток растворяют в 15 мл CH₂Cl₂, экстракт промывают водой (4×5 мл), сушат Na₂SO₄, упаривают и очищают перекристаллизацией.

Таблица 4

¹ H S M T	¹ H	, δ, м. д.	¹³ С, б, м. д.		
П, О, М. Д.	COSY	NOESY	HSQC	HMBC	
Соединение 7а					
7.54	7.47	7.47	131.7	127.6	
7.47	7.54, 7.82	7.54, 7.82	128.8	128.8, 134.8	
7.82	7.47	7.47, 8.63	127.6	127.6, 131.7, 166.8	
8.63	3.57	3.57, 7.82	-	166.8	
3.57	2.89, 8.63	2.89, 8.63	37.2	166.8, 28.0, 153.0	
2.89	3.57	3.57	28.0	37.2, 153.0	
3.39	3.68	3.68	46.6	46.6, 65.4, 161.1	
3.68	3.39	3.39	65.4	46.6, 65.4	
Соединение 12а					
7.64	7.57	7.57	132.9	128.1	
7.57	7.64, 7.97	7.64, 7.97	129.9	129.9, 133.5	
7.97	7.57	7.57, 10.84	128.1	128.1, 132.9, 164.8	
10.84	_	7.97	_	164.8	
3.61	_	-	66.9	66.9	
2.80	2.50	2.50	23.2	26.1, 149.8	
2.50	2.80, 4.09	2.80, 4.09	26.1	23.2, 149.8	
4.09	2.50	2.50	45.8	149.8	

Корреляции в спектрах COSY, NOESY, HSQC, HMBC соединений 7а и 12а

5-Алкиламино-2-(3-фталимидопропил)-1,3-оксазол-4-карбонитрилы 5f–**j** (общая методика) получают аналогично оксазолам **5a**–**e** из соединения **4b**. Соединение **5h** получают в виде масла, которое анализировали без дополнительной очистки.

2-(2-Аминоэтил)-5-(морфолин-4-ил)-1,3-оксазол-4-карбонитрил (6). К суспензии 1.76 г (5 ммоль) соединения **5e** в 15 мл этанола прибавляют 0.25 мл (5.2 ммоль) гидразингидрата. Смесь кипятят 6 ч, охлаждают, этанол удаляют при пониженном давлении. Остаток суспендируют в 14 мл 4% водного раствора HCl, отфильтровывают, к маточному раствору прибавляют 25% водный раствор NaOH до pH~10. Раствор экстрагируют CH₂Cl₂ (5×5 мл), сушат Na₂SO₄, растворитель удаляют при пониженном давлении, получают жёлтое масло, которое используют для дальнейших превращений без дополнительной очистки. Спектр ЯМР ¹³С, δ , м. д.: 31.0 (NCH₂CH₂); 39.0 (NCH₂CH₂); 46.5 (NCH₂ морфолин); 65.5 (OCH₂ морфолин); 85.0 (C-4 оксазол); 116.5 (CN); 153.6 (C-2 оксазол); 161.0 (C-5 оксазол).

N-{2-[5-(Морфолин-4-ил)-4-циано-1,3-оксазол-2-ил]этил}бензамиды 7а,b. К раствору 1.11 г (5 ммоль) соединения 6 в 10 мл CH₂Cl₂ при перемешивании и охлаждении прибавляют 0.515 г (5.1 ммоль) триэтиламина, затем 5.1 ммоль соответствующего хлорангидрида. Перемешивают 6 ч, растворитель удаляют при пониженном давлении, остаток промывают водой и очищают перекристаллизацией. Спектр ЯМР ¹³С соединения 7а, δ , м. д.: 28.0; 37.2; 46.6; 65.4; 85.2 (C-4 оксазол); 116.5 (CN); 127.6; 128.8; 131.7; 134.8; 153.0; 161.1; 166.8 (C=O).

2-{2-[(2-Метил-4-циано-1,3-оксазол-5-ил)амино]этил}-5-(морфолин-4-ил)-1,3-оксазол-4-карбонитрил (8а). К раствору 0.895 г (5 ммоль) 2-ацетиламино-3,3-дихлоракрилонитрила [8] в 10 мл ацетонитрила при перемешивании и охлаждении (10–15 °C) по каплям прибавляют 1.5 мл (11 ммоль) триэтиламина, затем раствор 1.11 г (5 ммоль) соединения 6 в 10 мл ацетонитрила. Смесь перемешивают 12 ч, растворитель удаляют при пониженном давлении, остаток растворяют в 10 мл CH₂Cl₂, промывают 5% водным раствором лимонной кислоты (10 мл), получают жёлтое масло, которое анализируют без дополнительной очистки.

5-({2-[5-(Морфолин-4-ил)-4-циано-1,3-оксазол-2-ил]этил}амино)-2-фенил-1,3-оксазол-4-карбонитрил (8b) получают аналогично соединению **8a** из 2-бензоиламино-3,3-дихлоракрилонитрила [12] в виде твердого вещества, которое очищают перекристаллизацией.

2-(Морфолин-4-илкарбонил)-6,7-дигидро-5*H***-пирроло[1,2-***а***]имидазол-3-амин (11)** получают аналогично соединению 6 из оксазола 5j. Спектр ЯМР ¹³С, δ, м. д.: 22.7 (NCH₂<u>C</u>H₂CH₂); 26.3 (NCH₂CH₂<u>C</u>H₂); 42.3 (NCH₂ морфолин); 67.1 (OCH₂ морфолин); 115.6 (C-NH₂); 144.8; 144.9; 164.4 (C=O).

N-[2-(Морфолин-4-илкарбонил)-6,7-дигидро-5*H*-пирроло[1,2-*a*]имидазол-3-ил]бензамиды 12а,b получают аналогично амидам 7а,b из соединения 11. Спектр ЯМР ¹³С соединения 12а, δ, м. д.: 23.2; 26.1; 45.8; 66.9; 126.4; 128.1; 129.9; 131.1 (<u>C</u>-NHCO); 132.9; 133.5; 149.8; 163.4 (C=O); 164.8 (C=O).

СПИСОК ЛИТЕРАТУРЫ

- H. T. Clarke, in *Chemistry of Penicillin*, Princeton Univ. Press, Princeton, 1949, p. 688.
- 2. I. J. Turchi, in *The Chemistry of Heterocyclic Compounds: Oxazoles*, John Wiley, New York, 1986, vol. **45**, p. 109.
- 3. I. J. Turchi, in *The Chemistry of Heterocyclic Compounds: Oxazoles*, John Wiley, New York, 1986, vol. **45**, p. 1064.
- 4. D. C. Palmer, in *Oxazoles: Synthesis, Reactions, and Spectroscopy,* John Wiley, Hoboken, 2003, vol. **60**, part A, p. 255.

- 5. M. Negver, in Organic-chemical Drugs and Their Synonyms (an International Survey), 7th revised, enlarged ed., Acad. Verlag, Berlin, 1994, vol. **1–4**, p. 4284.
- 6. Б. С. Драч, В. С. Броварец, О. Б. Смолий, Синтезы азотсодержащих гетероциклических соединений на основе амидоалкилирующих агентов, Наукова думка, Киев, 1992.
- 7. C. O. Usifoh, D. M. Lambert, J. Wouters, G. K. E. Scriba, *Arch. Pharm.*, **334**, 323 (2001).
- 8. Б. С. Драч, Э. П. Свиридов, А. А. Кисиленко, А. В. Кирсанов, *ЖОрХ*, **9**, 1818 (1973).
- 9. Б. С. Драч, Г. Н. Миськевич, *ЖОрХ*, **13**, 1398 (1977).
- 10. T. Sasaki, M. Ohno, E. Ito, J. Chem. Soc, Perkin Trans. 1, 3027 (1983).
- 11. T. Sasaki, E. Ito, K. Asai, *Heterocycles*, **21**, 373 (1984).
- 12. Б. С. Драч, Э. П. Свиридов, Т. Я. Лавренюк, *ЖОрХ*, **10**, 1271 (1974).

Институт биоорганической химии и нефтехимии НАН Украины, ул. Мурманская, 1, Киев 02660, Украина e-mail: brovarets@bpci.kiev.ua Поступило 13.05.2011