К. В. Федотов^{*}, Т. П. Шумейко, Н. Н. Романов, А. И. Толмачев, А. Я. Ильченко

ЦИКЛИЗАЦИЯ ЗАМЕЩЁННЫХ (2-ПИРИДИЛТИО)ФЕНИЛУКСУСНЫХ КИСЛОТ И ЦВЕТНОСТЬ МЕЗОИОННЫХ ТИАЗОЛО[3,2-*а*]ПИРИДИНИЙ-3-ОЛАТОВ

Изучена циклизация замещённых (2-пиридилтио)фенилуксусных кислот. Уста-новлено, что реакция проходит по двум реакционным центрам с образованием замещённых 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновых кислот и замещённых мезоионных тиазоло[3,2-*a*]пиридиний-3-олатов. На направление циклизации влияют кислотность среды и характер заместителей в ядре пиридина. Экспериментально и теоретически (методом Паризера–Парра–Попла) исследованы спектральные свойства синтезированных мезоионных соединений.

Ключевые слова: 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновая кислота, мезоионные соединения, (2-пиридилтио)фенилуксусные кислоты, тиазоло[3,2-*a*]пиридиний-3-олаты, спектры поглощения.

Ранее [1] изучена циклизация замещённых (2-пиридилтио)фенилуксусных кислот **1а**-**c** в мезоионные 2-фенилтиазоло[3,2-*a*]пиридиний-3-олаты **2а**-**c** и исследованы их спектральные особенности [2]. Интерес к соединениям этого типа обусловлен не только тем, что в ряду конденсированных тиазолопиридинов обнаружены физиологически активные вещества [3], но и тем, что мезоионные соединения имеют весьма интенсивное поглощение в видимой области спектра [2].

Мы продолжили изучение закономерностей образования мезоионных тиазоло[3,2-*a*]пиридиний-3-олатов и их свойств на примере 3-циано- и 3-карбоксизамещённых (2-пиридилтио)фенилуксусных кислот **3** и **4**.

Известно, что 2-алкилтио-3-цианопиридины 5 легко циклизуются с образованием производных 3-аминотиено[2,3-*b*]пиридинов 6 [3], а этиловый эфир 3-оксо-2-[(3-цианопиридин-2-ил)тио]бутановой кислоты 7 – с образо-ванием имино-2,3-дигидротиено[2,3-*b*]пиридинов 8 [4].

Поэтому в нашем случае можно было ожидать образования как мезоионных тиазоло[3,2-*a*]пиридиний-3-олатов, так и производных тиено[2,3-*b*]пиридина. Действительно оказалось, что при циклизации в уксусном ангидриде замещённых (3-циано-2-пиридилтио)фенилуксусных кислот **3** наблюдается образование и мезоионных соединений **9**, и 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновых кислот **10**. Показано, что направление реакции зависит как от кислотности среды, так и от природы заместителей в гетероцикле.

3, 9, 10 а $R = R^1 = H$, b R = Me, $R^1 = H$, c $R = R^1 = Me$, d R = Ph, $R^1 = H$, f $R = R^1 = Ph$; 3, 9 е R = 4-MeOC₆H₄, $R^1 = H$, g R = 2-фурил, $R^1 = CF_3$

Так, в присутствии пиридина реакция приводит к образованию окрашенных мезоионных соединений 9, в кислой же среде образуются бесцветные замещённые 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновые кислоты 10. Имины 10 легко превращаются в замещённые 3аминотиенопиридины 6. Отметим, что наши попытки получения 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновой кислоты **10е** приводили только к мезоионному соединению **9е**. Также не увенчались успехом попытки выделения соединений **10g** и **9d**,**f**,**g** в индивидуальном виде.

Производные **10b**, с не удалось выделить в чистом виде, поскольку они в условиях реакции декарбоксилируются. Это было доказано встречным синтезом полученного таким путём соединения **6с** исходя из 2-меркапто-4,6-диметил-3-цианопиридина (**11**) и бромистого бензила.

Так же как (3-циано-2-пиридилтио)фенилуксусная кислота **3а** 3-карбоксипроизводное **4** легко превращается в окрашенное соединение **12**.

В спектрах ЯМР ¹Н мезоионных соединений **9a** и **12** наблюдается характерный слабопольный сигнал атома H-5, находящегося под дезэкранирующим влиянием близлежащего четвертичного атома азота и магнитно-анизотропной связи С–О, в то время как для 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновой кислоты **10f** сигнал данного атома находится в значительно более сильном поле.

Направление реакции циклизации кислоты **4** также подтверждено данными спектров ЯМР ¹Н. Так, сигнал алифатической метиновой группы (5.48) исходной кислоты **4** в продукте реакции отсутствует, и появляется характерный слабопольный дублет (9.13 м. д., H-5) (соединение **12**).

Мезоионные соединения **9а–g** и **12** поглощают свет в видимой части спектра и их электронные спектры в ацетонитриле характеризуются наличием широких полос с максимумами поглощения вплоть до 657 нм (см. табл. 1). Так, введение в положение 8 исходного тиазоло[3,2-*a*]пиридиний-3-олата **2** электроноакцепторных нитрильной (соединение **9а**) или карбоксильной (соединение **12**) групп приводит к батохромному сдвигу длинноволновых полос поглощения (табл. 1). Для соединения **9а** этот сдвиг составляет 46 нм, в то время как для его аналога **12**, содержащего карбоксильную группу вместо нитрильной, только 7 нм. Более слабый эффект от введения карбоксильной группы в положение 8 может быть связан с меньшей её электроноакцепторностью (ср. константы Гаммета σ_m : 0.56 для группы CN и 0.37 для группы COOH [5]).

Заместители в положениях 5 и 7 также существенно влияют на положение полос поглощения мезоионных соединений 9. Так, наличие метильной группы в положении 5 (соединение 9b) приводит к батохромному сдвигу длинноволновой полосы поглощения на 14 нм; в то же время введение второй метильной группы в положение 7 (соединение 9с) приводит уже к гипсохромному сдвигу на 11 нм по сравнению с реперным соединением 9a. Фенильные заместители в положениях 5 и 7 соединения 9f оказывают большее влияние на его спектральные свойства, чем алкильные заместители (соединение 9d). Длинноволновая полоса поглощения соединения 9d, содержащего фенильный заместитель в положении 5, сдвинута относительно соответствующей полосы соединения 9а на 43 нм в красную область спектра, а введение ещё одной фенильной группы в положение 7 (соединение 9f) увеличивает этот сдвиг до 69 нм. Очевидно, что в данном случае значительное влияние фенильных заместителей связано с их положительным мезомерным эффектом, который усиливается в возбужденном состоянии благодаря уменьшению торсионного угла между основным мезоионным хромофором и π-системами фенильных групп.

Среди исследованных соединений максимальное углубление окраски по сравнению с 2-фенилтиазоло[3,2-а]пиридиний-3-олатом (на 150 нм) наблюдается при введении 2-фурильного и трифторметильного заместителей в положения 5 и 7 соответственно (соединение 9g). В положении 5 мезоионных соединений 9а-д на окраску влияет преимущественно пространственный фактор, который в случае 2-фурильного заместителя подобно метильному [2] должен вызывать батохромный эффект. Но для положения 7 более важным является то, что при переходе молекулы в возбужденное состояние S_1 на атоме C(7) увеличивается плотность электронов (см. табл. 3). Электроноакцепторные заместители, например группа CF₃, в этом случае должны оказывать также батохромное влияние. С этим согласуется сильное углубление окраски соединения 9g, хотя оно и не было выделено в аналитически чистом состоянии. Поэтому мы полагаем, что в данном случае такое "качественное" сопоставление данных электронных спектров в видимой области вполне правомерно. Следовательно в случае мезоионных соединений 9 батохромный сдвиг их длинноволновых полос поглощения может быть достигнут введением электронодонорных заместителей в положение 5 и электроноакцепторных в положение 7.

Ранее [6] было показано, что мезоионные тиазоло[3,2-*а*]пиридиний-3-олаты способны реагировать с полупродуктами, применяющимися для синтеза цианиновых красителей, по метильным группам в положениях 5, 7 и метиновой группе в положении 2. Нами было найдено, что и 5-метил-2-фенил-8-цианотиазоло[3,2-*a*]пиридиний-3-олат (9b) в смеси уксусного ангидрида и пиридина реагирует с метилсульфатом 3-метил-2-(метилтио)бензотиазолия с образованием монометинцианина 13.

Если в этих же условиях в реакцию с метилсульфатом 3-метил-2-(метилтио)бензотиазолия ввести (6-метил-3-циано-2-пиридилтио)уксусную кислоту (14), образующийся *in situ* [6] 5-метил-8-цианотиазоло[3,2-*a*]-пиридиний-3-олат (15) реагирует с 2 экв. соли, давая бисзамещенный краситель 16 с монометинцианиновым и нульметинмероцианиновым хромофорами.

Как видно из приведенных на рисунке спектров поглощения растворов красителей **13** и **16** в ацетонитриле, их характерной особенностью является наличие в видимой области спектра нескольких полос поглощения.

Полуэмперическим квантово-химическим методом Паризера–Парра– Попла [2, 7] изучена *π*-электронная структура и рассчитаны теоретические электронные спектры поглощения соединений **2а**, **9а**, **12** и красителей **13**, **16**,

Спектры поглощения растворов красителей 13 (--) и 16 (---) в ацетонитриле

содержащих в своей структуре фрагмент тиазоло[3,2-*а*]пиридиний-3-олата. Расчёты производили с исходными параметрами, применявшимися ранее для красителей, производных пиридина, тиазола и бензотиазола [8] с учётом взаимодействия четырёх однократно возбужденных конфигураций (КВ 2×2). Модели молекул, имели стандартные длины связей (1.40 Å для связей С–С, С–N, С–О и 1.80 Å для связей С–S) и валентные углы в циклах и цепях [8]. В результате расчётов получены максимумы поглощения $\lambda_{\text{теор}}$ и силы осцилляторов *f* (табл. 2).

Как видно из сравнения данных табл. 2 с данными табл. 1, рассчитанные значения достаточно хорошо согласуются с экспериментальными λ_{max} . Существенное отличие рассчитанных значений λ_{reop} красителя **16** от экспериментальных λ_{max} , по-видимому, обусловлено дополнительным батохромным сдвигом его длинноволновой полосы поглощения вследствие пространственных затруднений, вызывающих поворот бензотиазольного остатка вокруг связи высокой кратности [8]. Введение нитрильной (соеди-

Таблица 1

Характеристики электронных	спектров	соединений	2a,	9a-g,	12,	13,	16
	в МеСМ						

Соеди- нение	λ _{max} , нм (ε • 10 ⁻³ , л/(моль • см))*
2a	461 (15.7); 288 (10.7); 235 (15.8)
9a	507 (9.25); 446 (8.10); 294 (11.9)
9b	521 (8.65); 288 (16.3); 261 (18.9)
9c	496 (10.1); 300 (14.4); 254 (12.2)
9d	550 (-); 462 (-); 331 (-); 270 (-)
9e	532 (5.30); 451 (3.40); 349 (7.70); 304 (12.8)
9f	576 (-); 465 (-); 272 (-)
9g	657 (-); 480 (-); 373 (-); 306 (-); 254 (-)
12	467.5 (11.2); 296 (14.5); 241.5 (15.7)
13	603 (27.9); 487 (8.3); 416 (38.4); 302 (15.2)
16	608 (66.1); 565 (44.5); 404 (29.6); 345 (13.9)

* Для соединений **9d,f,g** приведены качественные данные, так как количественные спектры поглощения получить не удалось.

Рассчитанные методом Паризера–Пара–Попла параметры электронных спектров соединений 2а, 9а, 12, 13, 16

Соеди- нение	$\lambda_{ ext{reop}}$, НМ (f)
2a	440.5 (0.104)
9a	508.1 (0.070), 368.4 (0.267)
12	471.9 (0.069), 372.6 (0.386), 308.6 (0.668)
13	606.1 (0.373), 472.0 (0.203), 439.7 (0.597)
16	573.2 (0.526), 470.5 (0.503), 424.0 (0.241)

нение 9а) или карбоксильной (соединение 12) групп в ядро пиридина соединения 2а, вследствие возникающего электронного взаимодействия этих групп с π -системой мезоионного фрагмента, вызывает появление новой полосы поглощения и батохромное смещение длинноволновых полос. Такой же эффект наблюдается и при замещении атома углерода на атом азота в том же положении 8 [9].

По изменениям π -зарядов при возбуждении можно сказать, что в соединении **9a** первое возбужденное состояние S_1 связано с переносом электронной плотности из тиазололатного ядра на пиридиновое ядро (преимущественно на атомы 2, 4, 5) с участием нитрильной группы (табл. 3). В красителе **13** первое возбуждённое состояние S_1 связано с переносом электронной плотности на пиридиновое ядро и нитрильную группу не только с тиазололатного ядра, но и с атома углерода метиновой цепи, т. е. существенное углубление окраски является результатом сильного взаимодействия двух хромофоров, один из которых локализован на полиметиновой цепи, а второй – на мезоионном гетероциклическом остатке.

Таблица З

	r	1	r	1	-	
No	S_0	S_1	S_2	S_0	S_1	S_2
атома		9a			13	
1	+0.422	+0.606	+0.356	+0.287	+0.330	+0.235
2	-0.120	-0.031	-0.062	-0.160	+0.005	-0.019
3	+0.011	+0.147	+0.154	+0.068	+0.151	+0.157
4	+0.866	+0.869	+0.796	+0.676	+0.624	+0.618
5	-0.075	-0.245	-0.044	+0.022	-0.130	+0.006
6	0.000	-0.013	-0.100	-0.119	-0.071	-0.191
7	-0.007	-0.091	-0.055	+0.031	-0.092	-0.016
8	-0.019	-0.151	-0.007	-0.099	-0.129	-0.084
9	-0.187	-0.191	-0.362	-0.044	-0.016	-0.271
10	-0.851	-0.643	-0.641	-0.809	-0.689	-0.660
11	+0.047	-0.046	+0.028	+0.087	+0.035	+0.043
12	-0.064	-0.259	-0.079	-0.158	-0.236	-0.198
13	_	-	_	-0.246	-0.172	-0.182

Распределение π -зарядов на атомах молекул соединений 9а и 13 в основном (S_0), первом (S_1) и втором (S_2) синглетных возбужденных состояниях

Таблица 4

Спектры ЯМР ¹ Н синтезированных соединений					
Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)*				
2a	7.75 (3H, м, <i>p</i> , <i>m</i> -H Ph); 7.86 (2H, м, <i>o</i> -H Ph); 8.11 (1H, т, <i>J</i> = 6.9, H-6); 8.39 (1H, т, <i>J</i> = 7.5, H-7); 8.57 (1H, д, <i>J</i> = 8.7, H-8); 9.29 (1H, д, <i>J</i> = 6.6, H-5)				
3a	5.66 (1H, c, CH); 7.38 (4H, м, <i>m</i> , <i>p</i> -H Ph, 5-H); 7.50 (2H, д, <i>J</i> = 7.5, <i>o</i> -H Ph); 8.25 (1H, д, <i>J</i> = 7.8, 4-H); 8.70 (1H, м, 6-H)				
3b	2.53 (3H, c, 6-CH ₃); 5.63 (1H, c, CH); 7.21 (1H, д, <i>J</i> = 8.0, 5-H); 7.40 (3H, м, <i>m</i> , <i>p</i> -H Ph); 7.32 (2H, д. д, <i>J</i> ₁ = 8.4, <i>J</i> ₂ = 1.5, <i>o</i> -H Ph); 8.10 (1H, д, <i>J</i> = 8.4, 4-H)				
3c	2.40 (3H, c, 4-CH ₃); 2.49 (3H, c, 6-CH ₃); 5.62 (1H,c, CH); 7.14 (1H, c, 5-H); 7.39 (3H, м, <i>m</i> , <i>p</i> -H Ph); 7.52 (2H, д, <i>J</i> = 7.0, <i>o</i> -H Ph)				
3d	6.31 (1H, c, CH); 7.90 (3H, м, H Ph, 5-H); 8.14 (5H, м, H Ph); 8.44 (1H, д, J = 7.8, 4-H); 8.80 (3H, м, H Ph)				
3e	3.85 (3H, c, OCH ₃); 5.74 (1H, c, CH); 7.07 (2H, д, <i>J</i> = 9.0, 5-H); 7.42 (3H, м, H Ph); 7.56 (2H, д. д, <i>J</i> = 6.3, <i>o</i> -H Ph); 7.85 (1H, д, <i>J</i> = 8.1, 4-H); 8.22 (3H, м, H Ph)				
3f	5.77 (1H, c, CH); 7.40 (3H, M, H Ph); 7.54 (3H, M, H Ph); 7.58 (5H, M, H Ph); 7.75 (2H, M, H Ph); 7.94 (1H, c, 5-H); 8.31 (2H, M, H Ph)				
3g	5.55 (1H, c, CH); 6.81 (1H, д. д, H Fur); 7.23 (3H, м, H Ph); 7.36 (1H, c, 5-H); 7.61 (2H, м, H Ph); 7.70 (1H, c, H Fur); 8.07 (1H c, H Fur)				
4	5.47 (1H, c, CH); 7.26 (1H, м, 5-H); 7.36 (3H, м, <i>m</i> , <i>p</i> -H Ph); 7.47 (2H, д, , <i>J</i> = 7.0, <i>o</i> -H Ph); 8.23 (1H, д, <i>J</i> = 7.5, 4-H); 8.59 (1H, м, 6-H)				
6с	2.51 (3H, c, 4-CH ₃); 2.78 (3H, c, 6-CH ₃); 4.87 (2H, c, <i>p</i> -H Ph, NH ₂); 7.01 (1H, c, H-5); 7.33 (1H, т, <i>J</i> = 7.5, <i>p</i> -H Ph); 7.50 (2H, т, <i>J</i> = 7.5, <i>m</i> -H Ph); 7.56 (2H, д, <i>J</i> = 7.5, <i>o</i> -H Ph)				
9a	7.24 (1H, т, <i>J</i> = 7.0, <i>p</i> -H Ph); 7.43 (2H, т, <i>J</i> = 7.5, <i>m</i> -H Ph); 7.50 (1H, т, <i>J</i> = 7.0, H-6); 7.91 (1H, д, <i>J</i> = 7.5, H-7); 8.05 (2H, д, <i>J</i> = 8.5, <i>o</i> -H Ph); 9.11 (1H, д, <i>J</i> = 7.5, H-5)				
9b	3.28 (3H, c, 5-CH ₃); 7.10 (1H, т, <i>J</i> = 7.5, <i>p</i> -H Ph); 7.34 (3H, м, H-6, <i>m</i> -H Ph); 7.92 (2H, д, <i>J</i> = 7.8, <i>o</i> -H Ph); 8.29 (1H, д, <i>J</i> = 7.5, H-7)				
9c	3.47 (3H, c, 7-CH ₃); 4.28 (3H, c, 5-CH ₃); 7.68 (1H, c, H-6); 8.05 (1H, т, <i>J</i> = 7.8, <i>p</i> - H Ph); 8.26 (2H, т, <i>J</i> = 7.8, <i>m</i> -H Ph); 8.80 (2H, д, <i>J</i> = 7.5, <i>o</i> -H Ph)				
9e	4.23 (3H, с, OCH ₃); 7.40 (2H д, <i>J</i> = 9.0, <i>o</i> -H 5-Ph); 7.72 (3H, м, <i>p</i> , <i>m</i> -H 2-Ph); 7.77 (2H, д, <i>J</i> = 8.5, <i>m</i> -H 5-Ph); 7.90 (2H, м, <i>o</i> -H 2-Ph); 8.00 (1H, д, <i>J</i> = 8.0, H-6); 8.88 (1H, д, <i>J</i> = 8.0, H-7)				
10f	7.38 (3H, т, <i>J</i> = 7.5, H Ph); 7.46 (2H, т, <i>J</i> = 7.2, H Ph); 7.64 (5H, м, H Ph, NH); 7.81 (3H, м, H Ph); 8.09 (3H, д, <i>J</i> = 7.2, H Ph); 8.10 (1H, с, H-5)				
12	7.11 (1H, T, $J = 7.2$, p -H Ph); 7.36 (2H, T, $J = 7.8$, m -H Ph); 7.75 (1H, T, $J = 6.9$, H-6); 8.02 (2H, π , $J = 8.1$, o -H Ph); 8.47 (1H, π , $J = 7.2$, H-7); 9.13 (1H, π , $J = 6.6$, H-5); 14 56 (1H, χ III c, 8-CO-H)				
13	3.77 (3H, c, NCH ₃); 7.01 (1H, π , $J = 8.4$, H-7); 7.12 (1H, π , $J = 7.8$, H Ph); 7.18 (1H, π , $J = 8.4$, H Ph); 7.21 (1H, π , $J = 8.4$, H Ph); 7.36 (2H, π , $J = 7.8$, H Ph); 7.43 (1H, π , $J = 8.1$, H Ph); 7.49 (1H, π , $J = 8.4$, H-6); 7.59 (1H, π , $J = 7.5$, H Ph); 7.91 (2H, π , $J = 7.2$, H Ph); 9.46 (1H, c, H-13)				
16	3.31 (3H, c, CH ₃ OSO ₃); 3.97 (3H, c, NCH ₃); 4.24 (3H, c, NCH ₃); 7.27 (1H, д, <i>J</i> = 9.0, H-6); 7.47 (2H, м, H Het); 7.62 (2H, м, H Het); 7.88 (2H, м, H Het); 8.00 (1H, д, <i>J</i> = 9.5, H-7); 8.10 (2H, м, H Het); 8.70 (1H, c, H-13)				

^{*} Растворители: CF₃CO₂D (соединения **2a**, **9e**), ДМСО-d₆ (соединения **3a–g**, **4**, **6c**, **9b**,**c**, **10f**, **12**, **16**) и CDCl₃ (соединения **9a**, **13**).

Таблица 5

Соеди-	Брутто-	<u>Найде</u> Рилион	<u>2HO, %</u>	Т. пл.,	Выход,	
нение	формула	л N	S	°C	%	
2a	C ₁₃ H ₉ NOS	<u>6.09</u> 6.16	<u>14.06</u> 14.11	170–171	27	
3 a	$C_{14}H_{10}N_2O_2S$	$\frac{10.33}{10.36}$	<u>11.89</u> 11.86	130–135	26	
3b	$C_{15}H_{12}N_2O_2S$	<u>9.83</u> 9.85	<u>11.32</u> 11.28	142–144	88	
3c	$C_{16}H_{14}N_2O_2S$	<u>9.37</u> 9.39	$\frac{10.78}{10.75}$	170–174	100	
3d	$C_{20}H_{14}N_2O_2S$	<u>8.12</u> 8.09	<u>9.21</u> 9.26	246–247	66	
3e	$C_{21}H_{16}N_2O_3S$	<u>7.39</u> 7.44	<u>8.55</u> 8.52	198–200	38	
3f	$C_{26}H_{18}N_2O_2S$	<u>6.58</u> 6.63	<u>7.63</u> 7.59	214–215	14	
3g	$C_{19}H_{11}F_3N_2O_3S$	<u>6.86</u> 6.93	<u>7.99</u> 7.93	123–125	27	
4	$\mathrm{C}_{14}\mathrm{H}_{11}\mathrm{NO}_4\mathrm{S}$	$\frac{4.80}{4.84}$	$\frac{11.01}{11.08}$	264–266	36	
6c	$C_{15}H_{14}N_2S$	$\frac{10.98}{11.01}$	$\frac{12.73}{12.61}$	52–54	59	
9a	$C_{14}H_8N_2OS$	<u>10.97</u> 11.10	<u>12.76</u> 12.71	255–256	75	
9b	$C_{15}H_{10}N_2OS$	$\frac{10.49}{10.52}$	<u>11.96</u> 12.04	211–212	76	
9c	$C_{16}H_{12}N_2OS$	<u>10.03</u> 9.99	$\frac{11.42}{11.44}$	198–200	85	
9e	$C_{21}H_{14}N_2O_2S$	<u>7.77</u> 7.82	<u>9.01</u> _8.95	216–218	15	
10f	$C_{26}H_{18}N_2O_2S$	<u>6.69</u> 6.63	<u>7.44</u> 7.59	202–206	78	
12	$C_{14}H_9NO_3S$	<u>5.22</u> 5.16	$\frac{11.76}{11.82}$	287–289	83	
13	$C_{23}H_{15}N_3OS_2$	<u>10.22</u> 10.16	<u>25.45</u> 25.51	254–255	62	
16	$C_{26}H_{20}N_4O_5S_4\\$	<u>9.33</u> 9.39	$\frac{21.50}{21.49}$	>300	21	

Характеристики синтезированных соединений

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н получены на спектрометре Bruker Avance DRX 500 (500 МГц), внутренний стандарт ТМС, электронные спектры – на спектрофотометре Shimadzu UV-3100. Исходные кислоты **1**, **3**, **4** и **14** синтезированы по методике, приведённой в работе [10].

4,6-Диметил-2-фенилтиено[2,3-b]пиридин-3-амин (6с). Растворяют 0.32 г (0.2 ммоль) 2-меркапто-4,5-диметилпиридина (**11**) в 10 мл ДМФА и добавляют 4 мл (1 ммоль) 10% водного раствора NaOH. Нагревают до 70 °С и прибавляют по каплям 0.34 г (0.2 ммоль) бензилбромида, смесь выдерживают при этой температуре 3 ч. Реакционную смесь охлаждают, выпавший продукт отфильтровывают, промывают дважды 10 мл метанола и сушат. Кристаллизуют из метанола. Выход 0.15 г (59%).

Замещённые мезоионные тиазоло[3,2-а]пиридиний-3-олаты 9а-g, 12. К раствору 0.1 ммоль соответствующей кислоты 3а-g, 4 в 2 мл пиридина приливают 4 мл уксусного ангидрида и нагревают 15 мин при 140 °C. Осадок отфильтровывают, промывают метанолом и эфиром. Перекристаллизовывают из уксусного ангидрида.

Замещённые 3-имино-2-фенил-2,3-дигидротиено[2,3-*b*]пиридин-2-карбоновые кислоты 10b–d,f. К раствору 0.1 ммоль соответствующей кислоты 3b–d,f в 2 мл уксусной кислоты приливают 4 мл уксусного ангидрида, нагревают 15 мин при 140 °C и оставляют на 6 ч в холодильнике, осадок отфильтровывают, промывают метанолом и эфиром. Перекристаллизовывают из этанола.

5-[(3-Метилбензотиазол-2(3Н)-илиден)метил]-2-фенил-8-цианотиазоло[3,2а]-пиридиний-3-олат (13). К раствору 0.25 г (0.1 ммоль) соединения **9b** в 5 мл уксусного ангидрида добавляют раствор 0.30 г (0.1 ммоль) метилсульфата 3-метил-2-метилтиобензотиазолия в 5 мл уксусного ангидрида и нагревают до 140 °C. Затем прибавляют 0.10 мл (0.1 ммоль) триэтиламина, снова нагревают 20 мин при 140 °C и оставляют на 6 ч в холодильнике. Выпавший краситель отфильтровывают, промывают этанолом и эфиром. Перекристаллизовывают из уксусного ангидрида.

Метилсульфат 2-(3-метилбензотиазол-2(3Н)-илиден)-5-[(3-метилбензотиазол-2(3Н)-илиден)метил]-3-оксо-8-циано-2,3-дигидро[1,3]тиазоло[3,2-*a*]пиридин-4-иния (16). К раствору 0.25 г (0.1 ммоль) кислоты 14 в 5 мл пиридина добавляют раствор 0.60 г (0.2 ммоль) метилсульфата 3-метил-2-метилтиобензотиазолия в 5 мл уксусного ангидрида и нагревают 20 мин при 140 °С, затем оставляют на 6 ч в холодильнике. Выпавший краситель отфильтровывают, промывают этанолом и эфиром. Перекристаллизовывают из уксусного ангидрида.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. Т. Горб, Н. Н. Романов, А. И. Толмачев, *ХГС*, 1343 (1979). [*Chem. Heterocycl. Comp.*, **15**, 1081 (1979)].
- 2. Г. Г. Дядюша, Н. Н. Романов, А. Д. Качковский, А. И. Толмачев, *XГС*, 1618 (1980). [*Chem. Heterocycl. Comp.*, **16**, 1221 (1980)].
- 3. В. П. Литвинов, В. В. Доценко, С. Г. Кривоколыско, *Химия тиенопиридинов и родственных систем*, Наука, Москва, 2006, 407 с.
- 4. F. A. Attaby, L. I. Ibrahim, S. M. Eldin, A. K. K. El-Louh, *Phosphorus, Sulfur, Silicon, Relat. Elem.*, **73**, 127 (1992).
- 5. C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 91, 165 (1991).
- 6. Л. Т. Горб, Е. Д. Сыч, А. И. Толмачев, И. С. Шпилева, *ХГС*, 1066 (1979). [*Chem. Heterocycl. Comp.*, **15**, 872 (1979)].
- 7. А. Я. Ильченко, *Журн. орг. фарм. хим.*, **2**, вып. 1(5), 45 (2004).
- 8. А. И. Киприанов, Г. Г. Дядюша, Ф. А. Михайленко, Успехи химии, 35, 823 (1966).
- А. Д. Качковский, К. В. Федотов, Н. Н. Романов, А. И. Толмачев, XTC, 769 (1984). [Chem. Heterocycl. Comp., 20, 622 (1984)].
- 10. E. Fieldstad, K. Undheim, Acta Chem. Scand., 27, 1763 (1973).

Институт органической химии, НАН Украины, ул. Мурманская, 5, Киев 02094, Украина e-mail: fedotov1@km.ru Поступило 05.04.2010