Посвящается академику В. Н. Чарушину в связи с 60-летием

Ю. С. Кудякова*, Я. В. Бургарт, В. И. Салоутин

ГЕТЕРОЦИКЛИЧЕСКИЕ ДИАЛЬДЕГИДЫ: ЛИНКЕРЫ В СИНТЕЗЕ МАКРОАЦИКЛИЧЕСКИХ ЛИГАНДОВ

В результате бисконденсации диэтилового эфира 2-[(2-аминофенил)аминометилиден]малоновой кислоты с гетероциклическими диальдегидами (2,5-тиофендикарбоксальдегидом и 2,6-пиридиндикарбоксальдегидом) получены макроациклические гетероатомные поданды, содержащие одну хелатирующую полость.

Ключевые слова: азометин, диальдегид, линкер, поданд, конденсация.

Синтез полидентатных лигандов является одной из актуальных задач современной координационной химии [1–3]. Включение в хелатный узел разнообразных гетероатомов, в том числе являющихся частью гетероциклических фрагментов, позволяет тонко варьировать электронные и пространственные свойства комплексов [4, 5].

В данной работе представлен путь к построению новых подандов на основе гетероциклических диальдегидов **2** и диэтилового эфира 2-[(2-аминофенил)аминометилиден]малоновой кислоты (**1**). В качестве гетероциклических диальдегидов использованы 2,5-тиофендикарбоксальдегид (**2a**) и 2,6-пиридиндикарбоксальдегид (**2b**).

Диэфир 1 получен в результате моноконденсации *о*-фенилендиамина с диэтиловым эфиром 2-этоксиметилиденмалоновой кислоты по методике синтеза этиловых эфиров 2-[(2-аминофенил)аминометилиден]-3-оксопропионовых кислот [6, 7].

Мы нашли, что диэфир 1 региоселективно конденсируется с диальдегидами 2a,b по этоксильному заместителю с образованием продуктов бисконденсации – диазометинов 3a,b. В случае 2,5-тиофендикарбоксальдегида (2a) реакцию проводили в бензоле с азеотропной отгонкой воды, в качестве катализатора использовали ледяную уксусную кислоту. При конденсации эфира 1 с 2,6-пиридиндикарбоксальдегидом (2b) реакцию вели в абсолютном этаноле при кипячении.

Полученным соединениям **3а,b** может быть свойственна иминоенаминная таутомерия, в связи с чем они могут существовать в виде иминного или/и енаминного таутомеров.

Строение соединения За в твердом виде исследовано с помощью РСА (табл. 1-3). Найдено, что поданд За в кристалле существует в виде s-цис,s-транс-конформера бис(енаминного) таутомера (рис. 1), причём симметричные фрагменты диэтилового эфира 2-[(2-аминофенил)аминометилиден]малоновой кислоты находятся в цис-положении относительно тиофенового цикла. При этом атомы кислорода карбонильных групп, связанные с группами NH фенилендиаминового мостика внутримолекулярной водородной связью, образуют единую O₂N₄S-макроциклическую полость. Отклонение их от плоскости, содержащей сопряжённую полиароматическую систему, составляет ~ 26°. В силу симметричности молекулы две внутримолекулярные водородные связи N(2)-H(2)···O(1) и $N(2A)-H(2A)\cdots O(1A)$ характеризуются одинаковыми параметрами: внутримолекулярное расстояние $O(1) \cdots H(2)$ ($O(1A) \cdots H(2A)$) составляет 2.01(1), N(2)–H(2) (N(2A)–H(2A)) 0.91(6), N(2)···O(1) (N(2A)···O(1A)) 2.67(3) Å, угол N(2)-H(2)…O(1) (N(2A)-H(2A)…O(1A)) равен 128.0(1)°. Основные длины связей и значения углов между атомами молекулы соединения За приведены в табл. 2, 3.

Рис. 1. Общий вид молекулы соединения За

Элементарная ячейка (рис. 2) образована двумя кристаллографически независимыми молекулами, которые упакованы параллельными слоями в результате π - π -взаимодействия фенильных колец [8, 9].

Рис. 2. Молекулярная упаковка соединения **За** (вдоль оси *b*). Для простоты восприятия атомы водорода не показаны

Таблица 1

Брутто-формула	C24H26N4O8S		
M	660 73		
Температура. К	295(2)		
Лпина волны А	0 71073		
Сингония	Моноклинная		
Пространственная группа	C^{2}/c		
Параметры ячейки:			
a, Å	14.192(12)		
b, Å	11.786(7)		
c, Å	19.824(19)		
β, град.	94.43(8)		
Объем ячейки, V , Å ³	3305.8(5)		
Количество молекул в ячейке, Z	4		
Плотность, ρ , Γ/cm^3	1.33		
Коэффициент абсорбции, µ, мм ⁻¹	0.155		
F(000)	1392		
θ_{max}	26.37		
Размер кристалла, мм ³	0.25 imes 0.15 imes 0.10		
Цвет	Светло-коричневый		
Количество отражений			
измеренные	6398		
независимые	3302		
Число уточняемых параметров	217		
S	1.005		
Факторы расходимости			
$I > 2\sigma(I)$	$R_1 = 0.0399, wR_2 = 0.0608$		
все рефлексы	$R_1 = 0.1070, wR_2 = 0.0656$		

Параметры съёмки и кристаллографические данные соединения За

Таблица 2

Основные длины связей (d) соединения За

Связь	d, Å	Связь	d, Å
S(1)–C(2)	1.7222(17)	N(1)-C(4)	1.4134(19)
S(1)-C(2A)	1.7222(16)	O(2)–C(12)	1.3393(19)
O(4)–C(15)	1.3467(19)	O(2)–C(13)	1.4539(19)
O(4)–C(16)	1.4432(17)	N(2)-C(10)	1.3280(19)
O(3)–C(15)	1.1970(18)	N(2)–C(9)	1.407(2)
C(11)-C(10)	1.371(2)	C(9)–C(4)	1.398(2)
C(11)–C(12)	1.454(2)	C(2)–C(1)	1.364(2)
C(11)–C(15)	1.476(2)	C(2)–C(3)	1.438(2)
O(1)–C(12)	1.2145(19)	C(1)–C(1A)	1.391(3)
N(1)–C(3)	1.2661(18)		

Валентные углы (ω) соединения За

Угол	ω, град.	Угол	ω, град.
C(2)-S(1)-C(2A)	90.80(12)	C(5)–C(4)–C(9)	117.92(16)
C(15)-O(4)-C(16)	117.71(14)	C(5)-C(4)-N(1)	125.59(15)
C(10)-C(11)-C(12)	118.63(16)	C(9)–C(4)–N(1)	116.46(14)
C(10)-C(11)-C(15)	117.70(16)	C(2)-C(1)-C(1A)	112.90(10)
C(12)-C(11)-C(15)	123.42(17)	O(1)-C(12)-O(2)	121.73(17)
C(3)-N(1)-C(4)	119.63(14)	O(1)-C(12)-C(11)	123.42(18)
C(12)-O(2)-C(13)	117.04(14)	O(2)-C(12)-C(11)	114.84(17)
C(10)–N(2)–C(9)	125.22(16)	O(3)-C(15)-O(4)	121.63(17)
C(8)–C(9)–C(4)	119.50(16)	O(3)-C(15)-C(11)	127.33(18)
C(8)–C(9)–N(2)	122.35(16)	O(4)-C(15)-C(11)	111.04(15)
C(4)–C(9)–N(2)	118.14(15)	N(2)-C(10)-C(11)	128.29(16)
C(1)–C(2)–C(3)	124.46(16)	N(1)-C(3)-C(2)	125.49(16)
C(1)-C(2)-S(1)	111.69(13)	O(4)-C(16)-C(17)	107.45(15)
C(3)–C(2)–S(1)	123.81(13)	O(2)–C(13)–C(14)	110.67(17)

Сравнительный анализ ИК спектров соединений **3a** и **3b**, записанных для твёрдого состояния, не выявил существенных различий между ними. Так, ИК спектры характеризуются присутствием двух полос поглощения, соответствующих колебаниям сложноэфирных групп двух типов: свободной (1700 для **3a** и 1712 для **3b**) и связанной внутримолекулярной водородной связью (1669 для **3a** и 1678 см⁻¹ для **3b**).

В спектрах ЯМР ¹Н соединений **За,b** наблюдается по одному набору сигналов, что свидетельствует о сохранении симметрии молекул в растворе. Присутствие в спектре ЯМР ¹Н двух дублетных сигналов протонов метилиденового фрагмента и аминогруппы в области 8.61–8.65 и 11.69–12.11 м. д., соответственно, с КССВ ~ 14.0 Гц указывает на существовании их в енаминной форме.

Таким образом, нами представлен путь формирования макроациклических подандов, в которых гетероциклических остов соединяет два N₂O-тридентатных узла, образуя при этом единую макроциклическую полость.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записывали на ИК фурье-спектрометре Perkin–Elmer Spectrum Опе в интервале 400–4000 см⁻¹ с использованием приставки диффузного отражения. Спектры ЯМР ¹Н и ¹⁹F получали на спектрометре Bruker DRX-400 (400 и 376 МГц соответственно) в растворе CDCl₃, внутренний стандарт ТМС и C₆F₆ соответственно. Элементный анализ выполняли с помощью элементного анализатора Perkin–Elmer PE 2400 серия 2 CHNS-O EA 1108.4. Температуры плавления измеряли в открытых капиллярах на аппарате для определения точки плавления Stuart SMP3. Контроль за ходом реакций осуществляли методом TCX на пластинах Alugram Sil G/UV-254.

2,5-Тиофендикарбоксальдегид (2а) и 2,6-пиридиндикарбоксальдегид (2b) – коммерческие реагенты, Aldrich.

Диэтиловый эфир 2-[(2-аминофенил)аминометилиден]малоновой кислоты (1). К раствору 1.08 г (10 ммоль) *о*-фенилендиамина в 30 мл эфира прибавляют 2.16 г (10 ммоль) диэтилового эфира 2-этоксиметилиденмалоновой кислоты, перемешивают при комнатной температуре 1 ч. Затем упаривают, остаток перекристаллизовывают из гексана. Получают 2.42 г (87%) соединения 1 в виде порошка молочного цвета, т. пл. 96–97 °С (т. пл. неочищенного продукта 78 °С [10]). ИК спектр, v, см⁻¹: 3409, 3351 (NH₂), 3251 (N–H), 2986 (С–Н вал.), 1697, 1655 (С=О), 1609, 1593 (С=С, N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.31, 1.38 (6H, два т, *J* = 7.1, 2CH₂CH₃); 4.23, 4.32 (4H, два к, *J* = 7.1, 2CH₂CH₃); 6.82 (1H, д. д. д. *J* = 7.8, *J* = 7.7, *J* = 1.1, H Ar); 6.87 (1H, д. д, *J* = 7.7, *J* = 1.1, H Ar); 7.04 (1H, д. д. д, *J* = 7.8, *J* = 7.7, *J* = 1.1, H Ar); 7.12 (1H, д. д, *J* = 7.7, *J* = 1.1, H Ar); 7.27 (1H, с, H– C=N); 8.42 (1H, д, *J* = 13.6, NH). Найдено, %: С 60.31; H 6.45; N 9.91. C₁₄H₁₈N₂O₄. Вычислено, %: С 60.42; H 6.52; N 10.07.

Тетраэтил-2,2'-[2,5-тиенилбис(аминометилиден-2-иминофенилен)]дималонат (**3a**). Смесь 1.95 г (7 ммоль) эфира **1**, 0.42 г (3 ммоль) 2,5-тиофендикарбоксальдегида (**2a**) и 2 мл ледяной уксусной кислоты в 40 мл бензола кипятят с азеотропной отгонкой воды в течение 15 ч. Затем реакционную массу упаривают, образовавшийся осадок перекристаллизовывают из диэтилового эфира. Получают 1.56 г (80 %) продукта **3a** в виде порошка оранжевого цвета, т. пл. 160–161 °С. ИК спектр, v, см⁻¹: 3251, 3070 (N–H), 2978 (С–Н вал.), 1700, 1669 (С=О), 1646 (С=N), 1604, 1570 (С=С, N–H). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.31, 1.33 (12H, два т, *J* = 7.1, 4CH₂CH₃); 4.26, 4.33 (8H, два к, *J* = 7.1, 4CH₂CH₃); 7.14 (2H, д. д. д. *J* = 7.5, *J* = 7.4, *J* = 1.6, H Ar); 7.27–7.36 (6H, м, H Ar); 7.75 (2H, с, тиофен); 8.61 (2H, д. *J* = 14.1, 2 =CH); 8.71 (2H, с, 2H–C=N); 11.69 (2H, уш. д. *J* = 14.1, 2NH). Найдено, %: C 61.65; H 5.38; N 8.29; S 5.11. C₃₄H₃₆N₄O₈S. Вычислено, %: C 61.80; H 5.49; N 8.48; S 4.85.

Тетраэтил-2,2'-[2,6-пиридинилбис(аминометилиден-2-иминофенилен)]дималонат (3b). Смесь 1.95 г (7 ммоль) эфира **1**, 0.41 г (3 ммоль) 2,6-пиридиндикарбоксальдегида (**2b**) в 40 мл абсолютного этанола кипятят в течение 4 ч. Выпавший осадок отфильтровывают и перекристаллизовывают из ацетонитрила. Получают 1.63 г (83%) продукта **3b** в виде порошка ярко-жёлтого цвета, т. пл. 199–200 °C. ИК спектр, v, см⁻¹: 3186, 3079 (N–H), 2980 (C–H), 1712, 1678 (С=O), 1641 (C=N), 1605, 1588 (C=C, N–H). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.35, 1.41 (12H, два т, *J* = 7.1, 4CH₂C<u>H₃</u>); 4.27, 4.39 (8H, два к, *J* = 7.1, 4C<u>H₂</u>CH₃); 7.17 (2H, д. д. д, *J* = 7.3, *J* = 7.2, *J* = 2.0, H Ar); 7.34–7.40 (4H, м, H Ar); 7.46 (2H, д. д, *J* = 8.4, *J* = 0.7, H Ar); 8.05 (1H, т, *J* = 7.8, H Py); 8.65 (2H, д, *J* = 14.1, 2=CH); 8.76 (2H, д, *J* = 7.8, H Py); 8.86 (2H, с, 2HCN); 12.11 (2H, д, *J* = 14.1, 2NH). Найдено, %: C 63.95; H 5.65; N 10.38. C₃₅H₃₇N₅O₈. Вычислено, %: C 64.11; H 5.69; N 10.68.

Рентгеноструктурный анализ. Монокристаллы За получены медленным испарением из раствора ацетонитрил–хлороформ, 3:1. Исследование кристаллической структуры было проведено на дифрактометре Xcalibur 3 (ω /2 θ -сканирование, Мо $K\alpha$ излучение, графитовый монохроматор, CCD-детектор). Структура решена прямыми методами и последующими фурье-синтезами по программе SHELXS-97 и уточнена МНК в анизотропном полноматричном приближении для всех неводородных атомов по программе SHELXL-97 [11]. Координаты атомов водорода определены помещением их в рассчитанные позиции и уточнением по схеме "наездника".

Полный набор кристаллографических данных депонирован в Кембриджском банке структурных данных (депонент CCDC 800075) и доступен по адресу www.ccdc.cam.ac.uk/conts/retrieving.html

Работа выполнена при финансовой поддержке РФФИ (грант 10-03-96017) и программ Президиума РАН (09-П-3-1013 и 09-Т-3-1024).

СПИСОК ЛИТЕРАТУРЫ

- 1. P. A. Vigato, S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004).
- C. Bazzicalupi, A. Bencini, A. Bianchi, A. Danesi, E. Faggi, C. Giorgi, S. Santarelli, B. Valtancoli, *Coord. Chem. Rev.*, 252, 1052 (2008).
- 3. E. C. Constable, Coord. Chem. Rev., 252, 842 (2008).
- 4. N. A. Bailey, M. M. Eddy, D. E. Fenton, S. Moss, A. Mukhopadhyay, G. Jones, J. Chem. Soc., Dalton Trans., 2281 (1984).
- 5. C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, *Angew. Chem.*, *Int. Ed.*, **50**, 2054 (2011).
- 6. E.-G. Jäger, D. Seidel, W. Z. Schade, Z. Chem., 23, 31 (1983).
- 7. Ю. С. Кудякова, М. В. Горяева, Я. В. Бургарт, П. А. Слепухин, В. И. Салоутин, Изв. АН, Сер. хим., 1544 (2010).
- 8. C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc., 112, 5525 (1990).
- C. Chipot, R. Jaffe, B. Maigret, D. A. Pearlman, P. A. Kollman, J. Am. Chem. Soc., 118, 11217 (1996).
- 10. A. Ilangovan, R. G. Kumar, Chem. Eur. J., 16, 2938 (2010).
- 11.G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).

Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской/Академическая, 22/20, Екатеринбург 620041, Россия e-mail: kud@ios.uran.ru Поступило 21.03.2011