Л. М. Потиха*, А. Р. Турелик, В. А. Ковтуненко

СИНТЕЗ ПРОИЗВОДНЫХ АЗЕПИНО[1,2-*a*]БЕНЗИМИДАЗОЛА И ИМИДАЗО[1,2-*a*]АЗЕПИНА

Сплавление производных 4-бром-1,3-дифенил-2-бутен-1-она (γ -бромдипнона) с 1,2-диметил-1Н-бензимидазолом и дальнейшая обработка продукта реакции основанием (морфолин) приводят к бромидам 7,9-диарил-5-метил-5,10-дигидро-азепино[1,2-*a*]бензимидазол-11-ия. В случае реакции γ -бромдипнонов с 1-алкил-2-метил-1Н-имидазолами в бензоле при 25 °C образуются четвертичные соли азолия, которые при нагревании их растворов в спиртах в присутствии K₂CO₃ циклизуются в бромиды 1-R-6,8-диарил-1,5-дигидроимидазо[1,2-*a*]азепин-4-ия или 1-R-6,8-диарил-1Н-имидазо[1,2-*a*]азепины в зависимости от природы заместителей в бензольных циклах и заместителя при N(1) в имидазоле.

Ключевые слова: азепино[1,2-*а*]бензимидазол, *ү*-бромдипнон, имидазо[1,2-*а*]азепин, циклизация.

Среди производных конденсированных систем азепино[1,2-a]бензимидазола и имидазо[1,2-a]азепина уже найдены высокоактивные соединения, которые предложены как антагонисты холиновых, гистаминных и дофаминовых рецепторов [1-4], для регулировки процессов транспорта ионов натрия и кальция через клеточную мембрану [3, 5], а также противораковые агенты [2]. Однако структура изученных соединений этого ряда варьировалась преимущественно в азольной части бицикла, а влияние заместителей и степени ненасыщености азепиновой части на их свойства практически не изучалось.

Продолжая наши исследования в области гетероциклизаций на основе 4-бром-1,3-дифенил-2-бутен-1-она (γ-бромдипнона, **1a**, схема 1) [6, 7], мы предлагаем способ синтеза 7,9-диарилазепино[1,2-*a*]бензимидазолов (**2**) и 6,8-диарилимидазо[1,2-*a*]азепинов **3**, **4**. С целью оценки биологического потенциала соединений этого ряда был рассчитан спектр их биологической активности по программе PASS (Prediction of Activity Spectra for Substances) [8–10]. Среди широкого спектра предсказанных свойств наиболее общими являются свойства лигандов (субстратов) энзима СУР2D16 (16 полипептида второй семьи семейства D цитохрома P450) и антагонистов подтипа A рецептора γ-аминомасляной кислоты.

Более высокая активность (Pa > 80%) прогнозируется для соединений с гидрированным азепиновым фрагментом. Для них следует отметить высокую вероятность проявления свойств агонистов допаминовых рецепторов и антидепрессантов.

Схема 1

1,2 a Ar = Ph, **b** Ar = 4-ClC₆H₄, **c** Ar = 4-BrC₆H₄, **d** Ar = 4-MeOC₆H₄; **3 a**-**d** Ar = Ph, **a** R = Me, **b** R = Et₂N(CH₂)₂, **c** R = Bn, **d** R = 4-BrC₆H₄CH₂; **e**-**g** R = Me, **e** Ar = 4-ClC₆H₄, **f** Ar = 4-BrC₆H₄, **g** Ar = 4-MeOC₆H₄; **h** Ar = 4-MeOC₆H₄, R = Bn; **4 a**-**c** Ar = 4-ClC₆H₄, **a** R = Bn, **b** R = 4-BrC₆H₄CH₂, **c** R = Me; **d** Ar = Ph, R = Bn; **5 a**-**d** Ar = Ph, **a** R = Me, **b** R = Et₂N(CH₂)₂, **c** R = Bn, **d** R = 4-BrC₆H₄CH₂; **e**-**g** Ar = 4-ClC₆H₄, **e** R = Me, **f** R = Bn, **g** R = 4-BrC₆H₄CH₂, **h**, **i** Ar = 4-MeOC₆H₄, **h** R = Me, **i** R = Bn; **6** Ar = 4-BrC₆H₄

В основе предлагаемого способа синтеза арилпроизводных диазоло-[1,2-*a*]азепинов лежит достройка азепинового цикла к азольному. И, хотя, это наиболее интенсивно развиваемый в последние годы подход к построению этой системы [11–15], циклизации типа [4+3] применялись лишь в нескольких случаях [15–17]. Ранее нами было найдено, что сплавление γ -бромдипнона **1a** с 1,2-диметил-1Н-бензимидазолом при 110 °С и дальнейшая обработка продукта реакции основанием (морфолин) приводит к бромиду 5-метил-7,9-дифенил-5,10-дигидроазепино[1,2-*a*]-бензимидазол-11-ия (**2a**) [6]. В тех же условиях производные γ -бромдипнона **1b–d** также образуют бромиды азепино[1,2-*a*]бензимидазолия **2b–d** (табл. 1). Отличия в поведении наблюдаются только для 4-метоксизамещенного γ -бромдипнона **1d**, который превращается в смесь (1:1) соли **2d** и продукта внутримолекулярной циклизации – 2,4-бис(4-метоксифенил)фурана. Повышенная склонность к образованию последнего в присутствии оснований является характерным свойством γ -бромдипнона **1d** [18]. Полученную смесь удалось разделить методом колоночной хроматографии.

Попытки выделить промежуточный продукт в этой реакции (четвертичную соль бензимидазолия) оказались безуспешными. Выдерживание смеси исходных реагентов при комнатной температуре или нагревании в бензоле или ацетонитриле ведёт к преимущественному образованию гидробромида 1.2-диметил-1Н-бензимидазола. Но в случае реакции у-бромдипнонов 1a-d с 1-алкил-2-метил-1Н-имидазолами в бензоле при 25 °C соответствующие четвертичные соли были получены и в некоторых случаях выделены в индивидуальном состоянии. Так, при взаимодействии соединения 1а с 1,2-диметил- или 1-арилметил-2-метил-1Н-имидазолами получены бромиды 1-R-3-[(Z)-2,4-диарил-4-оксо-2-бутенил]-2-метил-1Нимидазол-3-ия **5a.c.d**. Их строение установлено на основании данных ЯМР ¹Н и ИК спектров, которые согласуются с полученными ранее данными для бромидов 1-алкил-3-[(Z)-2,4-диарил-4-оксо-2-бутенил]-1Hимидазол-3-ия [7] (табл. 2 и 3). В остальных случаях реакции у-бромдипнонов **1a,b,d** с производными 2-метилимидазола приводят к смесям с содержанием в них соли 5b.e-i не менее 70% (согласно данным спектров ЯМР ¹Н). Взаимодействие γ -бромдипнона 1c с 1,2-диметил-1Н-имидазолом также ведёт к образованию четвертичной соли имидазолия, но строение её оказалось иным и соответствует бромиду 3-[2,4-бис(4-бромфенил)-4-оксо-1-бутенил]-1,2-диметил-1Н-имидазол-3-ия (6). На отличия в структуре остатка дипнона в продукте алкилирования 6 указывают данные его спектра ЯМР ¹Н. Так, сигнал протонов метиленовой группы наблюдается в более сильном поле при 4.42 м. д. в отличие от солей типа 5, у которых $\delta_{CH_2} = 5.85 - 5.87$ м. д. Дублет *орто*-протонов бензольного цикла при карбонильной группе также смещен в сильное поле в область 7.87 м. д., тогда как для всех остальных солей имидазолия [7] и 2-метилимидазолия 5а-і он находится при 8.10–8.13 м. д. Кроме того, полоса валентных колебаний карбонильной группы в соединении 6 смещена в высокочастотную область в среднем на 25 см⁻¹ в сравнении с солями типа 5. Совокупность этих фактов можно объяснить образованием таутомерной формы, у которой в α-положении к карбонильной группе находится метиленовая. А причина её образования - увеличение подвижности протонов при атоме С(1') в структуре типа 5, которое является следствием увеличения акцепторных свойств пара-заместителя в бензольных циклах. Вывод о строении соли 6 был подтвержден результатами эксперимента NOE (рисунок а), которые также позволяют отнести её конфигурацию к Е-изомеру.

При нагревании солей **5а–і** и **6** в этаноле или метаноле в присутствии поташа происходит внутримолекулярная конденсация по 2-метильной группе с образованием производных системы имидазо[1,2-*a*]азепина. При этом оказалось, что строение продукта циклизации определяется природой заместителей в бензольных циклах и при атоме N(1). Большинство солей 1-алкилимидазолия **5а-е,h,i** и **6** превращаются в бромиды 6,8-диарилимидазо[1,2-*a*]азепин-4-ия **3а–h**, а при Ar = 4-ClC₆H₄ и R = ArCH₂ (соли **5f**,**g**) реакция приводит к 1-R-6,8-бис(4-хлорфенил)-1Н-имидазо[1,2-*a*]азепинам **4а,b**.

Строение продуктов реакций 3 и 4 установлено на основании данных элементного анализа и спектральных исследований. В спектрах ЯМР ¹Н солей **За-h** (табл. 2), в тех же областях, что и в спектрах бензимилазопроизводных 2а-d, присутствуют двухпротонный синглет метиленовой группы и два ароматических синглета, отнесенные к сигналам азепинового цикла. Для точного отнесения сигналов и определения положения метиленовой группы были выполнены эксперименты NOE для соединения Зе (рисунок b). Родство структур солей 2a-d и 3a-h подтверждают также данные их ИК и УФ спектров, в которых обнаружен ряд аналогий. Так, УФ спектры солей типа 2 и 3 характеризуются наличием двух максимумов поглощения в диапазонах 260-274 и 325-332 нм с интенсивностью lg є 4.00-4.88. Соединения 4а, в отличаются от солей типа 2 и 3 по химическим и спектральным свойствам. Они хуже растворимы в полярных растворителях (ДМСО, ДМФА) и более глубоко окрашены: в УФ спектрах соединений 4a, b наблюдаются батохромный сдвиг и гипохромный эффект для длинноволнового максимума поглошения (λ 385 и 389 нм соответственно). В их ИК спектрах обращает на себя внимание высокачастотный сдвиг полосы валентных колебаний v_{C=C} в область (1662 и 1671 см⁻¹), более характерную для неароматических кратных связей. Но наиболее заметные различия в спектральном поведении обнаруживаются при сравнении спектров ЯМР 1 Н (в ДМСО-d₆) солей 2, 3 и соединений 4а, b. В первую очередь, в спектрах соединений 4а, b отсутствует сигнал метиленовой группы азепинового фрагмента, а в более сильном поле присутствуют однопротонные синглеты метиновых протонов (в области 6.4 и 5.7 м. д.).

Данные спектра NOESY для соединения **4b** позволили сделать точные отнесения сигналов (рисунок *c*) и подтвердить вывод о структуре продуктов циклизации. Спектры ЯМР ¹Н соединений **4a**,**b**, записанные в CF₃CO₂D (**4a**) или CD₃CO₂D (**4b**), отличаются от спектров в ДМСО-d₆, что обусловлено эффектом растворителя. Так, все сигналы протонов смещены в слабое поле за исключением одного – синглета H-5, наблюдаемого для **4a** в CF₃CO₂D и **4b** в CD₃CO₂D при 6.30, тогда как в ДМСО-d₆ он присутствует в области 7.33 м. д. Вероятно, это является следствием локализации трифторацетат- и ацетат-аниона в комплексах **4a** ·CF₃CO₂D и **4b** ·CD₃CO₂D вблизи атома C(5).

Структурно-значимые корреляции NOE для соединений **6** в ДМСО- $d_6(a)$, **3е** в ДМСО- $d_6(b)$ и **4b** в CD₃CO₂D (*c*)

Наблюдаемые результаты циклизаций можно объяснить следующим образом. С увеличением акцепторных свойств заместителя в бензольных циклах γ -бромдипнона и заместителя при атоме N(1) в диазоле увеличивается вероятность образования четвертичной соли типа 6 (схема 2), которую можно получить уже в присутствии слабого основания – исходного диазола. Логично предположить, что последние циклизуются в производные структур типа 7 или 8. Очевидно, соединения с таким расположением кратных связей в азепиновом фрагменте термодинамически неустойчивы и легко превращаются в производные типа 2 и 3,

Схема 2

Соеди-	Брутто-формула		<u>Найде</u> Вычисл	<u>ено, %</u> 1ено, %		Т. пл., °С*	Выход,
nenne		С	Н	Br	Ν		70
2b**	$C_{25}H_{19}BrCl_2N_2$	<u>60.08</u> 60.27	<u>3.78</u> 3.84	<u>16.07</u> 16.04	<u>5.65</u> 5.62	203–205	40
2c	$C_{25}H_{19}Br_3N_2$	<u>51.10</u> 51.14	$\frac{3.30}{3.26}$	$\frac{40.86}{40.83}$	<u>4.79</u> 4.77	202–203	42
2d	$\mathrm{C}_{27}\mathrm{H}_{25}\mathrm{BrN}_{2}\mathrm{O}_{2}$	<u>66.24</u> 66.26	<u>5.20</u> 5.15	<u>16.30</u> 16.33	<u>5.75</u> 5.72	206–208	25
3 a	$C_{21}H_{19}BrN_2$	<u>66.45</u> 66.50	$\frac{5.07}{5.05}$	$\frac{\underline{21.10}}{\underline{21.07}}$	<u>7.41</u> 7.39	291–292 (разл.)	90
3b	$C_{26}H_{30}BrN_3$	<u>67.20</u> 67.24	<u>6.55</u> 6.51	$\frac{17.18}{17.20}$	<u>9.06</u> 9.05	224—225 (разл.)	76
3c	$C_{27}H_{23}BrN_2$	<u>71.27</u> 71.21	<u>5.12</u> 5.09	<u>17.58</u> 17.55	<u>6.19</u> 6.15	194–195	83
3d	$C_{27}H_{22}Br_2N_2$	<u>60.65</u> 60.70	$\frac{4.18}{4.15}$	<u>29.87</u> 29.91	<u>5.26</u> 5.24	294—295 (разл.)	75
3e**	$C_{21}H_{17}BrCl_2N_2$	<u>56.32</u> 56.28	<u>3.80</u> 3.82	<u>17.80</u> 17.83	<u>6.26</u> 6.25	259–260 (разл.)	78
3f	$C_{21}H_{17}Br_3N_2$	<u>47.00</u> 46.96	<u>3.22</u> 3.19	<u>44.61</u> 44.63	<u>5.24</u> 5.22	214–215	72
3g	$C_{23}H_{23}BrN_2O_2$	<u>62.78</u> 62.88	<u>5.25</u> 5.28	<u>18.21</u> 18.19	<u>6.40</u> 6.38	284—285 (разл.)	86
3h	$C_{29}H_{27}BrN_2O_2$	<u>67.54</u> 67.58	<u>5.29</u> 5.28	<u>15.45</u> 15.50	<u>5.44</u> 5.43	280—281 (разл.)	81
4 a	$C_{27}H_{20}Cl_2N_2$	<u>73.18</u> 73.14	<u>4.50</u> 4.55	<u>15.95</u> 15.99	$\frac{6.30}{6.32}$	> 300 (разл.)	89
4b**	$C_{27}H_{19}BrCl_2N_2$	<u>62.12</u> 62.09	$\frac{3.70}{3.67}$	$\frac{15.28}{15.30}$	<u>5.39</u> 5.36	> 300 (разл.)	78
5a	$C_{21}H_{21}BrN_2O$	<u>63.41</u> 63.48	<u>5.39</u> 5.33	$\frac{20.08}{20.11}$	$\frac{7.07}{7.05}$	204–205	84
5c	C ₂₇ H ₂₅ BrN ₂ O	<u>68.53</u> 68.50	$\frac{5.30}{5.32}$	<u>16.90</u> 16.88	<u>5.96</u> 5.92	214–215	78
5d	$\mathrm{C}_{27}\mathrm{H}_{24}\mathrm{Br}_{2}\mathrm{N}_{2}\mathrm{O}$	<u>58.67</u> 58.72	$\frac{4.40}{4.38}$	$\frac{28.95}{28.94}$	$\frac{5.10}{5.07}$	196–197	80
6	$C_{21}H_{19}Br_3N_2O$	<u>45.48</u> 45.44	<u>3.41</u> 3.45	<u>43.22</u> 43.18	<u>5.09</u> 5.05	212–214	76

Физико-химические свойства синтезированных соединений

* Растворители: MeCN (соединения **2b**,**c**), 2-PrOH (соединения **2d**, **3a–h**, **5a,c,d**, **6**), AcOH (соединения **4a,b**).

** Данные анализа на Cl (найдено/вычислено, %) для соединений: **2b** – 14.22/14.23, **3e** – 15.84/15.82, **4b** – 13.54/13.58.

о чём свидетельствует результат превращения соли 6 в имидазо[1,2-a]азепин **3f**. Если акцепторные свойства заместителя R в структуре 7 или **8** сильнее (например – бензил по сравнению с метильной группой), то под действием основания (поташ) происходит отщепление молекулы HBr и образуются производные имидазо[1,2-a]азепина типа **4**, но возможен и альтернативный путь их образования из солей строения **2**, **3**. Однако длительное нагревание (3–6 ч) соединений **2a**, **3c**,**e** в этаноле или метаноле 906 в присутствии поташа не привело к заметным изменениям в их структуре. Оказалось, что такая реакция протекает в более жестких условиях – в присутствии КОН (согласно данным спектров ЯМР¹Н полученных смесей), но при этом сопровождается образованием большого количества побочных продуктов.

Так, при нагревании в течение 3 ч степень превращения соединений **3с**,е в **4с**,**d** составляет ~ 50%, а дальнейшее нагревание приводит к разложению продуктов реакции, что, согласно данным [19] наблюдалось и ранее для производных конденсированных азепинов. Таким образом, более вероятный путь превращения соединений **5f**,**g** в **4a**,**b**, по нашему мнению, включает стадии образования структур типа **6** и **7** или **8**.

Следует отметить, что в работе [19], посвященной изучению свойств солей 10Н-пиридо[1,2-*a*]азепиния, подобных по структуре солям имидазо-[1,2-*a*]азепиния 2 и 5, также наблюдалось образование депротонированной формы на азепиновом фрагменте типа 4 при действии оснований. Но при этом отмечалось, что эта реакция легко обратима в присутствии кислот.

Способность к протонированию по положению 6 системы азепино[2,1-*b*]бензимидазола в структуре типа **4** зарегистрирована спектральным методом (ЯМР ¹Н в CF₃CO₂D) на примере триметил-5-метил-6-фенилазепино[2,1-*b*]бензимидазол-8,9,10-трикарбоксилата [20]. В нашем случае, протонированные формы соединений **4a**,**b** оказались неустойчивыми, а данные их спектров ЯМР ¹Н в CF₃CO₂D или CD₃CO₂D не позволяют констатировать образование таких форм.

Таблица 2

Соеди- нение	v, cm ⁻¹
2b	3025, 1622 (C=N), 1575, 1480, 1407, 1091, 1010, 839, 820, 766
2c	3020, 1622 (C=N), 1575, 1480, 1404, 1071, 1004, 836, 817, 766
2d	3003, 2930, 2835, 1600, 1572, 1513, 1259 (C–O), 1180, 1024, 828, 750
3 a	3059, 1625 (C=N), 1583, 1443, 1245, 1225, 792, 775, 758, 699
3b	3031, 2969, 2790, 1627 (C=N), 1586, 1443, 1261, 1211, 764, 747, 694
3c	3092, 2964, 2835, 1602 (C=N), 1569, 1513, 1290, 1250, 1183, 1035, 825, 738, 710
3d	3059, 3031, 2964, 1661, 1634, 1592, 1578, 1491, 1443, 1413, 1256, 1074, 1015, 792, 766, 697
3e	3059, 1631 (C=N), 1586, 1491, 1094, 1007, 839, 825, 786, 512
3f	3036, 2964, 2723, 2627, 1662, 1631, 1583, 1410, 1373, 1007, 831, 820, 705
3g	3047, 3020, 1603 (C=N), 1580, 1513, 1290, 1245 (C-O), 1183 (C-O), 1021, 839, 811
3h	3064, 3031, 1631 (C=N), 1586, 1497, 1443, 1256 (C-O), 764, 755, 719, 697
4 a	3180, 1661, 1446, 1424, 1360, 1315, 845, 669
4b	3185, 1671, 1477, 1454, 1378, 885, 847, 708, 665
5a	3053, 1659 (C=O), 1620, 1220, 1161, 775, 702, 657
5c	3031, 2975, 1653 (C=O), 1614, 1449, 1220, 1172, 755, 719, 697, 666
5d	3126, 2980, 1656 (C=O), 1611, 1449, 1220, 1172, 1015, 752, 702, 691
6	3048, 1681 (C=O), 1583, 1485, 1396, 1214, 1071, 1010, 990, 822, 775

ИК спектры синтезированных соединений

ŝ
а
Ц
И
Б
6
а
F

соединений 2–6	
H ¹ JMR	
Спектр	

Соеди-	Химические сдвиги (ДМСО- d_6), δ , м. д. (J, Γ ц)	
нение	Протоны при С <i>-sp</i> ² *	Протоны при С- <i>sp</i> ³
2b	8.31 (11H, m, H-4); 8.02–7.94 (5H, m, H-1,2',6',2",6"); 7.90 (11H, c, H-10); 7.67 (2H, m, H-2,3); 7.57 (2H, _A , ³ J = 8.0, H-3",5"); 7.49 (2H, _A , ³ J = 8.0, H-3',5"); 7.23 (1H, c, H-8)	5.49 (2H, c, 2H-6); 4.24 (3H, c, NCH ₃)
2c	8.32 (1H, m, H-4); 8.03 (1H, m, H-1); 7.93 (4H, _A , ³ <i>J</i> = 8.0, H-2',6',2'',6''); 7.89 (1H, c, H-10); 7.71–7.62 (6H, m, H-2,3,3',5',3'',5''); 7.26 (1H, c, H-8)	5.51 (2H, c, 2H-6); 4.26 (3H, c, NCH ₃)
2d	8.24 (1H, m, H-4); 7.99 (1H, m, H-1); 7.89 (4H, m, H-2',6',2'',6''); 7.71 (1H, c, H-10); 7.64 (2H, m, H-2,3); 7.12 (1H, c, H-8); 7.06 (2H, $_{\rm H}$, 3J = 8.5, H-3',5''); 7.01 (2H, $_{\rm H}$, 3J = 8.5, H-3',5')	5.42 (2H, c, 2H-6); 4.21 (3H, c, NCH ₃); 3.89 (3H, c, 4"-OCH ₃); 3.85 (3H, c, 4"-OCH ₃)
3a	8.03 (1H, $_{\rm H}$, 3J = 2.0, H-3); 7.88 (1H, $_{\rm H}$, 3J = 2.0, H-2); 7.83 (2H, $_{\rm H}$, 3J = 8.0, H-2", 6"); 7.80 (2H, $_{\rm H}$, 3J = 8.0, H-2', 6); 7.5–7.43 (7H, w, H-9, H-3'-H-5', H-3"-H-5"); 7.11 (1H, c, H-7)	5.19 (2H, c, 2H-5); 3.98 (3H, c, NCH ₃)
3b	8.08 (1H, $_{\rm M}$, 3J = 2.0, H-3); 7.96 (1H, $_{\rm M}$, 3J = 2.0, H-2); 7.84 (2H, $_{\rm M}$, 3J = 8.0, H-2", 6'); 7.80 (2H, $_{\rm M}$, 3J = 8.0, H-2', 6); 7.63 (1H, c, H-9); 7.56–7.42 (6H, w, H-3'–H-5', H-3''–H-5''); 7.10 (1H, c, H-7)	5.21 (2H, c, C(5)H ₂); 4.47 (2H, T, $^{3}J=5.0$, 1-NCH ₂ CH ₂); 2.70 (2H, T, $^{3}J=5.0$, 1-NCH ₂ CH ₂); 2.39 (4H, x , $^{3}J=7.0$, N(CH ₂ CH ₃) ₂); 0.68 (6H, T, $^{3}J=7.0$, N(CH ₂ CH ₃) ₂);
3c	8.17 (1H, μ , ³ <i>J</i> = 1.5, H-3); 8.07 (1H, μ , ³ <i>J</i> = 1.5, H-2); 7.82 (2H, μ , ³ <i>J</i> = 7.5, H-2", 6"); 7.76 (2H, μ , ³ <i>J</i> = 7.5, H-2', 6"); 7.63 (1H, c , H-9); 7.52 (3H, m, H-3"-H-5"); 7.45 (3H, m, H-3"-H-5"); 7.41 (4H, m, H-2", 3", 5", 6"); 7.34 (1H, τ , ³ <i>J</i> = 8.0, H-4"); 7.04 (1H, c, H-7)	5.73 (2H, c, 1-NCH ₂); 5.23 (2H, c, 2H-5)
3d	8.19 (1H, $_{\rm H}$, 3J = 1.5, H-3); 8.08 (1H, $_{\rm H}$, 3J = 1.5, H-2); 7.84 (2H, $_{\rm H}$, 3J = 7.0, H-2",6"); 7.79 (2H, $_{\rm H}$, H-2',6'); 7.63 (3H, $_{\rm H}$, H-9,3",5"); 7.53 (3H, $_{\rm H}$, H-3"); 7.48 (3H, $_{\rm H}$, H-3")+5"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2",6"); 7.07 (1H, c, H-7) (3H, $_{\rm H}$, H-9,3",5"); 7.53 (3H, $_{\rm H}$, H-3"); 7.48 (3H, $_{\rm H}$, H-3"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2",6"); 7.07 (1H, c, H-7) (3H, $_{\rm H}$, H-9,3",5"); 7.53 (3H, $_{\rm H}$, H-3"); 7.48 (3H, $_{\rm H}$, H-3"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2",6"); 7.07 (1H, c, H-7) (3H, $_{\rm H}$, H-9,3"); 7.53 (3H, $_{\rm H}$, H-3"); 7.48 (3H, $_{\rm H}$, H-3"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2"); 7.07 (1H, c, H-7) (3H, $_{\rm H}$, H-9,3"); 7.53 (3H, $_{\rm H}$, H-3"); 7.48 (3H, $_{\rm H}$, H-3"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2"); 7.07 (1H, c, H-7) (3H, $_{\rm H}$, H-3"); 7.41 (2H, $_{\rm H}$, 3J = 8.0, H-2"); 7.01 (1H, c, H-7) (3H, $_{\rm H}$, H-3"); 7.41 (3H, _{\rm H}, 3J = 8.0); 7.41 (3H, $_{\rm H}$, 3J = 8.0); 7.41 (3H, $_{\rm H}$, 3J = 8.0); 7.41 (3H, _{\rm H}); 7.41 (3H, $_{\rm H}$, 3J = 8.0); 7.41 (3H, $_{\rm H}$, 3J = 8.0); 7.41 (3H, _{\rm H}); 7.41 (3H, $_{\rm H}$); 7.41 (3H, $_{\rm H}$); 7.41 (3H, _{\rm H}); 7.41 (3H, $_{\rm H}$); 7.41 (3H, $_{\rm H}$); 7.41 (3H, $_{\rm H}$); 7.41 (3H, _{\rm H}); 7.41 (3H, $_{\rm H}$); 7.41 (3H, _{\rm H}); 7.41 (3H, $_{\rm H}$); 7.41 (3H, _{\rm H}); 7.41 (3H	5.74 (2H, c, 1-NCH ₂); 5.25 (2H, c, 2H-5)
Зе	$8.04 (1H, \pi, {}^{3}J = 1.5, H-3); 7.90 (1H, \pi, {}^{3}J = 1.5, H-2); 7.87 (2H, \pi, {}^{3}J = 8.5, H-2', 6''); 7.84 (2H, \pi, {}^{3}J = 8.5, H-2', 6'); 7.60 (2H, \pi, {}^{3}J = 8.5, H-3', 5''); 7.57 (1H, c, H-9); 7.53 (2H, \pi, {}^{3}J = 8.5, H-3', 5'); 7.12 (1H, c, H-7)$	5.18 (2H, c, 2H-5); 3.98 (3H, c, NCH ₃)
3f	8.06 (1H, π , ³ <i>J</i> = 1.5, H-3); 7.91 (1H, π , ³ <i>J</i> = 1.5, H-2); 7.79 (2H, π , ³ <i>J</i> = 8.5, H-2',6'); 7.77 (2H, π , ³ <i>J</i> = 8.5, H-2',6'); 7.72 (2H, π , ³ <i>J</i> = 8.5, H-3'',5'); 7.58 (1H, c, H-9); 7.12 (1H, c, H-7)	5.18 (2H, c, 2H-5); 3.98 (3H, c, NCH ₃)

3g	7.96 (1H, μ , $^{3}J = 1.5$, H-3); 7.84 (1H, μ , $^{3}J = 1.5$, H-2); 7.79–7.75 (4H, w, H-2',6',2'',6''); 7.39 (1H, c, H-9); 7.06 (2H, μ , $^{3}J = 8.5$, H-3',5'); 7.02 (2H, μ , $^{3}J = 8.5$, H-3',5'); 6.99 (1H, c, H-7)	5.12 (2H, c, 2H-5); 3.95 (3H, c, NCH ₃); 3.82 (3H, c, 4 ⁺ OCH ₃); 3.80 (3H, c, 4 ⁺ OCH ₃);
3h	8.07 (1H, π , $^{3}J = 1.5$, H-3); 7.99 (1H, π , $^{3}J = 1.5$, H-2); 7.78 (2H, π , $^{3}J = 8.5$, H-2", 6"); 7.72 (2H, π , $^{3}J = 8.5$, H-2", 6"); 7.48 (1H, c, H-9); 7.39 (4H, m, H-2", 5"); 7.34 (1H, m, H-4"); 7.06 (2H, π , $^{3}J = 8.5$, H-3", 5"); 7.01 (2H, π , $^{3}J = 8.5$, H-3", 5"); 6.94 (1H, c, H-7)	5.68 (2H, c, 1-NCH ₃); 5.16 (2H, c, 2H-5); 3.82 (3H, c, 4"-OCH ₃); 3.80 (3H, c, 4"-OCH ₃)
4a	7.34 (1H, c, H-5); 7.32 (2H, _A , ³ <i>J</i> = 7.5, H-3",5"); 7.28–7.25 (5H, _M , H-3',5', H-3"–H-5"); 7.13 (2H, _A , ³ <i>J</i> = 8.0, H-2",6"); 7.09 (3H, _M , H-3,2",6"); 7.07 (1H, c, H-2); 6.97 (2H, _A , ³ <i>J</i> = 8.0, H-2',6); 6.48 (1H, c, H-9); 5.69 (1H, c, H-7)	5.35 (2H, c, 1-NCH ₂)
4b	7.53 (2H, π , $^{3}J = 8.0$, H-3", 5 "); 7.34 (1H, c, H-5); 7.27 (4H, m, H-3',5',3',5"); 7.15 (2H, π , $^{3}J = 8.0$, H-2',6'); 7.08 (1H, c, H-3); 7.07 (1H, c, H-2); 7.05 (2H, π , $^{3}J = 7.5$, H-2",6"); 6.97 (2H, π , $^{3}J = 8.0$, H-2',6'); 6.47 (1H, c, H-9); 5.69 (1H, c, H-7)	5.34 (2H, c, 1-NCH ₂)
Sa	8.12 (2H, $\mu_{,3}^{3}J = 8.0$, H-2", 6"); 7.70 (3H, m, H-2", 6", 4""); 7.60–7.57 (3H, m, H-3', 3"', 5""); 7.51 (1H, $\mu_{,3}^{3}J = 2.0$, H-4); 7.49 (1H, $\mu_{,3}^{3}J = 2.0$, H-5); 7.43 (3H, m, H-3"–H-5")	5.77 (2H, c, 2H-1'); 3.66 (3H, c, NCH ₃); 2.55 (3H, c, 2-CH ₃)
50	8.12 (2H, $\pi^{-3}J = 8.0$, H-2",6"); 7.70 (1H, τ , $^{-3}J = 8.0$, H-4"); 7.66 (1H, π , $^{-3}J = 1.5$, H-4); 7.62 (2H, $\pi^{-3}J = 8.0$, H-2",6"); 7.58 (3H, m , H-5,3",5"); 7.52 (1H, c, H-3"); 7.40 (3H, m , H-3"-H-5"); 7.32 (3H, m , H-3""-H-5""); 6.84 (2H, m , H-2"",6"")	5.85 (2H, c, 2H-1); 5.33 (2H, c, NCH ₂); 2.51 (3H, c, 2-CH ₃)
5d	8.13 (2H, μ , ${}^{3}J = 8.0$, H-2", 6"); 7.70 (1H, τ , ${}^{3}J = 8.0$, H-4"); 7.68 (1H, μ , ${}^{3}J = 1.5$, H-4); 7.65–7.58 (5H, μ , H-5,2", 6",3",5"); 7.54 (3H, μ , H-3',3""); 7.43 (3H, μ , H-3"-H-5"); 6.89 (2H, μ , ${}^{3}J = 8.0$, H-2"", 6"")	5.86 (2H, c, 2H-1'); 5.33 (2H, c, NCH ₂); 2.52 (3H, c, 2-CH ₃)
9	$7.87 (2H, \mu, {}^{3}J = 8.0, H-2", 6"); 7.75 (2H, \mu, {}^{3}J = 8.0, H-3", 5"); 7.69 (1H, c, H-1'); 7.62 (2H, \mu, {}^{3}J = 8.0, H-2", 6"); 7.55 (2H, \mu, {}^{3}J = 8.0, H-3", 5"); 7.47 (1H, c, H-4); 7.37 (1H, c, H-5)$	4.42 (2H, c, 2H-3'), 3.76 (3H, c, NCH ₃); 2.54 (3H, c, 2-CH ₃)
())		

* Сигналы бензольных заместителей: для **2b-d** протоны 7-Аг обозначены H-2'-H-6', 9-Аг – H-2''-H-6''; для **5a-d** и **6** пртоны 2'-Аг обозначены H-2''-H-6'', 4'-Ar - H-2'''-H-6'', для **5a-d** и **6** пртоны 2'-Аг обозначены H-2'''-H-6'', 4'-Ar - H-2'''-H-6'', 1-NCH₂Ph – H-2''''-H-6'''; для **3a-h** и **4a,b** – протоны 6-Аг обозначены H-2'-H-6'', 8-Аг – H-2'''-H-6''', 1-NCH₂Ph - 0603начены H-2'''-H-6'''.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на приборе Perkin–Elmer Spectrum BX в таблетках КВг. УФ спектры получены на приборе UV-vis Spectrometer Lambda 20 в метаноле. Спектры ЯМР ¹Н записаны на приборе Bruker AVANCE DRX 500 (500 МГц). Эксперименты по двумерной корреляционной спектроскопии ¹Н и ¹³С выполнены на приборе Varian Mercury 400 (400 и 100 МГц соответственно), внутренний стандарт ТМС. Контроль чистоты полученных соединений осуществлялся масс-спектрометрически методом BЖX на приборе Agilent 1100 Series, с селективным детектором Agilent LC/MSD SL (образец вводился в матрице CF₃CO₂H, ионизация ЭУ).

(*Z*)-4-Бром-1,3-дифенил-2-бутен-1-он (**1a**) получен по методике [21], (*Z*)-1,3-дирил-4-бром-2-бутен-1-оны **1b-d** – по методике [18].

Бромиды 5-метил-7,9-диарил-5,10-дигидроазепино[**1**,2-*a*]**бензимидазол-11-ия 2а-с** получают по методике, описанной в работе [16].

Соединение 2а. УФ спектр, λ_{max} , нм (lg ϵ): 244 (4.23), 270 (4.29), 326 (4.20), 332 (4.18).

Соединение 2b. УФ спектр, λ_{max} , нм (lg ϵ): 242 (4.22), 274 (4.34), 326 (4.21), 332 (4.20).

Бромид 5-метил-7,9-бис(4-метоксифенил)-5,10-дигидроазепино[1,2-*а***]бензимидазол-11-ия (2d). Смесь 1.2 г (3.32 ммоль) γ-бромдипнона 1d и 0.49 г (3.32 ммоль) 1,2-диметил-1H-бензимидазола сплавляют на масляной бане при 110 °C в течение 20 мин. Сплав растворяют в 2.5 мл морфолина и добавляют 50 мл воды. Образовавшийся осадок отфильтровывают, тщательно высушивают и прибавляют 10 мл метил-***трет***-бутилового эфира. Осадок отфильтровывают и получают смесь продукта 2d и 2,4-бис(4-метоксифенил)фурана (1:1), которую разделяют методом колоночной хроматографии (силикагель 4060, CHCl₃–EtOAc, 70:30).**

Бромиды 1-R-3-[(*Z*)-2,4-диарил-4-оксо-2-бутенил]-2-метил-1Н-имидазол-3-ия 5а,с,d (общая методика). К раствору 1 г (3.32 ммоль) γ-бромдипнона 1а в 30 мл бензола прибавляют 3.32 ммоль 1-алкил-2-метил-1Н-имидазола. Смесь выдержи- вают 1–2 дн при комнатной температуре. Выпавший осадок отфильтровывают, промывают ацетоном и перекристаллизовывают из нитрометана.

Бромид 3-[(1*E*)-2,4-бис(4-бромфенил)-4-оксо-1-бутенил]-1,2-диметил-1Нимидазол-3-ия (6) получают по методике синтеза соединений 5а,с,d, используя соединение 1с.

Бромиды 1-R-6,8-диарил-1H,5H-имидазо[1,2-*a*]азепин-4-ия 3а,с,d,f. Смесь 1.15 ммоль соли 5а,с,d или 6 и 0.32 г (2.3 ммоль) K₂CO₃ в 15 мл этанола нагревают 1 ч. После охлаждения отфильтровывают осадок. Упаривают раство- ритель из фильтрата и к остатку прибавляют 30 мл 2-пропанола. Отфиль- тровывают образовавшийся осадок и промывают небольшим количеством 2-пропанола.

Соединение За. УФ спектр, λ_{max} , нм (lg ε): 208 (4.28), 242 (4.09), 260 (4.24), 326 (4.03). Спектр ЯМР ¹³С (ДМСО-d₆), δ , м. д.: 149.3 (С-8); 142.3 (С-9а); 140.5 (С-6); 139.2 (С-1"); 138.1 (С-1"); 130.3 (С-4"); 129.7 (С-4"); 129.4 (С-3',5',3",5"); 128.1 (С-2",6"); 127.8 (С-7); 127.5 (С-2',6'); 126.1 (С-2); 121.4 (С-3); 110.1 (С-9); 48.1 (С-5); 36.0 (СН₃).

Соединение 3с. УФ спектр, λ_{max} , нм (lg ϵ): 208 (4.36), 242 (4.02), 270 (4.00), 342 (4.06).

Бромиды 1-R-6,8-диарил-1,5-дигидроимидазо[1,2-а]азепин-4-ия 3b,e,g,h. К раствору 3.55 ммоль γ-бромдипнона **1a,b,d** в 30 мл бензола прибавляют 3.55 ммоль 1-алкил-2-метил-1Н-имидазола. Смесь выдерживают 1–2 дня при комнатной температуре. Упаривают растворитель, остаток растворяют в 20 мл этанола и прибавляют 0.7 г (5.0 ммоль) К₂CO₃. Кипятят смесь 1 ч, охлаждают и

отфильровывают осадок. Фильтрат упаривают. К остатку прибавляют 50 мл 2-пропанола или гексана, отфильтровывают образовавшийся осадок и промывают небольшим количеством 2-пропанола.

Соединение 3e. УФ спектр, λ_{max} , нм (lg ε): 208 (4.27), 232 (4.10), 267 (4.28), 325 (4.10).

1-R-6,8-Бис(4-хлорфенил)-1Н-имидазо[1,2-*a*]азепины 4a,b получают из γ-бромдипнона 1b и 1-бензил- или 1-(4-бромфенил)метил-2-метил-1Н-имидазола по методике синтеза соединений 3b,e,g,h, используя метанол как растворитель, кипятят смесь 30–40 мин. Неорганический осадок отфильтровывают из горячего раствора. Фильтрат упаривают. К остатку прибавляют 50 мл 2-пропанола, отфильтровывают образовавшийся осадок и промывают небольшим количеством 2-пропанола.

Соединение 4a. УФ спектр, λ_{max} , нм (lg є): 205 (3.82), 238 (3.56), 262 (3.56), 289 (3.48), 385 (3.33). Спектр ЯМР ¹Н (CF₃CO₂D), δ , м. д. (*J*, Гц): 7.44 (3H, м, H-3"–H-5"); 7.36 (3H, м, H-3,3",5"); 7.32 (1H, с, H-2); 7.28 (2H, д, ³*J* = 7.5, H-3',5'); 7.18 (2H, д, ³*J* = 8.0, H-2",6"); 7.03 (2H, д, ³*J* = 7.5, H-2",6"); 6.94 (2H, м, H-2',6'); 6.40 (1H, с, H-9); 6.30 (1H, с, H-5); 5.98 (1H, с, H-7); 5.31 (2H, с, CH₂).

Соединение 4b. УФ спектр, λ_{max} , нм (lg ε): 202 (3.81), 221 (3.68), 266 (3.41), 307 (3.29), 389 (3.43). Спектр ЯМР ¹Н (CD₃CO₂D), δ , м. д. (*J*, Γ ц): 7.63 (1H, c, H-3), 7.61 (1H, c, H-2); 7.56 (2H, д, ${}^{3}J = 8.0$, H-3",5"); 7.41 (2H, д, ${}^{3}J = 8.0$, H-3",5"); 7.35 (2H, д, ${}^{3}J = 8.0$, H-3',5'); 7.27 (2H, д, ${}^{3}J = 8.0$, H-2",6"); 7.20 (2H, д, ${}^{3}J = 8.0$, H-2",6"); 6.98 (2H, д, ${}^{3}J = 8.0$, H-2',6'); 6.62 (1H, c, H-9); 6.30 (1H, c, H-5); 5.95 (1H, c, H-7); 5.41 (2H, c, CH₂).

СПИСОК ЛИТЕРАТУРЫ

- A. Thurkauf, X. Chen, S. Zhang, Y. Gao, A. Kieltyka, J. W. F. Wasley, R. Brodbeck, W. Greenlee, A. Ganquly, H. Zhao, *Bioorg. Med. Chem. Lett.*, 13, 2921 (2003).
- 2. F. Novelli, B. Tasso, F. Sparatore, A. Sparatore, Farmaco, 52, 499 (1997).
- F. Janssens, J. Leenaerts, G. Diels, B. De Boeck, A. Megens, X. Langlois, K. van Rossem, J. Beetens, M. Borgers, *J. Med. Chem.*, 48, 2154 (2005).
- J. M. Elliott, E. J. Carlson, G. G. Chicchi, O. Dirat, M. Dominguez, U. Gerhard, R. Jelley, A. B. Jones, M. M. Kurtz, K. Ian Tsaoc, A. Wheeldon, *Bioorg. Med. Chem. Lett.*, 16, 2929 (2006).
- F. Piu, N. K. Gauthier, R. Olsson, E. A. Currier, B. W. Lund, G. E. Croston, U. Hacksell, M. R. Brann, *Biochem. Pharmacol.*, 71, 156 (2005).
- В. А. Ковтуненко, Л. М. Потиха, А. Р. Турелик, А. В. Туров, XTC, 791 (2008). [Chem. Heterocycl. Comp., 44, 632 (2008)].
- 7. Л. М. Потиха, А. Р. Турелик, В. А. Ковтуненко, А. В. Туров, *ХГС*, 95 (2010). [*Chem. Heterocycl. Comp.*, **46**, 82 (2010)].
- D. A. Filimonov, V. V. Poroikov, Yu. V. Borodina, T. Gloriozova, J. Chem. Inf. Comput. Sci., 39, 666 (1999).
- V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, A. A. Lagunin, A. Kos, J. Chem. Inf. Comput. Sci., 40, 1349 (2000).
- 10. V. V. Poroikov, D. A. Filimonov, J. Comput.-Aided Mol. Des., 16, 819 (2002).
- 11. M. Node, S. Kodama, Y. Hamashima, T. Katoh, K. Nishide, T. Kajimoto, *Chem. Pharm. Bull.*, **54**, 1662 (2006).
- 12. C.-H. Chou, L.-T. Chu, I-Y. Chen, B.-J. Wu, Heterocycles, 75, 577 (2008).
- 13. V. Gracias, A. F. Gasiecki, T. G. Pagano, S. W. Djuric, *Tetrahedron Lett.*, **47**, 8873 (2006).
- 14. H. S. Lee, S. H. Kim, S. Gowrisankar, J. N. Kim, Tetrahedron, 64, 7183 (2008).

- J. R. McClure, J. H. Custer, H. D. Schwarz, D. A. Lill, Synlett, 710 (2000).
- S. Ohta, Y. Narita, T. Yuasa, S. Hatakeyama, M. Kobayashi, K. Kaibe, I. Kawasaki, M. Yamashita, *Chem. Pharm. Bull.*, **39**, 2787 (1991).
- 16. S. Ohta, Y. Narita, M. Okamoto, S. Hatakeyama, K. Kan, T. Yuasa, K. Hayakawa, *Chem. Pharm. Bull.*, 38, 301 (1990).
- 17. Л. М. Потиха, А. Р. Турелик, В. А. Ковтуненко, XIC, 1478 (2009). [Chem. Heterocycl. Comp., 45, 1184 (2009)].
- 18. A. Fozard, G. Jones, J. Org. Chem., 30, 1523 (1965).
- 19. R. M. Acheson, W. R. Tully, J. Chem. Soc. (C), 1623 (1968).
- 20. H. H. Wassermann, N. E. Aubrey, J. Am. Chem. Soc., 75, 96 (1953).

Национальный университет им. Тараса Шевченко, ул. Владимирская 64, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 18.03.2010