А. В. Астахов^{1*}, В. М. Чернышев¹

МОЛЕКУЛЯРНАЯ СТРУКТУРА 3-АМИНО[1,2,4]ТРИАЗОЛО[4,3-*a*]ПИРИМИДИН-5-ОНА В РАЗЛИЧНЫХ ТАУТОМЕРНЫХ ФОРМАХ: ИССЛЕДОВАНИЕ МЕТОДАМИ DFT И QTAIM

Методом DFT B3LYP/6-311++(2d,2p) изучено строение и относительная стабильность таутомеров 3-амино[1,2,4]триазоло[4,3-*a*]пиримидин-5-она в газовой фазе и водном растворе. В рамках теории "Атомы в молекулах" (AIM) рассчитаны параметры внутримолекулярных водородных связей и оценено их влияние на устойчивость таутомерных форм.

Ключевые слова: 3-амино[1,2,4]триазоло[4,3-*а*]пиримидин-5-он, внутримолекулярная водородная связь, молекулярная структура, рециклизация, таутомерия, теория "Атомы в молекулах", теория функционала плотности, метод B3LYP.

Триазолопиримидины являются аналогами пуриновых оснований и проявляют различные виды биологической активности [1–5], что способствует применению этих соединений в медицине и сельском хозяйстве. При изучении реакционной способности и биологической активности [1,2,4]триазолопиримидинов необходимо учитывать таутомерные превращения, характерные для многих функционально замещённых представителей этих гетероциклов [1–5]. В наибольшей степени изучена таутомерия [1,2,4]триазоло[1,5-*a*]пиримидин-5(7)-онов [6–8], тогда как таутомерия [1,2,4]триазоло[4,3-*a*]пиримидин-5-онов практически не исследовалась.

Настоящая работа посвящена исследованию строения 3-амино[1,2,4]триазоло[4,3-*a*]пиримидин-5-она (1). Это соединение и его производные представляют интерес в качестве объектов для изучения рециклизаций [9–14], на которые существенное влияние может оказывать таутомерия и внутримолекулярная водородная связь (BBC) [12, 15]. Структура соединения 1 предполагает возможность реализации одновременно оксо-гидрокси и амино-иминной таутомерии (рис. 1). При этом для ряда таутомеров возможно существование нескольких стабильных конформеров, а также (*E*)- и (*Z*)-стереоизомеров. Цель работы заключалась в установлении таутомерного состава 3-амино[1,2,4]триазоло[4,3-*a*]пиримидин-5-она (1) в газовой и водной средах и оценке влияния водородных связей на относительную стабильность таутомерных форм.

Таутомерный состав находили путём расчёта свободных энергий возможных таутомерных форм с учётом конформеров и стереоизомеров (рис. 1). Вычисления проводили в пакете программ Gaussian 09 [16] в рамках теории функционала плотности (DFT) с использованием метода B3LYP и базисного набора 6-311++G(2d,2p) [17]. Для учёта влияния растворителя использовалось приближение IEF-PCM [18]. Критерием соответствия полученных в результате оптимизации геометрических параметров молекул глобальному минимуму энергии служило отсутствие отрицательных значений в рассчитанных частотах нормальных колебаний.

Таутомерные формы J-3, J-4, K-3 и K-4 оказались неустойчивыми – при оптимизации геометрических параметров наблюдались безбарьерные переходы водорода от атома О к атому N(3) с образованием таутомеров A-1 и B-1.

внутримолекулярные водородные связи)

На рис. 1 показаны таутомерные формы **A**–**K** соединения **1**, для которых в табл. 1 представлены относительные энергии Гиббса (ΔG^{298}), дипольные моменты (μ) и относительные концентрации (x) в гипотетических равновесных смесях в вакууме и водном растворе. Значения x рассчитаны с помощью уравнений (1) и (2):

$$K_i = e^{-\Delta G_{RT}}, \qquad (1)$$

$$x = \frac{K_i}{\sum_{i=1}^n K_i},$$
(2)

где ΔG представляет собой разницу между энергиями Гиббса соответствующего таутомера *i* и наиболее стабильного таутомера в равновесной смеси при соответствующей температуре *T*, K_i – константа равновесия между этими таутомерами, *R* – универсальная газовая постоянная.

В результате вычислений установлено, что как в вакууме (а следовательно, и в неполярных растворителях), так и в водном растворе доминирующим является таутомер A-1 (3-амино[1,2,4]триазоло[4,3-а]пиримидин-5(1H)-он), причём в вакууме его равновесная концентрация приближается к 100% (табл. 1). В водном растворе в значимых концентрациях появляются более полярные таутомеры B-1 (3-амино[1,2,4]триазоло[4,3-а]пиримидин-5(8H)-он, 2.6%) и C-1 (3-амино-5-оксо-5H-[1,2,4]триазоло[4,3-а]пиримидин-2-иум-8-ид, 0.1%). Следует отметить, что таутомерные формы A-1 и C-1 найдены экспериментально при рентгеноструктурных и спектральных исследованиях производных соединения 1 [12, 15, 19].

Триазолопиримидиновый фрагмент таутомеров А–С плоский. Рассчитанные геометрические параметры таутомеров А-1 и С-1 близки к экспериментально найденным в аналогичных соединениях [12, 15].

Таблица 1

Вакуум				Водный раствор			
Структура	Δ <i>G</i> ²⁹⁸ , ккал/моль	μ, Д	<i>x</i> , %	Структура	ΔG^{298} , ккал/моль	μ, Д	<i>x</i> , %
A-1	0.00	1.88	~100	A-1	0.00	2.74	97.25
B-1	6.84	4.58	9.7×10 ⁻⁴	B-1	2.13	6.59	2.65
C-1	10.98	5.53	9.0×10^{-7}	C-1	4.06	7.93	0.10
D-1	15.25	6.73	6.6×10^{-10}	D-1	10.74	9.77	1.3×10^{-6}
D-2	20.77	6.13	5.9×10^{-14}	D-2	13.45	9.33	1.4×10 ⁻⁸
E-1	42.48	11.93	7.3×10^{-30}	E-1	25.40	17.38	2.3×10^{-17}
E-2	43.33	11.10	1.7×10^{-30}	E-2	26.89	16.38	1.9×10^{-18}
F-1	17.26	3.82	2.2×10^{-11}	F-1	15.46	5.84	4.5×10^{-10}
F-2	17.26	3.82	2.2×10^{-11}	F-2	15.46	5.84	4.5×10^{-10}
F-3	23.78	4.94	3.7×10^{-16}	F-3	18.53	7.79	2.6×10^{-12}
F-4	23.78	4.94	3.7×10^{-16}	F-4	18.53	7.79	2.6×10^{-12}
G-1	20.85	5.88	5.2×10^{-14}	G-1	16.00	8.51	1.8×10^{-10}
G-2	24.55	8.62	1.0×10^{-16}	G-2	16.75	12.46	5.2×10^{-11}
I-1	18.23	2.26	4.3×10^{-12}	I-1	17.74	3.14	9.6×10^{-12}
I-2	31.92	2.95	4.0×10^{-22}	I-2	29.55	4.78	2.1×10^{-20}
I-3	30.18	3.16	7.6×10 ⁻²¹	I-3	26.39	4.50	4.4×10^{-18}
I-4	29.91	5.60	1.2×10^{-20}	I-4	25.18	8.00	3.4×10^{-17}
J-1	41.89	5.94	2.0×10 ⁻²⁹	J-1	34.45	8.87	5.4×10^{-24}
J-2	44.81	8.18	1.4×10^{-31}	J-2	34.71	11.97	3.5×10^{-24}
K-1	62.27	10.84	2.3×10 ⁻⁴⁴	K-1	44.52	16.53	2.3×10^{-31}
K-2	66.34	12.87	2.4×10^{-47}	K-2	45.11	19.70	8.4×10^{-32}

Относительные энергии Гиббса (ΔG^{298}), дипольные моменты (μ) и относительные концентрации (x) в равновесных смесях таутомеров А–К при температуре 298 К

В молекулах **А**–**С** аминогруппа находится в тригонально-пирамидальной конфигурации (сумма валентных углов варьируется в пределах 344–356°) и сопряжена с триазольным циклом, о чём свидетельствует длина связи C(3)–N(3), которая заметно меньше в сравнении со стандартной длиной [20] одинарной связи $N(sp^3)$ –C(sp^2) (1.43–1.45 Å). В таутомерах **А-1** и **В-1**, независимо от полярности среды, она составляет 1.356 и 1.366 Å соответственно, а в мезо-ионной форме **С-1** – 1.349 Å в вакууме и 1.334 Å в водном растворе. О сопряжении аминогруппы с триазольным циклом свидетельствует также высокое значение индекса делокализации электронной плотности (DI) [21] в межатомном пространстве связи C(3)–N(3) (DI = 1.10–1.19). Связь О–C(5) в таутомерах **А–С** имеет длину 1.218–1.237 Å, аналогично другим [1,2,4]триазоло-[4,3-*a*]пиримидин-5-онам (1.203–1.248 Å) [12, 15, 22, 23].

Один из наиболее универсальных подходов к оценке прочности внутримолекулярных водородных связей заключается в топологическом анализе распределения электронной плотности в критических точках (КТ) связи (3, – 1) [24–26] в рамках теории Бейдера "Атомы в молекулах" (QTAIM) [21]. Топологические параметры КТ (3, –1) вычисляли с использованием программного комплекса AIMAll [27]. Энергии водородной и других внутримолекулярных связей рассчитывали по уравнению, предложенному в работе [24]: $E_{\rm B} = 0.5 \cdot v(\mathbf{r})$, где $v(\mathbf{r})$ – плотность потенциальной энергии в критической точке связи (3, –1).

На основе топологического анализа распределения электронной плотности в молекулах таутомеров соединения **1** найдены внутримолекулярные водородные связи NH····O и OH····N (рис. 1, табл. 2). Качественным критерием прочности водородных связей могут служить лапласиан $\nabla^2 \rho(\mathbf{r})$ электронной плотности и значение плотности электронной энергии $h_e(\mathbf{r})$ в критических точках (3, -1) [28]. Наиболее прочными являются связи OH····N в молекулах **G-1** (-7.47 ккал/моль в вакууме и -8.65 ккал/моль в воде) и **I-1** (-13.91 ккал/моль в вакууме и -15.04 ккал/моль в воде). Эти связи характеризуются высокими значениями электронной плотности $\rho(\mathbf{r})$, положительными значениями $\nabla^2 \rho(\mathbf{r})$ и отрицательными значениями $h_e(\mathbf{r})$, что позволяет отнести связи OH···N к водородным связям средней прочности [28].

Внутримолекулярные водородные связи NH····O в остальных таутомерах соединения **1** характеризуются разреженной электронной плотностью в межатомном пространстве (значение $\rho(\mathbf{r})$ не более 0.021 е· a_0^{-3}), положительными знаками $\nabla^2 \rho(\mathbf{r})$ и $h_e(\mathbf{r})$ и относятся к слабым водородным связям [28], энергия которых равна 2.16–6.02 ккал/моль. Наибольшая энергия связи NH···O наблюдается в мезоионной форме C-1. Геометрические параметры внутримолекулярных водородных связей NH···O наиболее стабильных таутомеров **A**–**C** представлены на рис. 2.

Следует отметить, что в полярных средах наблюдается заметное увеличение равновесной концентрации таутомера C-1 по сравнению с имино- и гидроксиформами D-K, при этом энергия внутримолекулярной водородной связи в таутомере C-1 по сравнению с таутомерами D-K в водном растворе не превышает 2.4 ккал/моль (табл. 2), что существенно меньше разницы свободных энергий соответствующих таутомеров (табл. 1). Поэтому определяющим фактором бо́льшей термодинамической стабильности таутомеров А-С по сравнению с имино- и гидроксиформами D-K является не прочность внутримолекулярной водородной связи, а характер распределения электронной плотности в триазолопиримидиновой системе. Однако, поскольку энергия BBC наиболее стабильных таутомеров превышает 3 ккал/моль (табл. 2), эта связь может оказывать существенное влияние на направленность рециклизаций триазолопиримидинового фрагмента. Например, аминозамещённые соединения **1** устойчивы к перегруппировке Димрота по сравнению с другими [1,2,4]триазоло[4,3-*a*]пиримидинами, в которых отсутствует аналогичная BBC [15]. Необычная направленность перегруппировки также характерна для мезоионных 2-замещённых 3-амино[1,2,4]триазоло[4,3-*a*]пиримидин-5-онов (аналогов формы C), которые при нагревании превращаются не в обычные продукты перегруппировки Димрота – [1,5-*a*]-изомеры, а в 1-замещённые 3-амино[1,2,4]триазоло[4,3-*a*]пиримидин-5-оны (аналоги таутомерной формы A) [12].

Таблица 2

Топологические характеристики* распределения электронной плотности в критических
точках связи (3, –1), длины (d) и энергии внутримолекулярных связей (E _B)
таутомеров А–К в газовой фазе и водном растворе

	ĩ	•			· · ·						
Структура**	Связь	d, Å	$\rho(\mathbf{r}),$ e: a_0^{-3}	$\nabla^2 \rho(\mathbf{r}),$ e: a_0^{-5}	$h_{\rm e}(\mathbf{r})$, a. e.	3	<i>Е</i> в, ккал/моль				
Газовая фаза											
A-1	N(3)H…O	2.067	0.020	0 074	0.0021	0.058	-4 50				
B-1	$N(3)H\cdots O$	2.189	0.016	0.059	0.0019	0.103	-3 43				
C-1	$N(3)H\cdots O$	1.951	0.026	0.091	0.0017	0.041	-6.02				
D-1	$N(3)H\cdots O$	2.312	0.014	0.049	0.0014	0.263	-2.99				
E-1	N(3)H…O	2.295	0.014	0.050	0.0014	0.185	-3.05				
F-1	N(3)H…O	2.227	0.017	0.058	0.0016	0.197	-3.54				
F-2	N(3)H…O	2.227	0.017	0.058	0.0016	0.197	-3.54				
G-1	$OH \cdots N(3)$	1.920	0.034	0.084	-0.0014	0.046	-7.47				
G-2	N(3)H…O	2.399	0.011	0.044	0.0018	0.299	-2.32				
I-1	$OH \cdots N(3)$	1.710	0.052	0.096	-0.0101	0.016	-13.91				
I-2	$OH \cdots N(3)$	2.331	0.018	0.054	0.0010	0.405	-3.67				
I-3	N(3)…O	2.847	0.010	0.045	0.0020	0.459	-2.27				
I-4	N(3)H···O	2.318	0.011	0.039	0.0010	0.046	-2.44				
J-1	N(3)…O	2.858	0.010	0.043	0.0019	0.305	-2.20				
J-2	N(3)H…O	2.297	0.013	0.049	0.0017	0.108	-2.77				
K-1	N(3)…O	2.903	0.009	0.040	0.0017	0.756	-2.04				
K-2	N(3)H…O	2.364	0.011	0.042	0.0014	0.159	-2.40				
			Водны	й раствор							
A-1	N(3)H…O	2.148	0.018	0.069	0.0020	0.070	-4.10				
B-1	N(3)H···O	2.212	0.017	0.061	0.0020	0.099	-3.56				
C-1	N(3)H···O	2.103	0.021	0.075	0.0021	0.066	-4.56				
D-1	$N(3)H\cdots O$	2.246	0.016	0.056	0.0016	0.170	-3.43				
D-2	N(3)…O	2.970	0.010	0.040	0.0015	2.529	-2.24				
E-1	$N(3)H\cdots O$	2.209	0.017	0.060	0.0016	0.109	-3.69				
E-2	N(3)…O	2.973	0.010	0.038	0.0013	0.857	-2.15				
F-1	$N(3)H\cdots O$	2.190	0.018	0.063	0.0017	0.146	-3.85				
F-2	$N(3)H\cdots O$	2.190	0.018	0.063	0.0017	0.146	-3.85				
F-3	N(3)····O	2.951	0.010	0.041	0.0015	1.711	-2.30				
F-4	$N(3) \cdots O$	2.951	0.010	0.041	0.0015	1.711	-2.30				
G-1	$OH \cdots N(3)$	1.869	0.038	0.087	-0.0030	0.043	-8.65				
G-2	$N(3)H\cdots O$	2.315	0.012	0.051	0.0021	0.192	-2.69				
I-1	$OH \cdots N(3)$	1.685	0.056	0.094	-0.0123	0.018	-15.04				
1-2	$OH \cdots N(3)$	2.481	0.014	0.047	0.0012	0.170	-2.93				
I-3 I 4	$N(3) \cdots 0$	2.870	0.010	0.043	0.0018	0.401	-2.23				
I-4 I 1	$N(3)H\cdots O$	2.262	0.014	0.054	0.0019	0.13/	-5.02				
J-1 1/ 1	$N(3) \cdots 0$ N(2) = 0	2.8//	0.010	0.041	0.0017	0.252	-2.1/				
K-1 1/2	$N(3) \cdots 0$	2.905	0.010	0.039	0.0010	0.415	-2.07				
K-2	IN(3)H…O	2.233	0.013	0.041	0.0017	0.04/	-2.10				

^{*} Электронная плотность ($\rho(\mathbf{r})$), её лапласиан ($\nabla^2 \rho(\mathbf{r})$), эллиптичность (ε) и плотность электронной энергии $h_e(\mathbf{r}) = v(\mathbf{r}) + g(\mathbf{r}) (v(\mathbf{r}) - плотность потенциальной энергии и <math>g(\mathbf{r}) - плотность$ кинетической энергии) в критических точках связи (3, -1).

^{**} Внутримолекулярные водородные связи отсутствуют (по данным QTAIM) в таутомерах D-2, E-2, F-3 и F-4 в газовой фазе и в таутомере J-2 в водном растворе.

Рис. 2. Оптимизированные структуры и геометрические параметры внутримолекулярных водородных связей таутомеров **А–С** в вакууме и водном растворе (IEF-PCM) (B3LYP/6-311++G(2d,2p))

По результатам анализа функции распределения электронной плотности по методу QTAIM кроме водородных связей обнаружены также слабые внутримолекулярные контакты между атомами N(3) и O в таутомерах **D-2**, **E-2**, **F-3**, **F-4**, **I-3**, **J-1** и **K-1**. Связи N(3)…O принадлежат к взаимодействиям замкнутых оболочек ($\nabla^2 \rho(\mathbf{r}) > 0$ и $h_e(\mathbf{r}) > 0$) и носят, по-видимому, электростатический характер. По топологическим параметрам эти взаимодействия характеризуются как предельно слабые, их энергии лежат в диапазоне 2.04– 2.30 ккал/моль. Несмотря на то, что энергия этих взаимодействий соизмерима с энергией внутримолекулярных водородных связей в некоторых молекулах, в отличие от водородных связей, взаимодействия N(3)…O являются динамически неустойчивыми, о чём свидетельствуют значения эллиптичности (є). Динамическая нестабильность связи N(3)…O особенно сильно проявляется в таутомерах **D-2**, **E-2**, **F-3** и **F-4**. В этих таутомерах эллиптичность связи N(3)…O характеризуется необычно высокими значениями (табл. 2), а критическая точка связи (3, -1) находится предельно близко к критической точке (3, +1) соответствующего цикла. При незначительных изменениях внешних факторов может происходить слияние (вырождение) критических точек (3, -1) и (3, +1), что будет приводить к разрушению этого цикла и исчезновению внутримолекулярного взаимодействия [21]. В качестве факторов внешнего влияния могут быть повышение температуры, изменение полярности среды или окружения. Поэтому в этих таутомерах в водном растворе наблюдается образование контактов N(3)…O, тогда как в вакууме взаимодействие между атомами N(3) и O отсутствует.

Таким образом, установлено, что 3-амино[1,2,4]триазоло[4,3-а]пиримидин-5-он в газовой фазе существует преимущественно в таутомерной форме 3-амино[1,2,4]триазоло[4,3-а]пиримидин-5(1*H*)-она, а в водном растворе в виде равновесной смеси 1*H*-таутомера, 8*H*-таутомера и 3-амино-5-оксо-5*H*-[1,2,4]триазоло[4,3-а]пиримидин-2-иум-8-ида. В этих таутомерах присутствует слабая ВВС между амино- и карбонильной группами (3.5–6.0 ккал/моль), которая не вносит значительного вклад в их относительную термодинамическую стабильность, однако может оказывать существенное влияние на процессы рециклизации триазолопиримидинового фрагмента производных 3-амино[1,2,4]триазоло[4,3-а]пиримидин-5-она.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки РФ в рамках базовой части государственного задания № 2014/143 на выполнение государственных работ в сфере научной деятельности (проект № 2945) и Российского фонда фундаментальных исследований (грант 13-03-00253).

СПИСОК ЛИТЕРАТУРЫ

- 1. G. Fischer, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Elsevier, 2007, vol. 95, p. 143.
- G. Hajós, Z. Riedl, in *Comprehensive Heterocyclic Chemistry III*, A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor (Eds.), Elsevier, Oxford, 2008, vol. 11, p. 671.
- G. Fischer, in Advances in Heterocyclic Chemistry, A. R. Katritzky (Ed.), Academic Press, 1993, vol. 57, p. 81.
- 4. M. A. E. Shaban, A. E. A. Morgaan, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Academic Press, 1999, vol. 73, p. 131.
- E. S. H. El Ashry, N. Rashed, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Academic Press, 1998, vol. 72, p. 127.
- S. Orihuela, M. P. Sánchez, M. Quirós, J. Molina, R. Faure, J. Mol. Struct., 415, 285 (1997).
- M. Abul Haj, J. M. Salas, M. Quirós, J. Molina, R. Faure, J. Mol. Struct., 519, 165 (2000).
- 8. J. A. Dobado, S. Grigoleit, J. Molina, J. Chem. Soc., Perkin Trans. 2, 1675 (2000).
- A. Salgado, C. Varela, A. M. García Collazo, F. García, P. Pevarello, I. Alkorta, J. Elguero, J. Mol. Struct., 987, 13 (2011).
- E. S. H. El Ashry, Y. El Kilany, N. Rashed, H. Assafir, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Academic Press, 1999, vol. 75, p. 79.
- E. S. H. El Ashry, S. Nadeem, M. R. Shah, Y. El Kilany, in *Advances in Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Elsevier, 2010, vol. 101, p. 161.
- 12. V. M. Chernyshev, A. V. Astakhov, Z. A. Starikova, Tetrahedron, 66, 3301 (2010).
- 13. А. В. Астахов, В. М. Чернышев, *ХГС*, 1519 (2012). [*Chem. Heterocycl. Compd.*, **48**, 1417 (2012).]

- 14. А. В. Астахов, Р. И. Зубатюк, Р. С. Абагян, В. М. Чернышев, *XTC*, 1618 (2013). [*Chem. Heterocycl. Compd.*, **49**, 1500 (2014).]
- Р. И. Васькевич, П. В. Савицкий, Ю. Л. Зборовский, В. И. Станинец, Э. Б. Русанов, А. Н. Чернега, *Журн. орган. химии*, 1417 (2006). [*Russ. J. Org. Chem.*, **42**, 1403 (2006).]
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford, 2009.
- 17. A. D. Becke, J. Chem. Phys., 98, 1372 (1993).
- 18. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 105, 2999 (2005).
- 19. А. В. Астахов, В. М. Чернышев, *XTC*, 1416 (2010). [*Chem. Heterocycl. Compd.*, **46**, 1144 (2010).]
- 20. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. J. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- 21. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford, Clarendon Press, 1990.
- 22. H. M. Hassaneen, H. A. Abdelhadi, T. A. Abdallah, Tetrahedron, 57, 10133 (2001).
- 23. A. S. Shawali, N. A. H. Ali, A. S. Ali, D. A. Osman, J. Chem. Res., 327 (2006).
- 24. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 285, 170 (1998).
- 25. M. V. Sigalov, E. P. Doronina, V. F. Sidorkin, J. Phys. Chem. A, 116, 7718 (2012).
- 26. P. Durlak, K. Mierzwicki, Z. Latajka, J. Phys. Chem. B, 117, 5430 (2013).
- 27. T. A. Keith, *AIMAll* (Version 13.11.04), TK Gristmill Software, Overland Park, 2013. http://aim.tkgristmill.com
- 28. I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc., 122, 11154 (2000).

¹ Южно-Российский государственный политехнический университет (НПИ) им. М. И. Платова,

Поступило 20.02.2014

ул. Просвещения, 132, Новочеркасск 346428, Россия e-mail: astakhow@mail.ru