Е. В. Вербицкий^{*}, Е. М. Чепракова, П. А. Слепухин, М. Г. Первова, М. А. Саморукова, О. Н. Забелина, Г. Л. Русинов, В. Н. Чарушин

ПРОМОТИРУЕМЫЕ МИКРОВОЛНОВЫМ ИЗУЧЕНИЕМ РЕАКЦИИ 5-(ГЕТ)АРИЛ-1-ЭТИЛ-2(1Н)-ПИРАЗИНОНОВ С ТЕРМИНАЛЬНЫМИ АРИЛАЦЕТИЛЕНАМИ

Исследована реакция 5-(гет)арил-1-этил-2(1Н)-пиразинонов с терминальными арилацетиленами, приводящая к смеси двух изомерных 4-арил- и 5-арилзамещенных 2(1Н)-пиридонов. На основании изучения реакционных смесей методом хромато-масс-спектрометрии показана региоселективность данной реакции. Проведены кристаллографические исследования синтезированных 2(1Н)-пиридонов, а также прогноз их потенциальной биологической активности.

Ключевые слова: σ^{H} -аддукты, арилацетилены, 1,2-дигидропиразины, ионная жидкость, 2(1H)-пиразиноны, 2(1H)-пиридиноны, микроволновое изучение.

Легкодоступная и широко функционализируемая 2-азадиеновая система 2(1H)-пиразинонов предоставляет уникальные возможности для внутри- и межмолекулярной реакций циклоприсоединения как с электроноизбыточными, так и электронодефицитными диенофилами [1–3]. Однако описанные реакции пиразинонов 1 с ацетиленами ограничиваются несколькими примерами внутримолекулярных реакций циклоприсоединения, когда алкином является один из заместителей на пиразиноновой платформе, а также взаимодействием с диметиловым эфиром ацетилендикарбоновой кислоты 2 [3–5].

860

Эти реакции Дильса–Альдера обычно приводят к смеси пиридонового 4 и пиридинового 5 аддуктов за счёт двух конкурирующих самопроизвольных путей фрагментации первоначально образующихся бициклических циклоаддуктов 3 по ретро-реакции Дильса–Альдера. В зависимости от заместителей R и R¹ соотношение соединений 4 и 5 существенно меняется: при R = Ph, R¹= Cl основным продуктом реакции является пиридин 5, а при R = Et, R¹ = (Het)Ar преобладает пиридон 4.

Целью данной работы является исследование реакций циклоприсоединения 5-(гет)арил-1-этил-2(1Н)-пиразинонов с терминальными ацетиленами при микроволновом облучении в сравнении с обычными термическими условиями. В качестве алкинов были использованы коммерчески доступные арилацетилены: фенилацетилен (7), 4-бромфенилацетилен (8) и 4-диметиламинофенилацетилен (9). Реакции пиразинонов **6а,b** с терминальными арилацетиленами 7–9, по данным как хромато-масс-спектрометрии так и спектроскопии ЯМР ¹Н, протекают региоселективно и приводят к смеси только двух региоизомерных 2(1Н)-пиридонов: мажорных 4-арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилов **12, 14, 16** и минорных 5-арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилов **13** и **15**.

Реакции [4+2]-циклоприсоединения были проведены в условиях применения микроволнового излучения в присутствие ионной жидкости bmimPF₆. Экспериментально (по данным TCX) найденное оптимальное время протекания данных реакций составило 90 мин при 195 °C. Для сравнения эти же реакции были проведены в термических условиях при кипячении (178–180 °C, 90 мин) в 1,2-дихлорбензоле в отсутствие дополнительных добавок (табл. 1).

Таблица 1

Реак-	Конве соединения 6	ерсия а или 6b, %*	Соотношен	ия продуктов*	Выход, %		
ция	MW	Кипячение	MW	Кипячение	Соеди- нение	MW	
6a+7	94	39	_**	_**	12 13	55 7	
6b+7	82	28	_**	_**	12 13	68 11	
6a+8	100	55	14 : 15 6.1 : 1	14 : 15 6.9 : 1	14 15	60 4	
6b+8	100	32	14 : 15 7.3 : 1	14 : 15 5.4 : 1	14 15	_	
6a+9	100	100	16 : 17 1 : 0	16 : 17 1 : 0	16	98	
6b+9	100	95	16 : 17 1 : 0	16 : 17 1 : 0	16	_	

Выходы и соотношения 2(1Н)-пиридонов 12-17

* По данным ГЖХ-МС.

^{**} Соотношение не установлены из-за близости времени удерживания в данных ГЖХ-МС и наложения сигналов в ЯМР ¹Н спектрах реакционных смесей.

Полученные результаты свидетельствуют о безусловном преимуществе микроволновых синтезов. При одном и том же времени в реакциях, протекающих в обычных термических условиях, наблюдаются неполная конверсия исходных 2(1H)-пиразинонов **6а**,**b** и образование продуктов осмоления. Промотируемые микроволновым излучением реакции протекают с полной конверсией исходных соединений и образованием смеси региоизомерно замещенных 2(1H)-пиридонов **12–16**.

Структуры полученных 2(1Н)-пиридонов 12 и 14–16 были установлены методом РСА. Данные РСА хорошо соответствуют данным спектров ЯМР ¹Н, в которых для 4-арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилов 12, 14, 16 $J_{5,6} = 7.0-7.2$, тогда как для 5-арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилов 13, 15 $J_{4,6} = 2.6-2.7$ Гц.

Согласно данным РСА, исследованные соединения кристаллизуются в центросимметричных пространственных группах (соединения 12, 14 и 16 – в моноклинной сингонии, 15 – в орторомбической сингонии). Распределение длин связей и валентных углов довольно типично для такого рода соединений. Так, распределение длин связей в гетероцикле довольно чётко свидетельствует об образовании сопряжённой диеноновой системы.

Геометрия молекулы соединений 14 (а) и 15 (b) в кристалле

Соединение	12	14	15	16		
Брутто- формула	$C_{14}H_{12}N_2O$	C ₁₄ H ₁₁ BrN ₂ O	C ₁₄ H ₁₁ BrN ₂ O	C ₁₆ H ₁₇ N ₃ O		
Μ	224.26	303.16	303.16	267.33		
Т, К	295(2)	295(2)	295(2)	295(2)		
Сингония	Моноклинная	Орторомби- ческая	Моноклинная	Моноклинная		
Пр. гр.	$P2_1/n$	Pbca	$P2_{1}/n$	$P2_{1}/c$		
Параметры элемен	нтарной	•	•			
ячейки						
<i>a</i> , Å	7.8184(8)	13.0840(6)	9.5290(4)	13.9250(8)		
<i>d</i> , Å	13.1383(16)	13.9098(13)	11.3804(11)	10.9721(6)		
<i>c</i> , Å	11.7049(14)	14.3560(14)	12.1323(14)	9.4267(5)		
β, град	100.244(10)	90	101.047(7)	98.061(5)		
<i>V</i> , Å ³	1183.2(2)	2612.7(4)	1291.3(2)	1426.04(14)		
Ζ	4	8	4	4		
$d_{\rm pacu.},$ г/см ³	1.259	1.541	1.559	1.245		
μ, мм ⁻¹	0.081	3.135	3.172	0.080		
<i>F</i> (000)	472	1216	608	568		
T_{\min}	-	0.403	0.439	-		
$T_{\rm max}$	-	0.546	0.729	-		
Углы сканиро- вания, Ө, град	$3.07 < \Theta < 28.28$	$3.11 < \Theta < 28.28$	$2.82 < \Theta < 28.28$	$2.87 < \Theta < 28.28$		
Отражений собрано	5509	8893	10151	8779		
Независимых	2839	3070	3184	3495		
отражений	$(R_{\rm int} = 0.0177)$	$(R_{\rm int} = 0.0369)$	$(R_{\rm int} = 0.0332)$	$(R_{\rm int} = 0.0259)$		
Отражений с [<i>I</i> >2σ(<i>I</i>)]	1511	1207	1586	1669		
Комплектность, %, для Θ 26.00°	97.9	97.1	99.8	99.0		
S по F^2	1.010	1.010	1.010	1.008		
$R_1[I \ge 2\sigma(I)]$	0.0354	0.0389	0.0303	0.0408		
$wR_2[I \ge 2\sigma(I)]$	0.0733	0.0594	0.0505	0.0843		
<i>R</i> ₁ (все данные)	0.0877	0.1233	0.0843	0.0967		
<i>wR</i> ₂ (все данные)	0.0933	0.0627	0.0531	0.0903		
$\Delta \rho_{min}$, $e \cdot Å^{-3}$	0.127	0.555	0.440	0.193		
$\Delta \rho_{max}$, e·Å ⁻³	-0.123	-0.655	-0.379	-0.168		

Основные кристаллографические параметры и результаты уточнения структурных экспериментов

Длина связи C=O в исследованном ряду лежит в пределах 1.222–1.236, длина (условно) двойных связей колеблется от 1.343 до 1.383, (условно) одинарных связей – от 1.405 до 1.449 Å. Ароматический заместитель развёрнут относительно плоскости пиридинового цикла: соответствующие двугранные углы составляют $43.5(2)^{\circ}$ (соединение 12), $48.3(2)^{\circ}$ (соединение 14), $28.2(2)^{\circ}$ (соединение 15), $36.7(2)^{\circ}$ (соединение 16). Как видим, для соединений 12, 14 и 16 угол поворота уменьшается по мере увеличения электронодонорных свойств ароматического заместителя, что, вероятно, обусловлено увеличением сопряжения π -систем циклов за счёт переноса электронов с π -донора на π -акцепторный пиридиновый цикл. В случае соединения 15 уменьшение угла поворота заместителя может быть объяснено снижением влияния стерического фактора группы CN.

Особенностью молекулярной упаковки исследованных соединений является образование укороченных контактов между атомом кислорода карбонила и протоном при C(6) пиридинового цикла: $d(O(1)\cdots H(6A)[-1/2+x, y, 1.5-z]) = 2.500$ (соединение 14), $d(O(1)\cdots H(6A)[1.5-x, -1/2+y, 2.5-z]) = 2.431$ (соединение 15), $d(O(1)\cdots H(6)[-x, 1/2+y, 1/2-z]) = 2.25(2)$ Å (соединение 16). Значения контактов (особенно для соединения 16) свидетельствуют о возможности возникновения специфических взаимодействий, по значению сопоставимых с межмолекулярной водородной связью. Несмотря на простоту геометрии и наличие мощной π -системы, ярко выраженные укороченные π -контакты отсутствуют.

В данной работе был проведён прогноз биологической активности для синтезированных 2(1H)-пиридонов **12–16** и их предшественников – 2(1H)-пиразинонов **6a,b** на основе структурной формулы вещества, реализованный в компьютерной программе PASS с использованием доступной интерактивной сервисии PASS INet (http://www.ibmc.msk.ru/PASS) [6–10]. Биологическая активность описана в PASS качественным образом ("активно"/"неактивно") в виде списка активностей с двумя вероятностями: P_a – "быть активным" и P_i – "быть неактивным", рассчитанными для каждой активности. Этот список упорядочен по убыванию разностей P_a – P_i (табл. 3). Только активности с P_a - P_i считаются возможными для анализируемого соединения.

Данные по прогнозированию свойств (гет)арилзамещенных пиразинонов и пиридонов (табл. 3) показывают, что они могут проявлять высокую биологическую активность широкого спектра. Это позволяет сделать заключение о целесообразности экспериментальной проверки биологической активности для соединений данного ряда с целью поиска новых перспективных физиологически активных веществ.

Таким образом, в работе предложен простой и эффективный способ получения 4-арил- и 5-арилзамещенных 2(1H)-пиридонов на основе промотируемых микроволновым излучением реакции 5-(гет)арил-1-этил-2(1H)-пиразинонов с терминальными арилацетиленами. Проведено кристаллографическое исследование синтезированных 2(1H)-пиридонов, а также выполнен прогноз их потенциальной биологической активности.

7, 12, 13 R = Ph; 8, 14, 15 R = 4-BrC_6H_4; 9, 16, 17 R = 4-(Me_2N)C_6H_4

Тип активности *		Тип активности *		thione thiolesterase inhibitor	doxin-NAD ⁺ reductase inhibitor	thalene 1,2-dioxygenase inhibitor	minyl-peptide cyclotransferase inhibitor	anol dehydrogenase inhibitor	na-guanidinobutyraldehyde Irogenase inhibitor	ophanamidase inhibitor	asome ATPase inhibitor	odeoxycholoyltaurine hydrolase inhibitor	Ikyl acylamidase inhibitor	orobenzoate 1,2-dioxygenase inhibitor	orophenylacetate 3,4-dioxygenase inhibitor
Ра Ра Типакти		Gluta Ferree		Naph	Gluta	Meth	Gamr dehyd	Trypt	Prote	Chen	Aryla	2-Chl	4-Chl		
P.		0.004 0.005	$0.003 \\ 0.004$	0.003 0.004	0.012	$0.003 \\ 0.004$	0.004 0.007	0.004 0.005	0.006 0.010 0.005 0.008 0.010	0.004 0.004	0.004	0.010 0.018	0.004		
$\mathbf{P}_{\mathbf{a}}$		0.871 (6a) 0.832 (12, 13)	0.790 (12, 13)	0.847 (6a) 0.790 (12, 13)	0.836	0.826 (6a) 0.761 (12, 13)	0.820 (6a) 0.753 (12, 13)	0.814 (6a) 0.752 (12, 13)	0.805 (6a) 0.762 (6b) 0.872 (12, 13) 0.782 (14, 15) 0.759 (16)	0.794 (6a) 0.807 (12 , 13)	0.794	0.785 (6a) 0.702 (12)	0.775		
	16	1 1		I	I	Ι	I	I	+	I	I	I	I		
	15	I	1 1 1 1 1		Ι	Ι	Ι	+	I	I	Ι	I			
единения	14	I			Ι	Ι	I	I	I	Ι	Ι				
	13	+	+	+	Ι	+	+	+	+	+	I	Ι	Ι		
С	12	+	+ + + +		+	+	+	+	+	I	+	I			
	6b	I	Ι	I	I	Ι	I	I	+	I	I	I	I		
		6a	+ + + + +		+	+	+	+	+	+	+	+			
	Соединения В В Тите симинали *	Соединения Соединения Ра Рі Тип активности *	Соединения Ра Ра Тип активности * ба 6b 12 13 14 15 16 Ра О.004 Ві Тип активности * + - + + - 0.8371 (6a) 0.004 Glutathione thiolesterase inhibitor	Соединения 6a 6b 12 13 14 15 16 P_a P_i T ип активности * + - + + - - 0.004 Glutathione thiolesterase inhibitor + - + + - 0.837 (6a) 0.004 Glutathione thiolesterase inhibitor + - + + - 0.837 (6a) 0.003 Ferredoxin-NAD ⁺ reductase inhibitor	Соединения 6a 6b 12 13 14 15 16 P_a P_i Tut активности * + - + + - - 0.004 Glutathione thiolesterase inhibitor + - + + - 0.832 (12, 13) 0.004 Glutathione thiolesterase inhibitor + - + + - 0.003 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - 0.004 0.003 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - 0.004 0.003 Ferredoxin-NAD ⁺ reductase inhibitor	Соединения 6a bb 12 13 14 15 16 P_a P_i Tun активности * + - + + - - 0.071 6a) 0.004 Glutathione thiolesterase inhibitor + - + + - - 0.837 (6a) 0.004 Glutathione thiolesterase inhibitor + - + + - 0.005 Retredoxin-NAD ⁺ reductase inhibitor + - + + - 0.004 0.003 Retredoxin-NAD ⁺ reductase inhibitor + - + + - 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor + - + - 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor	COGRIMHENDA 6a bb 12 13 14 15 16 P_a P_a T_{III} art/ubitor + - + + - - 0.871 (6a) 0.004 Glutathione thiolesterase inhibitor + - + + - - 0.832 (12, 13) 0.003 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - 0.790 (12, 13) 0.003 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - 0.790 (12, 13) 0.003 Maphthalene 1,2-dioxygenase inhibitor + - + + 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0.004 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0.004 0.003 Mathanol delydrogenase inhibitor	COCATHIENTIA COCATHENTIA 6a 6b 12 13 14 15 16 P_a P_i + - + + - - 0.037 (6a) 0.104 Glutathione thiolesterase inhibitor + - + + - - 0.837 (6a) 0.004 Glutathione thiolesterase inhibitor + - + + - - 0.847 (6a) 0.003 Ferredoxin-NAD* reductase inhibitor + - + + - - 0.847 (6a) 0.003 Retredoxin-NAD* reductase inhibitor + - + + - - 0.004 Naphthalene 1,2-dioxygenase inhibitor + - + + - - 0.004 0.003 Mathalene 1,2-dioxygenase inhibitor + - + + - - 0.004 0.004 Mathalene 1,2-dioxygenase inhibitor + - </td <td>COMMENTIA COMMENTIA 6a 6b 12 13 14 15 16 P_1 P_1 P_1 $T_{IIII ACTNHHOCTII *$ + - + + - - 0.03 0.03 Glutathione thiolesterase inhibitor + - + + - - 0.032 Glutathione thiolesterase inhibitor + - + + - 0.032 0.003 Retredoxin-NAD* reductase inhibitor + - + + - 0.0347 (6a) 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0 0.0347 (6a) 0.003 Maphthalene 1,2-dioxygenase inhibitor + - - - 0.0347 (6a) 0.003 Maphthalene 1,2-dioxygenase inhibitor + - - - 0.032 (6a) 0.003 Methanol decydrogenase inhibitor + - + + - - 0.032 (6a) 0.003 <td< td=""><td>Columenta Pa Pa Pa Tata actuation 6a 12 13 14 15 16 Pa Pa Pa Tata actuation + - + + - - - 0.871 (6a) 0.005 Glutathione thiolesterase inhibitor + - + + - - - 0.832 (12, 13) 0.005 Ferredoxin-NAD⁺ reductase inhibitor + - + + - - - 0.832 (6a) 0.003 Ferredoxin-NAD⁺ reductase inhibitor + - + + - - 0.003 Removember 1.2-dioxygenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + + + + - 0.0103 Methanol dehydrogenase inhibitor <th< td=""><td></td><td></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<></td></td<></td>	COMMENTIA COMMENTIA 6a 6b 12 13 14 15 16 P_1 P_1 P_1 $T_{IIII ACTNHHOCTII *$ + - + + - - 0.03 0.03 Glutathione thiolesterase inhibitor + - + + - - 0.032 Glutathione thiolesterase inhibitor + - + + - 0.032 0.003 Retredoxin-NAD* reductase inhibitor + - + + - 0.0347 (6a) 0.003 Naphthalene 1,2-dioxygenase inhibitor + - - - 0 0.0347 (6a) 0.003 Maphthalene 1,2-dioxygenase inhibitor + - - - 0.0347 (6a) 0.003 Maphthalene 1,2-dioxygenase inhibitor + - - - 0.032 (6a) 0.003 Methanol decydrogenase inhibitor + - + + - - 0.032 (6a) 0.003 <td< td=""><td>Columenta Pa Pa Pa Tata actuation 6a 12 13 14 15 16 Pa Pa Pa Tata actuation + - + + - - - 0.871 (6a) 0.005 Glutathione thiolesterase inhibitor + - + + - - - 0.832 (12, 13) 0.005 Ferredoxin-NAD⁺ reductase inhibitor + - + + - - - 0.832 (6a) 0.003 Ferredoxin-NAD⁺ reductase inhibitor + - + + - - 0.003 Removember 1.2-dioxygenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + + + + - 0.0103 Methanol dehydrogenase inhibitor <th< td=""><td></td><td></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<></td></td<>	Columenta Pa Pa Pa Tata actuation 6a 12 13 14 15 16 Pa Pa Pa Tata actuation + - + + - - - 0.871 (6a) 0.005 Glutathione thiolesterase inhibitor + - + + - - - 0.832 (12, 13) 0.005 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - - - 0.832 (6a) 0.003 Ferredoxin-NAD ⁺ reductase inhibitor + - + + - - 0.003 Removember 1.2-dioxygenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + - - - - 0.012 0.003 Methanol dehydrogenase inhibitor + + + + - 0.0103 Methanol dehydrogenase inhibitor <th< td=""><td></td><td></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Рассчитанная потенциальная биологическая активность 2(1H)-пиразинонов 6a,b и 2(1H)-пиридонов 12–16 (P_a > 70%)

Таблица 3

866

Amine dehydrogenase inhibitor	Electron-transferring-flavoprotein dehydrogenase inhibitor	2-Hydroxyquinoline 8-monooxygenase inhibitor	Muramoyltetrapeptide carboxypeptidase inhibitor	Mitochondrial processing peptidase inhibitor	Allyl-alcohol dehydrogenase inhibitor	Formaldehyde transketolase inhibitor	Aldehyde dehydrogenase (pyrroloquinoline- quinone) inhibitor	Sulfite reductase inhibitor	Nicotinate dehydrogenase inhibitor	Flavonoid 3'-monooxygenase inhibitor	Ribulose-phosphate 3-epimerase inhibitor	Phosphatidylcholine-retinol O-acyltransferase inhibitor	UDP-N-acetylglucosamine 4-epimerase inhibitor	G-Quadruplex telomerase inhibitor	CYP2C12 substrate	Prolyl aminopeptidase inhibitor	Magnesium protoporphyrin IX monomethyl ester (oxidative) cyclase inhibitor	Camphor 1,2-monooxygenase inhibitor
0.005	0.007 0.005	0.009	0.014 0.014 0.013	0.010	0.006 0.006	0.011	0.007	0.009	0.005	0.029	0.019	0.017	0.020	0.013	0.061	0.012	0.004	0.004
0.774	0.772 (6a) 0.793 (12, 13)	0.771	0.774 (6a) 0.775 (6b) 0.786 (12, 13)	0.749	0.745 (6a) 0.756 (12)	0.740	0.719	0.716	0.705	0.708	0.742 (12, 13)	0.716 (12, 13)	0.714 (12, 13)	0.706	0.741 (12, 13)	0.754 (14, 15)	0.796	0.711
-	I	I	I	I	Ι	-	Ι	-	I	Ι	I	Ι	-	I	Ι	I	+	+
Ι	I	I	I	I	I	I	Ι	I	I	Ι	I	Ι	Ι	I	Ι	+	Ι	I
Ι	I	I	Ι	I	Ι	Ι	Ι	Ι	I	Ι	I	Ι	Ι	I	Ι	+	Ι	Ι
Η	+	Ι	+	Ι	Ι	Ι	-	-	I	-	+	+	+	-	+	Ι	Ι	I
I	+	I	+	I	+	I	Ι	I	I	I	+	+	+	+	+	I	Ι	I
I	I	I	+	I	Ι	I	Ι	I	I	Ι	I	Ι	I	I	I	I	Ι	I
+	+	+	+	+	+	+	+	+	+	+	I	Ι	I	I	I	I	Ι	I

* Тип активности приведен в редакции PASS.

867

Спектры ЯМР ¹Н получали на приборе Bruker DRX-400 (400 МГц) в растворе CDCl₃, внутренний стандарт ТМС. Элементный анализ выполняли на автоматическом анализаторе Perkin–Elmer PE-2400. Температуры плавления определены на комбинированных столиках Boetius и не корректированы. Препаративную BЭЖХ выполняли, используя полупрепаративный жидкостный хроматограф Agilent 1200 Series с диодно-матричным детектором, аналитическая длина волны 280 нм. Колонка ZORBAX Eclipse XDB-C18 PrepHT, 21.2 мм × 150 мм, размер частиц 5 мкм, температура колонки комнатная. В качестве подвижной фазы использовали смесь ацетонитрил–вода, 60 : 40 и 50 : 50, скорость потока подвижной фазы 20 мл/мин, режим элюирования – изократический.

ГХЖ-МС анализ всех образцов проводили, используя газовый хроматографмасс-спектрометр Agilent GC 7890A MS 5975C Inert XL EI/CI с квадрупольным масс-спектрометрическим детектором и с кварцевой капиллярной колонкой HP-5MS, 30 м × 0.25 мм, толщина плёнки 0.25 мкм. Масс-спектры регистрировали в условиях электронной ионизации (70 эВ) при сканировании по полному ионному току в интервале m/2 20–1000. Газоноситель – гелий, деление потока 1 : 50, расход через колонку 1.0 мл/мин; температура колонки: начальная 40 °C (выдержка 3 мин), программирование со скоростью 10 °C/мин до 290 °C (выдержка 20 мин), температура испарителя 250 °C, температура источника 230 °C, квадруполя 150 °C, переходной камеры 280 °C. Растворы образцов концентрацией 3–4 мг/мл готовили в ацетонитриле.

РСА проводили на рентгеновском дифрактометре Xcalibur-3 с CCD детектором по стандартной процедуре (λМоКα, графитовый монохроматор, ω-сканирование). Для анализа использовали обломки кристаллов жёлтого цвета размером 0.26×0.14×0.11 (соединение **12**), 0.32×0.19×0.07 (соединение **14**), 0.16×0.09×0.06 (соединение **15**), 0.25×0.20×0.15 мм (соединение **16**). Сбор и обработка данных проводили с использованием пакета программ CrysAlis [12]. Поправку на поглощение для образцов 12, 16 не вводили, для образцов 14, 15 поправку вводили аналитически по модели многогранного кристалла [12]. Структуры всех соединений расшифровали прямым методом по программе SHELXS-97 и уточняли с помощью программы SHELXL-97 [13] в анизотропном (изотропном для атомов водорода) приближении. Атомы водорода частично решали и уточняли независимо, частично включали в уточнение в модели наездника с зависимыми тепловыми параметрами. Данные РСА зарегистрированы в Кембриджском центре кристаллографических данных – www.ccdc.cam.ac.uk/data request/cif (номера депонентов CCDC 819354 – соединение 12, CCDC 819355 – соединение 14, CCDC 819356 - соединение 15, ССDС 819357 - соединение 16).

Все микроволновые эксперименты выполняли в одномодовой микроволновой системе CEM Discover с рабочей частотой 2.45 ГГц. Реакции проводили в реакционной пробирке ёмкостью 10 мл с герметичной тефлоновой пробкой.

Колоночную хроматографию выполняли с использованием силикагеля Lancaster 0.040–0.063 мм (230–400 меш), элюируя смесью этилацетат–гексан, 1 : 2.

Ход реакции и чистоту соединений контролировали методом TCX на пластинках Sorbfil, проявление в УФ свете.

Растворители сушили и чистили согласно методикам, взятым из литературных данных [11]. Исходные соединения **6а**,**b** получены по известной методике [5].

4-Арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилы 12, 14, 16 и 5-арил-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрилы 13, 15 (общая методика). А. Использование микроволнового излучения. Раствор 0.60 ммоль соответствующего 2(1H)-пиразинона **6а,b**, 0.72 ммоль арилацетилена и 15 мкл (0.15 ммоль) bmimPF₆ (гексафторфосфат 1-бутил-3-метилимидазолия) в 3 мл 1,2-дихлорбензола облучают 90 мин микроволновым изучением при 195 °C (250 Вт), растворитель отгоняют при пониженном давлении, остаток делят хроматографически на силикагеле или выделяют при помощи препаративной ВЭЖХ.

Б. Реакция в термических условиях. Раствор 0.60 ммоль соответствующего 2(1H)-пиразинона **6а,b** и 0.72 ммоль арилацетилена в 3 мл 1,2-дихлорбензола кипятят 90 мин. Реакционную смесь обрабатывают аналогично методу А.

При исследовании реакционных смесей остаток после отгонки растворителя анализируют ГЖХ-МС без дальнейшей обработки.

2-Оксо-4-фенил-1-этил-1,2-дигидропиридин-3-карбонитрил (12). Светложёлтый кристаллический порошок, т. пл. 148–150 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.43 (3H, т, *J* = 7.2, CH₃); 4.01–4.11 (2H, м, CH₂); 6.35 (1H, д, *J* = 7.0, H-6); 7.39–7.53 (3H, м, H Ph); 7.55 (1H, д, *J* = 7.0, H-5); 7.60–7.63 (2H, м, H Ph). Массспектр, *m/z* (I_{0TH} , %): 224 [M]⁺ (100). ВЭЖХ: t_R 2.8–3.6 мин. ГЖХ: t_R 25.54 мин. Найдено, %: С 74.97; Н 5.48; N 12.51. С₁₄H₁₂N₂O. Вычислено, %: С 74.98; Н 5.39; N 12.49.

2-Оксо-5-фенил-1-этил-1,2-дигидропиридин-3-карбонитрил (13). Жёлтый кристаллический порошок, т. пл. 135–137 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.45 (3H, т, *J* = 7.2, CH₃); 4.13 (2H, к, *J* = 7.2, NCH₂); 7.26–7.41 (3H, м, H Ph); 7.44–7.48 (2H, м, H Ph); 7.74 (1H, д, *J* = 2.7, H-6); 8.07 (1H, д, *J* = 2.7, H-4). Масс-спектр, (ЭИ, 70 эВ), *m/z* (*I*_{0тн}, %): 224 [M]⁺ (100). ВЭЖХ: *t*_R 3.7–4.6 мин. ГЖХ: *t*_R 25.54 мин. Найдено, %: С 75.12; Н 5.23; N 12.50. С₁₄H₁₂N₂O. Вычислено, %: С 74.98; Н 5.39; N 12.49.

4-(4-Бромфенил)-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрил (14).

Светло-жёлтый кристаллический порошок, т. пл. 196–198 °С. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.43 (3H, т, *J* = 7.2, CH₃); 4.12 (2H, к, *J* = 7.2, CH₂); 6.31 (1H, д, *J* = 7.0, H-6); 7.49 (2H, д, *J* = 8.4, H-3',5'); 7.55 (1H, д, *J* = 7.0, H-5); 7.65 (2H, д, *J* = 8.4, H-2',6'). Масс-спектр, *m/z* (*I*_{0тн}, %): 302 [M]⁺ (100) для ⁷⁹Br, 304 [M]⁺ (100) для ⁸¹Br. ВЭЖХ: *t*_R 2.8–3.6 мин. ГЖХ: *t*_R 28.13 мин. Найдено, %: С 55.69; H 3.75; N 9.11. С₁₄H₁₁BrN₂O. Вычислено, %: С 55.47; H 3.66; N 9.24.

5-(4-Бромфенил)-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрил (15). Светло-жёлтый кристаллический порошок, т. пл. 193–195 °С. Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.45 (3H, т, J = 7.2, CH₃); 4.12 (2H, к, J = 7.2, CH₂); 7.25 (2H, д, J = 8.5, H-3',5'); 7.59 (2H, д, J = 8.5, H-2,'6'); 7.72 (1H, д, J = 2.6, H-6); 8.02 (1H, д, J = 2.6, H-4). Масс-спектр, m/z ($I_{\text{отн}}$, %): 302 [M]⁺ (100) для ⁷⁹Br, 304 [M]⁺ (100) для ⁸¹Br. ВЭЖХ: t_{R} 3.8–4.8 мин. ГЖХ: t_{R} 28.32 мин. Найдено, %: С 55.59; Н 3.37; N 9.18. С₁₄H₁₁BrN₂O. Вычислено, %: С 55.47; Н 3.66; N 9.24.

4-(4-Диметиламинофенил)-2-оксо-1-этил-1,2-дигидропиридин-3-карбонитрил (16). Ярко-жёлтый кристаллический порошок, т. пл. 187–189 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.40 (3H, т, *J* = 7.2, CH₂C<u>H₃</u>); 3.05 (6H, с, N(CH₃)₂); 4.03 (2H, к, *J* = 7.2, C<u>H₂CH₃</u>); 6.35 (1H, д, *J* = 7.2, H-6); 6.76 (2H, д. д, *J* = 6.9, *J* = 2.2, H-3',5'); 7.42 (1H, д, *J* = 7.2, H-5); 7.62 (2H, д, *J* = 6.9, *J* = 2.2, H-2',6'). Масс-спектр, *m/z* (I_{0TH} , %): 267 [M]⁺ (100). ВЭЖХ: t_{R} 2.0–2.5 мин. ГЖХ: t_{R} 30.79 мин. Найдено, %: С 71.81; H 6.48; N 15.53. С₁₆H₁₇N₃O. Вычислено, %: С 71.89; H 6.41; N 15.72.

Работа выполнена при финансовой поддержке Программ УрО РАН 09-И-3-2004, 09-П-3-1015, 09-Т-3-1022, Госконтракта № 02.740.11.0260, а также грантов РФФИ 10-03-96078-р урал а и ВНШ-65261.2010.3.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Vekemans, C. Pollers-Wieërs, G. Hoornaert, J. Heterocycl. Chem., 20, 919 (1983).
- 2. G. Hoornaert, Bull. Soc. Chim. Belg., 103, 583 (1994).
- E. Van der Eycken, P. Appukkuttan, W. De Borggraeve, W. Dehaen, D. Dallinger, C. O. Kappe, J. Org. Chem., 67, 7904 (2002).
- 4. E. Van der Eycken, N. Kaval, *Topics in Heterocyclic Chemistry*, Springer-Verlag, Berlin-Heidelberg, 2006, vol. 1, p. 267.
- 5. Е. В. Вербицкий, М. В. Березин, П. А. Слепухин, О. Н. Забелина, Г. Л. Русинов, В. Н. Чарушин, *Изв. АН. Сер. хим.*, 882 (2011).
- Д. А. Филимонов, В. В. Поройков, Е. И. Караичева, Р. К. Казарян, А. П. Будунова, Е. М. Михайловский, А. В. Рудницких, Л. В. Гончаренко, Ю. В. Буров, Экспериментальная и клиническая фармакология, 58, № 2, 56 (1995).
- D. A. Filimonov, V. V. Poroikov, in: *Bioactive Compound Design: Possibilities for Industrial Use*, Bios Scientific Publishers, Oxford (UK),1996, p. 47.
- V. Poroikov, D. Filimonov, in: *Rational Approaches to Drug Design*, H.-D. Holtje, W. Sippl (Eds.), Prous Science Press, Barcelona, 2001, p. 403.
- 9. V. V. Poroikov, D. A. Filimonov, J. Comput.-Aided Mol. Des., 16, 819 (2002).
- 10. Д. А. Филимонов, В. В. Поройков, *Рос. хим. журн.*, **50**, № 2, 66 (2006). http://www.chem.msu.su/rus/jvho/2006-2/66.pdf
- Л. Титце, Т. Айхер, Препаративная органическая химия. Реакции и синтезы в практикуме органической химии и научно-исследовательской лаборатории, Мир, Москва, 1999, 704 с. [L. F. Tietze, T. Eicher, Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschunglaboratorium, Georg Thieme Verlag Stuttgart, New York, 1991].
- 12. R. C. Clark, J. S. Reid, Acta Crystallogr., A51, 887 (1995).
- 13. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).

Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22/Академическая, 20, Екатеринбург 620041, Россия e-mail: Verbitsky@ios.uran.ru Поступило 03.03.2011