Д. С. Копчук^{1,2}, А. Ф. Хасанов¹, И. С. Ковалев¹, Г. В. Зырянов^{1,2*}, Г. А. Ким^{1,2}, И. Л. Никонов¹, В. Л. Русинов^{1,2}, О. Н. Чупахин^{1,2}

РАСШИРЕНИЕ СИСТЕМЫ СОПРЯЖЕНИЯ ПИРИДИЛМОНОАЗАТРИФЕНИЛЕНОВ ДЛЯ НАСТРОЙКИ ИХ ФОТОФИЗИЧЕСКИХ СВОЙСТВ

Предложен метод синтеза диарилзамещённых пиридилмоноазатрифениленов реакцией гетероциклизации дигалогензамещённых фенантренхинонов с амидразоном пиридин-2-карбоновой кислоты, последующими аза-реакцией Дильса–Альдера и кросс-сочетанием по методу Сузуки. Полученные соединения проявили более перспективные фотофизические характеристики по сравнению с неарилированными аналогами.

Ключевые слова: моноазатрифенилен, фенантренхинон, аза-реакция Дильса– Альдера, гетероциклизация, кросс-сочетание, люминесценция, реакция Сузуки.

Производные азатрифенилена (дибензо[f,h]хинолина), представляющие значительный интерес за счёт своих перспективных фотофизических и координационных свойств [1], обнаружены в ряде природных соединений [2, 3]. В неорганической биохимии азатрифенилены и их аннелированные производные используются в качестве интеркалирующих лигандов – компонентов люминесцентных металлокомплексов – для изучения структуры ДНК и её дефрагментации [4, 5]. Азатрифенилены также перспективны в качестве люминесцентных сенсоров органических анионов и нитроароматических соединений [6].

Особый интерес представляют пиридилзамещённые азатрифенилены, поскольку они являются полициклическими лигандами 2,2'-бипиридинового типа с широкими возможностями их дальнейшей функционализации. Ранее было показано, что расширение системы сопряжения 2,2'-бипиридинов [7, 8], 1,10-фенантролинов [9, 10] и 2,2':6',2"-терпиридинов [11, 12] может быть использовано как инструмент настройки фотофизических характеристик этих соединений. В частности, при этом может быть достигнуто длинноволновое смещение максимумов поглощения и люминесценции, а также увеличение квантового выхода люминесценции, что делает их более приемлемыми с точки зрения практического использования. Пиридилмоноазатрифенилены к настоящему времени таким исследованиям не подвергались, поскольку количество полученных подобных структур крайне мало. В данной статье мы предлагаем метод синтеза лигандов 2,2'-бипиридинового типа с расширенной системой сопряжения за счёт введения дополнительных ароматических заместителей в систему моноазатрифенилена.

Наиболее часто используемыми методами для синтеза азатрифениленов являются синтез Скраупа [13–16], различные варианты гетероциклизации [17–19], реакции кросс-сочетания [20]. Также с этой целью могут быть использованы реакции циклоприсоединения труднодоступных алкенов или арилацетиленов с ароматическими субстратами, катализируемые солями

переходных металлов [21]. Данные методы зачастую требуют применения жёстких условий или малодоступных реагентов. Кроме этого, следует отметить получение моноазатрифениленов через их 1,2,4-триазиновые аналоги (данный метод часто позволяет получать различные замещённые пиридины, недоступные иными методами [22–24]). В ряду моноазатрифениленов такой метод представлен примерами внутримолекулярных реакций Дильса–Альдера соответствующих триазатрифениленов с фрагментами ацетилена [25]. Кроме этого, недавно нами был описан синтез пиридилмоноазатрифениленов в результате получения их 1,2,4-триазиновых аналогов с дальнейшей аза-реакцией Дильса–Альдера с енаминами [26], предполагающий использование коммерчески доступных реагентов. В рамках данной работы развивается это направление.

Одним из исходных соединений для получения целевых структур в данном случае является 9,10-фенантренхинон (1), ряд способов функционализации которого к настоящему времени описан в литературе. Таким образом, его различные производные могут быть использованы в реакции гетероциклизации с амидразонами с получением 1,2,4-триазиновых аналогов функционализированных азатрифениленов.

В частности, в результате бромирования фенантренхинона *N*-бромсукцинимидом (NBS) в серной кислоте может быть получен 2,7-дибромфенантренхинон 2a [27]. Иодирование фенантренхинона с применением *N*-иодсукцинимида (NIS) в серной кислоте позволяет синтезировать 2,7-дииодфенантренхинон 2с (данная методика иодирования [28] ранее была предложена для флуоренона, но для получения соединения 2с до сих пор не использовалась). Следует отметить, что галогенирование по положениям 2 и 7 протекает с высокой степенью селективности в соответствии с правилами ориентации электрофильного замещения в ароматическом ядре. Альтернативная методика получения соединения 2с [29] с использованием молекулярного иода в окислительных условиях (были проведены опыты с перманганатом калия и диоксидом марганца), вопреки литературным данным, согласно которым в данных условиях образуется 2,7-дииодфенантренхинон 2с, неожиданно привела к 2-иодфенантренхинону 2d, также представляющему интерес в качестве исходного соединения для получения азатрифениленов. Структура соединения 2d была установлена на основании данных масс-спектрометрии, а также сравнения его спектра ЯМР ¹Н с литературными данными [30].

В дополнение к 2,7-дигалогензамещённым хинонам изомерный 3,6-дибромхинон **2b** может быть получен в результате реакции фенантренхинона **1** с бромом в нитробензоле в присутствии перекиси бензоила [31].

Очевидно, что после проведения реакции гетероциклизации и аза-реакции Дильса–Альдера атомы галогенов в молекуле моноазатрифенилена могут быть замещены самым различным образом для настройки свойств целевых соединений. Также следует отметить, что дибензо[f,h]хинолины с атомами галогенов в положениях 6 и 11 могут быть использованы в качестве мономерных звеньев при получении полимеров различного назначения. Моноиодпроизводное в таком случае представляет интерес в качестве концевого мономера при получении полимеров для ограничения количества звеньев в цепи.

Несмотря на доступность галогенопроизводных фенантренхинона, они были использованы для получения соответствующих триазатрифениленов всего в нескольких случаях [32–34], а примеры получения подобных моноазатрифениленов в результате аза-реакции Дильса–Альдера в литературе не описаны.

Синтез триазатрифениленов (3-(2-пиридил)фенантро[9,10-e][1,2,4]триазинов) **3а**-**c** из производных фенантренхинона **2а**-**c** в результате их взаимодействия с амидразоном **4** [35] проходит относительно гладко: гетероциклизация реализуется при кипячении в этаноле. Продукты реакции могут быть легко выделены из реакционной смеси за счёт их меньшей растворимости по сравнению с исходными соединениями. Выходы достигают 64%. В случае 2-иодфенантренхинона **2d** в данной реакции наблюдается образование двух изомеров **5a** и **5b** в соотношении, близком к 1:1. Однако, учитывая возможное применение подобных соединений в качестве терминальных фрагментов полимеров, разделение данных изомеров выглядит нецелесообразным.

3 a R = H, $R^1 = Br$; b R = Br, $R^1 = H$; c R = H, $R^1 = I$; **5** a R = I, $R^1 = H$; b R = H, $R^1 = I$

Дальнейшая аза-реакция Дильса–Альдера с применением описанной ранее [36, 37] эффективной процедуры (взаимодействие 1,2,4-триазина с 1-морфолиноциклопентеном при 200 °С в инертной атмосфере без растворителя) была использована для получения аннелированных с циклопентановым циклом моноазатрифениленов – 10-(2-пиридил)-12,13-дигидро-11*H*-дибензо[*f*,*h*]циклопента[*c*]хинолинов) **6а**–**с**. Такие соединения являются более интересными благодаря лучшей растворимости по сравнению с неаннелированными аналогами. В случае дибромсодержащих триазатрифениленов **3а**,**b** данная процедура позволила успешно получить целевые моноазатрифенилены **6а**,**b** с выходами до 82%. Иные результаты были получены при использовании иодсодержащих аналогов. При проведении реакции смеси соединений **5а** и **5b**, а также соединения **3с** с енамином в описанных выше условиях была получена сложная смесь продуктов. Это, вероятно, связано с частичным

замещением атомов иода на фрагменты амина. Проведение реакции в высококипящих растворителях (1,2-дихлорбензол, *о*-ксилол) также не позволило получить целевой иодсодержащий циклопентеномоноазатрифенилен. В частности, в результате длительного кипячения в *о*-ксилоле были выделены в неизменном виде исходные соединения. Таким образом, в случае иодсодержащих триазатрифениленов имеются значительные трудности при получении аннелированных с циклопентановым циклом аналогов 2,2'-бипиридина. В итоге получить дииодсодержащий моноазатрифенилен **6c** удалось лишь при проведении аза-реакции Дильса–Альдера с 2,5-норборнадиеном. Данное соединение является менее интересным с практической точки зрения вследствие более низкой растворимости. Таким образом, при использовании иодсодержащих триазатрифениленов, ввиду высокой лабильности атомов иода, вероятно, выгоднее производить замену атомов иода на какие-либо функциональные группы до проведения аза-реакции Дильса–Альдера.

В спектрах ЯМР ¹Н полученных соединений присутствуют сигналы ABXсистем азатрифенилена (в случае соединения **6с**, кроме этого, сигналы ABсистемы), сигналы пиридинового цикла, а в случае моноазатрифениленов **6а**,**b** – сигналы циклопентенового фрагмента в области резонанса алифатических протонов.

Дибромсодержащие моноазатрифенилены **6a,b** были использованы в качестве исходных соединений для получения целевых структур **7a–d** с расширенной системой сопряжения. Синтез был выполнен в результате реакции кросс-сочетания по методу Сузуки с арилборными кислотами **8a,b** в смеси воды, толуола и этанола. В качестве основания был использован карбонат калия, продукты кросс-сочетания образуются с высокими выходами, для их очистки была использована перекристаллизация из толуола.

В ходе работы были изучены фотофизические характеристики полученных пиридилмоноазатрифениленов в сравнении с ранее описанным нами незамещённым 10-(2-пиридил)-12,13-дигидро-11H-дибензо[f,h]циклопента[c]хинолином (7е) [26]. Спектры люминесценции представлены на рисунке, результаты обобщены в таблице.

Изучение фотофизических характеристик показало, что произведенное расширение системы сопряжения привело к длинноволновому смещению максимумов как поглощения, так и испускания. В случае соединений **7а,с** (с фенильными заместителями) профиль спектра люминесценции практически не изменился, отмечено лишь батохромное смещение максимумов испускания. Для соединений **7b,d** (с триметоксифенильными заместителями) наблюдается значительное изменение характера спектра испускания и более значительное батохромное смещение максимума испускания, что, вероятно, объясняется более значительными изменениями в структуре хромофора. Наблюдалось некоторое снижение квантовых выходов в случае соединений **7b,с**, для двух остальных новых моноазатрифениленов значения квантовых выходов практически не изменились.

Таким образом, в данной работе предложены удобные методы получения не описанных ранее и представляющих практический интерес диарилсодержащих производных моноазатрифениленов, основанные на применении коммерчески доступных исходных реагентов. Данные соединения получены в результате галогенирования 9,10-фенантренхинона, реакции гетероциклизации,

Соеди- нение	Максимумы поглощения в ацетонитриле, нм	Максимум люминесценции в ацетонитриле, нм	Квантовый выход люминесценции*
7a	289, 318	379, 398	0.207
7b	200, 294, 323	475	0.139
7c	193, 281, 325, 368	379, 396, 423 (пл.)	0.146
7d	207, 284, 328, 370	481	0.216
7e	263, 313, 339, 357	364, 381, 403 (пл.)	0.213

Фотофизические характеристики соединений 7а-е

* Квантовые выходы всех соединений измерены относительно сульфата хинина ($\Phi = 0.546$ в 0.1 н. водном растворе H₂SO₄ [38]).

аза-реакции Дильса–Альдера и, наконец, кросс-сочетания по методу Сузуки. Обнаружены ограничения при использовании промежуточных иодпроизводных, показаны преимущества бромсодержащих аналогов. Изучены фотофизические свойства полученных соединений в сравнении с незамещённым аналогом, описанным нами ранее. Показаны более перспективные фотофизические свойства арилированных соединений, выражающиеся в длинноволновом смещении максимумов поглощения и испускания, вызванных расширением системы сопряжения конечных моноазатрифениленов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на приборе Bruker Avance II (400 и 100 МГц соответственно) в CDCl₃ (соединения **6а,b**, **7а–d**) и в ДМСО-d₆ (остальные соединения), внутренний стандарт ТМС. Спектры поглощения записаны на спектрофотометре Shimadzu UV-2401PC в ацетонитриле. Спектры люминесценции записаны на флуориметре Varian Cary Eclipse в ацетонитриле. Масс-спектры зарегистрированы на масс-спектрометре MicrOTOF-Q II, Bruker Daltonics в условиях химической ионизации при атмосферном давлении (соединения **2с,d**) или ионизации электрораспылением (остальные соединения). Элементный анализ выполнен на CHN-анализаторе модели PE 2400, серия II фирмы Perkin Elmer. Температуры плавления определены на приборе Boetius. TCX анализ выполнен на пластинах Merck silica gel 60F254, элюент EtOAc, проявление в УФ свете.

9,10-Фенантренхинон (1) приобретён у фирмы Sigma-Aldrich. 2,7-Дибром-9,10фенантренхинон (2a) [27], 3,6-дибром-9,10-фенантренхинон (2b) [31], гидразон амида пиридин-2-карбоновой кислоты (4) [35] получены по описанным методикам.

2,7-Дииод-9,10-фенантренхинон (2с). К 90 мл 98% H₂SO₄, охлаждённой до 0 °С, добавляют 6.48 г (28.82 ммоль) *N*-иодсукцинимида и перемешивают при 0 °С в течение 25 мин. Затем добавляют 1.50 г (7.20 ммоль) 9,10-фенантренхинона (1) и перемешивают при комнатной температуре в течение 24 ч. Реакционную смесь смешивают с 200 мл ледяной воды, образующийся осадок отфильтровывают, промывают водой и сушат. Продукт реакции используют на последующей стадии без дополнительной очистки. Выход 2.94 г (89%), тёмно-красные кристаллы, т. пл. >250 °С. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 8.03–8.06 (4H, м, H-3,4,5,6); 8.26 (2H, д, ⁴*J* = 1.2, H-1,8). Масс-спектр, *m/z* (*I*_{отн}, %): 461 [M+H]⁺ (100). Найдено, %: С 36.83; H 1.03. С₁₄H₆I₂O₂. Вычислено, %: С 36.55; H 1.31.

2-Иод-9,10-фенантренхинон (2d). Смесь 1.45 г (9.18 ммоль) КМпО₄, 18 мл АсОН, 10.5 мл Ас₂О и 2.33 (9.18 ммоль) I₂ охлаждают до 5 °С, по каплям добавляют 12 мл 98% H₂SO₄ при температуре не выше 10 °С. Затем добавляют 0.83 г (3.99 ммоль) 9,10-фенантренхинона (**1**) и перемешивают при 35 °С в течение 1 ч. Реакционную смесь смешивают со 100 мл ледяной воды, содержащей предварительно растворённые Na₂SO₃ и K₂CO₃. Образующийся осадок отфильтровывают, промывают водой и сушат. Выход 0.73 г (55%), тёмно-красные кристаллы, т. пл. 222–224 °С. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.51–7.55 (1H, м); 7.74–7.78 (1H, м); 8.00–8.09 (3H, м); 8.22 (1H, д, ³*J* = 8.0, H-4); 8.28 (1H, д, ⁴*J* = 1.6, H-1). Масс-спектр, *m/z* (*I*_{отн}, %): 335 [M+H]⁺ (100). Найдено, %: С 50.08; H 2.02. C₁₄H₇IO₂. Вычислено, %: С 50.33; H 2.11.

Триазатрифенилены За–с, 5а,b (общая методика). К суспензии 5 ммоль фенантренхинона **2а–d** в 500 мл EtOH добавляют 0.68 г (5 ммоль) амидразона пиридин-2-карбоновой кислоты (**4**), смесь кипятят в течение 10 ч. Реакционную смесь фильтруют горячей, полученный осадок промывают EtOH и сушат. Аналитический образец перекристаллизовывают из EtOH.

6,11-Дибром-3-(2-пиридил)фенантро[9,10-*e***][1,2,4]триазин (3а)**. Выход 1.40 г (60%), светло-жёлтые кристаллы, т. пл. 279–281 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 7.63–7.67 (1Н, м, H-5 Ру); 8.07–8.13 (3Н, м, H-7,10, H-4 Ру); 8.77–8.83 (3Н, м, H-8,9, H-3 Ру); 8.94 (1Н, д. д, ³*J* = 4.9, ⁴*J* = 1.8, H-6 Ру); 9.45 (1Н, д, ⁴*J* = 1.8, H-5); 9.51 (1Н, д,

⁴J = 1.8, H-12). Масс-спектр, m/z ($I_{\text{отн}}$, %): 467 [M+H]⁺ (100). Найдено, %: С 51.22; H 2.01; N 11.73. C₂₀H₁₀Br₂N₄. Вычислено, %: С 51.53; H 2.16; N 12.02.

7,10-Дибром-3-(2-пиридил)фенантро[9,10-*e***][1,2,4]триазин (3b). Выход 1.49 г (64%), светло-жёлтые кристаллы, т. пл. >250 °С. Спектр ЯМР ¹Н, б, м. д. (***J***, Гц): 7.66–7.70 (1Н, м, H-5 Ру); 8.08–8.15 (3Н, м, H-6,11, H-4 Ру); 8.79 (1Н, д. д, ³***J* **= 7.5, ⁴***J* **= 1.2, H-3 Ру); 8.93 (1Н, д. д, ³***J* **= 4.9, ⁴***J* **= 1.8, H-6 Ру); 9.23 (1Н, д, ⁴***J* **= 1.4, H-8); 9.24 (1Н, д, ⁴***J* **= 1.4, H-9); 9.27 (1Н, д, ³***J* **= 8.8, H-5); 9.31 (1Н, д, ³***J* **= 8.6, H-12). Масс-спектр,** *m/z* **(***I***_{отн}, %): 467 [М+Н]⁺ (100). Найдено, %: С 51.19; Н 1.98; N 11.81. С₂₀Н₁₀Вг₂N₄. Вычислено, %: С 51.53; Н 2.16; N 12.02.**

6,11-Дииод-3-(2-пиридил)фенантро[9,10-*e***][1,2,4]триазин (3с). Выход 1.26 г (45%), светло-жёлтые кристаллы, т. пл. >250 °С. Спектр ЯМР ¹Н, \delta, м. д. (***J***, Гц): 7.66–7.80 (1Н, м. H-5 Ру); 8.14 (1Н, д. д. д. {}^{3}J = 7.5, {}^{3}J = 7.5, {}^{4}J = 1.8, H-4 Ру); 8.25 (1Н, д. д. {}^{3}J = 8.8, {}^{4}J = 1.7, H-7); 8.30 (1Н, д. д. {}^{3}J = 8.8, {}^{4}J = 1.7, H-10); 8.61–8.67 (2Н, м, H-8.9); 8.79 (1Н, д. д. {}^{3}J = 7.5, {}^{4}J = 1.8, H-4 Ру); 9.59 (1Н, д. д. {}^{3}J = 7.5, {}^{4}J = 1.8, H-6 Ру); 9.59 (1Н, д. д. {}^{4}J = 1.8, H-5); 9.67 (1Н, д. {}^{4}J = 1.8, H-12). Масс-спектр.** *m/z* **(I_{\text{отн}}, %): 561 [M+H]⁺ (100). Найдено, %: С 42.79; Н 1.65; N 9.71. С₂₀Н₁₀I₂N₄. Вычислено, %: С 42.89; Н 1.80; N 10.00.**

Смесь 6-иод-3-(2-пиридил)фенантро[9,10-*e*][1,2,4]триазина (5а) и 11-иод-3-(2-пиридил)фенантро[9,10-*e*][1,2,4]триазина (5b). Выход 1.19 г (55%), светложёлтые кристаллы. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 7.61–7.65 (1Н, м, H-5 Ру); 7.85– 8.02 (2H, м); 8.07–8.11 (1H, м, H-4 Ру); 8.21 (0.5H, д. д, ${}^{3}J = 8.4$, ${}^{4}J = 1.6$) и 8.26 (0.5H, д. д, ${}^{3}J = 8.4$, ${}^{4}J = 1.6$, H-7 (5a), H-10 (5b)); 8.59 (0.5 H, д, ${}^{3}J = 8.4$) и 8.62 (0.5H, д, ${}^{3}J = 8.4$, H-8 (5a), H-9 (5b)); 8.76–8.82 (2H, м); 8.90 (0.5H, д. д, ${}^{3}J = 4.9$, ${}^{4}J = 1.8$) и 8.93 (0.5H, д. д, ${}^{3}J = 4.9$, ${}^{4}J = 1.8$, H-6 Ру); 9.39–9.46 (1H, м, H-12 (5a), H-5 (5b)); 9.65 (0.5H, д, ${}^{4}J = 1.6$) и 9.73 (0.5H, д, ${}^{4}J = 1.6$, H-5 (5a), H-12 (5b)). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 435 [M+H]⁺ (100). Найдено, %: С 55.04; Н 2.29; N 12.56. С₂₀Н₁₁IN₄. Вычислено, %: С 55.32; H 2.55; N 12.90.

Получение моноазатрифениленов 6а,b (общая методика). Смесь 2.50 ммоль триазатрифенилена 3а,b и 2 мл (12.50 ммоль) 1-морфолиноциклопентена перемешивают при 200 °С в течение 2 ч в атмосфере аргона, добавляют 1 мл (6.25 ммоль) 1-морфолиноциклопентена и перемешивают ещё 1 ч при тех же условиях. Реакционную смесь охлаждают до комнатной температуры и добавляют 30 мл МеСN. Полученную смесь кипятят 15 мин и затем выдерживают в течение 3 ч при комнатной температуре. Образующийся осадок отфильтровывают, промывают MeCN и сушат. Аналитический образец получают перекристаллизацией из MeCN.

2,7-Дибром-10-(2-пиридил)-12,13-дигидо-11*Н*-дибензо[*f,h*]циклопента[*c*]хинолин (6а). Выход 1.00 г (80%), бесцветные кристаллы, т. пл. 242–244 °C. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.22–2.26 (2Н, м, 12-CH₂); 3.59–3.63 (4Н, м, 11,13-CH₂); 7.34–7.38 (1Н, м, H-5 Ру); 7.71–7.75 (2Н, м, H-3,6); 7.94 (1Н, д. д. д. ³*J* = 7.5, ³*J* = 7.5, ⁴*J* = 1.8, H-4 Ру); 8.28 (1Н, д. ³*J* = 8.8, H-4); 8.38 (1Н, д. ³*J* = 8.8, H-5); 8.59 (1Н, д. д. ³*J* = 7.5, ⁴*J* = 1.2, H-3 Ру); 8.68 (1Н, д. ⁴*J* = 1.8, H-1); 8.75 (1Н, д. д. ³*J* = 4.9, ⁴*J* = 1.8, H-6 Ру); 9.49 (1Н, д. ⁴*J* = 1.8, H-8). Масс-спектр, *m/z* (*I*_{отн}, %): 505 [М+Н]⁺ (50). Найдено, %: C 59.44; H 2.97; N 5.50. C₂₅H₁₆Br₂N₂. Вычислено, %: C 59.55; H 3.20; N 5.56.

3,6-Дибром-10-(2-пиридил)-12,13-дигидро-11*Н***-дибензо[***f,h***]циклопента[***c***]хинолин (6b). Выход 1.03 г (82%), бесцветные кристаллы, т. пл. 202–204 °С. Спектр ЯМР ¹Н, \delta, м. д. (***J***, \Gammaц): 2.23–2.27 (2H, м, 12-CH₂); 3.60–3.64 (4H, м, 11,13-CH₂); 7.34–7.38 (1H, м, H-5 Py); 7.74 (1H, д. д. ^{3}J = 8.8, ⁴***J* **= 1.6, H-2); 7.79 (1H, д. д. ^{3}J = 8.8, ⁴***J* **= 1.6, H-7); 7.92 (1H, д. д. ^{3}J = 7.5, ^{3}J = 7.5, ⁴***J* **= 1.8, H-4 Py); 8.45 (1H, д. д. ^{3}J = 7.5, ⁴***J* **= 1.2, H-3 Py); 8.56–8.62 (2H, м, H-1,4); 8.66 (1H, д. ^{4}J = 1.6, H-5); 8.75 (1H, д. д. ^{3}J = 4.9, ⁴***J* **= 1.8, H-6 Py); 9.30 (1H, д. ^{3}J = 8.8, H-8). Спектр ЯМР ¹³С, \delta, м. д.: 25.7; 33.3; 37.2; 121.8; 122.1; 123.1 (2C); 123.6; 125.0; 126.0; 127.9; 128.9; 129.0; 130.0; 130.5; 130.7; 130.8; 131.1; 136.4; 139.5; 143.8; 148.6; 150.4; 151.7; 158.4. Масс-спектр.** *m/z* **(***I***_{отн}, %): 505 [M+H]⁺ (50). Найдено, %: С 59.51; H 3.01; N 5.43. C₂₅H₁₆Br₂N₂. Вычислено, %: С 59.55; H 3.20; N 5.56.**

6,11-Дииод-2-(2-пиридил)фенантро[9,10-*b***]пиридин (6с). В 40 мл 1,2-дихлорбензола суспендируют 0.5 г (0.89 ммоль) триазатрифенилена 3с**. Добавляют 0.27 мл (2.67 ммоль) 2,5-норборнадиена и кипятят в течение 35 ч с добавлением по 0.27 мл (2.67 ммоль) 2,5-норборнадиена через каждые 8 ч. Растворитель отгоняют в вакууме, остаток очищают колоночной хроматографией (элюент CH₂Cl₂–EtOAc 3:1, R_f 0.2). Выход 200 мг (40%), светло-жёлтые кристаллы, т. пл. >250 °С. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 7.51–7.55 (1H, м, H-5 Ру); 8.05–8.09 (3H, м); 8.56–8.60 (2H, м); 8.75– 8.79 (3H, м); 9.15 (1H, д. д. ${}^{3}J = 4.9$, ${}^{4}J = 1.8$, H-6 Ру); 9.31 (1H, д. ${}^{3}J = 8.8$, H-4); 9.70 (1H, д. ${}^{4}J = 1.8$, H-12). Масс-спектр, *m/z* ($I_{отн}$, %): 559 [M+H]⁺ (100). Найдено, %: С 47.01; H 1.93; N 4.87. C₂₂H₁₂I₂N₂. Вычислено, %: С 47.34; H 2.17; N 5.02.

Получение арилзамещённых моноазатрифениленов 7а-d (общая методика). К раствору 0.50 ммоль диброммоноазатрифенилена 6а, в в 25 мл PhMe добавляют 1.05 ммоль борной кислоты 8а, b, 18 мг (25 мкмоль) комплекса $PdCl_2(PPh_3)_2$ и 13 мг (50 мкмоль) PPh₃. Отдельно растворяют 1.38 г (10.00 ммоль) K_2CO_3 в 20 мл дистиллированной воды, полученный раствор добавляют к реакционной смеси. Добавляют 10 мл EtOH и перемешивают смесь при 85 °C в течение 7 ч в атмосфере аргона. Органическую фазу отделяют, промывают растворами K_2CO_3 и NH₄Cl, а затем сушат безв. Na₂SO₄. Растворители отгоняют в вакууме, остаток перекристаллизовывают из PhMe.

10-(2-Пиридил)-2,7-дифенил-12,13-дигидро-11*Н***-дибензо[***f,h***]циклопента[***c***]хинолин (7а). Выход 180 мг (72%), бесцветные кристаллы, т. пл. 270–272 °С. Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 2.24–2.28 (2H, м, 12-CH₂); 3.64 (2H, т, ³***J* **= 7.5, 11-CH₂); 3.78 (2H, т, ³***J* **= 7.5, 13-CH₂); 7.32–7.36 (1H, м, H-5 Ру); 7.41–7.45 (2H, м, H Ph); 7.51–7.57 (4H, м); 7.77–7.81 (2H, м); 7.86–7.97 (5H, м); 8.63 (1H, д, ³***J* **= 8.8, H-4); 8.65 (1H, д. д, ³***J* **= 7.5, ⁴***J* **= 1.2, H-3 Ру); 8.72 (1H, д, ³***J* **= 8.8, H-5); 8.75 (1H, д. д, ³***J* **= 4.9, ⁴***J* **= 1.8, H-6 Ру); 8.85 (1H, д, ⁴***J* **= 1.6, H-1); 9.71 (1H, д, ⁴***J* **= 2.0, H-8). Спектр ЯМР ¹³С, \delta, м. д.: 26.0; 33.3; 37.4; 122.7; 122.9; 123.4; 123.6; 123.8; 124.3; 126.0; 126.2; 127.2 (2C); 127.3; 127.4; 128.8; 129.0; 129.6; 130.0; 130.5; 132.1; 132.3; 136.3; 139.1; 139.2; 139.8; 141.1; 141.4; 145.2; 148.4; 150.4; 151.8; 158.9. Масс-спектр,** *m***/***z* **(***I***_{отн}, %): 499 [M+H]⁺ (100). Найдено, %: С 88.97; H 5.11; N 5.43. C₃₇H₂₆N₂. Вычислено, %: С 89.13; H 5.26; N 5.62.**

2,7-Бис(3,4,5-триметоксифенил)-10-(2-пиридил)-12,13-дигидро-11*H*-дибензо-[*f,h*]циклопента[*c*]хинолин (7b). Выход 230 мг (68%), бесцветные кристаллы, т. пл. 236–238 °C. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.27–2.31 (2H, м, 12-CH₂); 3.67 (2H, т, ${}^{3}J$ = 7.5, 11-CH₂); 3.82 (2H, т, ${}^{3}J$ = 7.5, 13-CH₂); 3.95 (3H, с, OCH₃); 3.96 (3H, с, OCH₃); 4.01 (6H, с, 2OCH₃); 4.02 (6H, с, 2OCH₃); 6.99 (2H, с, H Ar); 7.08 (2H, с, H Ar); 7.33–7.37 (1H, м, H-5 Ру); 7.85–7.96 (3H, м, H-3,6, H-4 Ру); 8.65 (1H, д, ${}^{3}J$ = 8.5, H-4); 8.69 (1H, д. д, ${}^{3}J$ = 7.5, ${}^{4}J$ = 1.2, H-3 Ру); 8.73–8.77 (2H, м, H-5, H-6 Ру); 8.85 (1H, д, ${}^{4}J$ = 1.6, H-1); 9.72 (1H, д, ${}^{4}J$ = 2.0, H-8). Спектр ЯМР ¹³С, δ, м. д.: 26.2; 33.3; 37.4; 53.7; 56.3; 56.4; 61.0; 104.8; 104.9; 123.0; 123.4; 123.5; 123.8; 124.3; 125.3; 126.1; 126.3; 127.3; 129.6; 130.0; 130.5; 132.0; 135.3; 136.3; 137.0; 137.2; 138.0; 138.2; 139.3; 139.4; 140.0; 145.1; 147.6; 148.5; 150.5; 151.9; 153.7; 153.8; 158.7. Масс-спектр. *m/z* (*I*_{отн}, %): 679 [M+H]⁺ (100). Найдено, %: C 75.93; H 5.48; N 3.89. C₄₃H₃₈N₂O₆. Вычислено, %: C 76.09; H 5.64; N 4.13.

10-(2-Пиридил)-3,6-дифенил-12,13-дигидро-11*Н***-дибензо[***f,h***]циклопента[***c***]хинолин (7с). Выход 160 мг (64%), бесцветные кристаллы, т. пл. 185–187 °С. Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 2.24–2.28 (2H, м, 12-CH₂); 3.64 (2H, т, ³***J* **= 7.5, 11-CH₂); 3.73 (2H, т, ³***J* **= 7.5, 13-CH₂); 7.32–7.36 (1H, м, H-5 Ру); 7.42–7.46 (2H, м, H Ph); 7.53–7.57 (4H, м); 7.80–7.84 (4H, м); 7.85–7.97 (3H, м); 8.70 (1H, д, ³***J* **= 8.2, H-1); 8.75 (1H, д. д, ³***J* **= 4.9, ⁴***J* **= 1.8, H-6 Ру); 8.82 (1H, д, ³***J* **= 1.2, H-4); 8.93 (1H, д, ³***J* **= 1.2, H-5); 9.55 (1H, д, ³***J* **= 8.5, H-8). Спектр ЯМР ¹³С, \delta, м. д.: 26.0; 33.2; 37.3; 120.9; 121.6; 122.9; 123.7; 125.6; 126.6; 126.7; 127.5 (2C); 127.6; 127.7; 128.2; 128.9; 129.0; 129.4; 130.9; 131.0; 131.3; 136.4; 139.0; 139.6; 141.0; 141.5; 144.7; 148.5; 150.3; 151.8; 158.8. Масс-спектр,** *m/z* **(***I***_{отн}, %): 499 [M+H]⁺ (100). Найдено, %: С 89.00; H 5.13; N 5.39. C₃₇H₂₆N₂.** **3,6-Бис(3,4,5-триметоксифенил)-10-(2-пиридил)-12,13-дигидро-11***H***-дибензо[***f,h***]-циклопента**[*c*]хинолин (7d). Выход 240 мг (71%), бесцветные кристаллы, т. пл. 123–125 °C. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.27–2.31 (2H, м, 12-CH₂); 3.66 (2H, т, ³*J* = 7.5, 11-CH₂); 3.76 (2H, т, ³*J* = 7.5, 13-CH₂); 3.94 (3H, с, OCH₃); 3.95 (3H, с, OCH₃); 3.99 (6H, с, OCH₃); 4.00 (6H, с, OCH₃); 6.98 (2H, с, H Ar); 6.99 (2H, с, H Ar); 7.33–7.37 (1H, м, H-5 Py); 7.86 (1H, д. д. ³*J* = 8.6, ⁴*J* = 1.8, H-2); 7.89–7.95 (2H, м, H-7, H-4 Py); 8.69 (1H, д. д. ³*J* = 7.5, ⁴*J* = 1.2, H-3 Py); 8.73 (1H, д. ³*J* = 8.6, H-1); 8.74–8.78 (2H, м, H-4, H-6 Py); 8.88 (1H, д. ⁴*J* = 1.8, H-5); 9.57 (1H, д. ³*J* = 8.6, H-8). Спектр ЯМР ¹³С, δ , м. д.: 26.1; 33.2; 37.3; 56.4; 61.1; 104.9; 105.0; 120.7; 121.5; 123.0; 123.1; 123.7; 125.9; 126.8; 126.9; 128.3; 129.4; 130.1; 131.1; 131.2; 136.7; 137.0; 137.5; 138.0; 138.1; 139.1; 140.0; 141.3; 144.8; 148.3; 150.1; 151.9; 153.7; 153.8; 158.4. Масс-спектр, *m/z* (*I*_{отн}, %): 679 [M+H]⁺ (100). Найдено, %: С 75.91; H 5.44; N 3.91. C₄₃H₃₈N₂O₆. Вычислено, %: С 76.09; H 5.64; N 4.13.

Работа выполнена при поддержке Минобрнауки РФ (ГК 8430), Совета по грантам Президента РФ (грант МК-1511.2013.3), а также программы 211 Правительства РФ (соглашение № 02.А03.21.0006).

СПИСОК ЛИТЕРАТУРЫ

- 1. B. H. Bakker, M. Goes, N. Hoebe, H. J. van Ramesdonk, J. W. Verhoeven, M. H. V. Werts, J. W. Hofstraat, *Coord. Chem. Rev.*, **208**, 3 (2000).
- T. R. Govindachari, N. Viswanathan, J. Radhakrishnan, R. Charubala, N. Nityanandra Rao, B. R. Pai, *Indian J. Chem.*, 11, 1215 (1973).
- 3. T. R. Govindachari, B. R. Pai, K. Nagarajan, J. Chem. Soc., 2801 (1954).
- C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process Res. Dev., 7, 379 (2003).
- 5. B. A. Sweetman, H. Muller-Bunz, P. J. Guiry, Tetrahedron Lett., 46, 4643 (2005).
- Д. С. Копчук, И. Н. Егоров, Т. А. Цейтлер, А. Ф. Хасанов, И. С. Ковалев, Г. В. Зырянов, В. Л. Русинов, О. Н. Чупахин, *ХГС*, 538 (2013). [*Chem. Heterocycl. Compd.*, 49, 503 (2013).]
- V. N. Kozhevnikov, O. V. Shabunina, D. S. Kopchuk, M. M. Ustinova, B. Koenig, D. N. Kozhevnikov, *Tetrahedron*, 64, 8963 (2008).
- 8. A. H. Younws, L. Zhang, R. J. Clark, L. Zhu, J. Org. Chem., 74, 8761 (2009).
- 9. H. S. Joshi, R. Jamshidi, Y. Tor, Angew. Chem., Int. Ed., 38, 2722 (1999).
- 10. J. C. Loren, J. S. Siegel, Angew. Chem., Int. Ed., 40, 754 (2001).
- 11. G. Albano, V. Balzani, E. C. Constable, M. Maestri, D. R. Smith, *Inorg. Chim. Acta*, **277**, 225 (1998).
- 12. W. Goodall, J. A. G. Williams, Chem. Commun., 2514 (2001).
- 13. F. Hershnann, Ber. Dtsch. Chem. Ges., 41, 1998 (1908).
- 14. M. Krueger, E. Mosettig, J. Org. Chem., 5, 313 (1940).
- 15. N. P. Buu-Hoi, J. Org. Chem., 19, 721 (1954).
- 16. W. Marckwald, Justus Liebigs Ann. Chem., 274, 331 (1893).
- 17. P. J. Campos, E. Anon, M. C. Malo, M. A. Rodriguez, *Tetrahedron*, 54, 14113 (1998).
- 18. O. Bilgic, D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1233 (1980).
- D. N. Nicolaides, K. E. Litinas, G. K. Papageorgiou, J. Stephanidou-Stephanatou, J. Heterocycl. Chem., 28, 139 (1991).
- 20. I. Nagao, M. Shimizu, T. Hiyama, Angew. Chem., Int. Ed., 48, 7573 (2009).
- 21. A. McIver, D. D. Young, A. Deiters, Chem. Commun., 4750 (2008).
- 22. G. R. Pabst, O. C. Pfüller, J. Sauer, Tetrahedron, 55, 8045 (1999).
- 23. A. Rykowski, D. Branowska, J. Kielak, Tetrahedron Lett., 41, 3657 (2000).
- D. S. Kopchuk, A. F. Khasanov, I. S. Kovalev, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin, *Mendeleev Commun.*, 23, 209 (2013).
- 25. E. C. Taylor, J. E. Macor, J. L. Pont, *Tetrahedron*, **43**, 5145 (1987).

- Д. С. Копчук, Г. В. Зырянов, И. С. Ковалев, А. Ф. Хасанов, А. С. Медведевских, В. Л. Русинов, О. Н. Чупахин, *XГС*, 535 (2013). [*Chem. Heterocycl. Compd.*, 49, 500 (2013).]
- 27. E. K. Unver, S. Tarkuc, C. Tanyeli, L. Toppare, Y. A. Udum, J. Polym. Sci., Part A: Polym. Chem., 48, 1714 (2010).
- 28. F. Dewhurst, P. K. J. Shah, J. Chem. Soc. C, 1503 (1969).
- 29. P. Luliński, L. Skulski, Bull. Chem Soc. Jpn., 72, 115 (1999).
- D. Chaudhuri, K. J. van Schooten, S. Liu, J. M. Lupton, H. Wettach, E. Sigmund, S. Höger, Angew. Chem., Int. Ed., 49, 7714 (2010).
- K. Brunner, A. van Dijken, H. Börner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc., 126, 6035 (2004).
- 32. S. C. De, Q. J. Indian Chem. Soc., 4, 183 (1927).
- 33. J. Schmidt, H. Bürkert, Ber. Dtsch. Chem. Ges., 1356 (1927).
- 34. S. C. De, J. Indian Chem. Soc., 7, 361 (1930).
- 35. F. H. Case, J. Org. Chem., 30, 931 (1965).
- V. N. Kozhevnikov, M. M. Ustinova, P. A. Slepukhin, A. Santoro, D. W. Bruce, D. N. Kozhevnikov, *Tetrahedron Lett.*, 49, 4096 (2008).
- Д. С. Копчук, А. Ф. Хасанов, И. С. Ковалев, Г. А. Ким, И. Л. Никонов, Г. В. Зырянов, В. Л. Русинов, О. Н. Чупахин, *ХГС*, 936 (2014).
- 38. С. Паркер, Фотолюминесценция растворов, Мир, Москва, 1972, с. 251.

¹ Уральский федеральный университет, им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия e-mail: gvzyryanov@gmail.com Поступило 19.02.2014 После доработки 31.03.2014

² Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620219, Россия e-mail: chupakhin@ios.uran.ru