Е. В. Зайцева^{1*}, А. В. Шернюков¹, С. А. Амитина¹, Р. Тамура², И. А. Григорьев¹, Д. Г. Мажукин^{1,3}

СИНТЕЗ ДИАСТЕРЕОМЕРНЫХ СПИРОЦИКЛИЧЕСКИХ НИТРОКСИЛЬНЫХ РАДИКАЛОВ РЯДА З-ИМИДАЗОЛИНА С ДВУМЯ МЕЗОГЕННЫМИ ГРУППАМИ

На основе алкилароматических α-гидроксиламинокетонов, содержащих *n*-гидрокси-(алкокси)арильный заместитель, получены диастереомерные стабильные спироциклические нитроксильные радикалы ряда 3-имидазолина, имеющие в составе две различные или две одинаковые мезогенные группы. Анализ спектров ЯМР их диамагнитных восстановленных производных позволил установить геометрическое строение полученных соединений.

Ключевые слова: 4-гидроксициклогексанон, 3-имидазолины, спироциклические нитроксильные радикалы, ацилирование по Мицунобу, конденсация.

Для магнитных жидких кристаллов (ЖК) было предсказано существование необычных магнитоэлектрических и магнитооптических свойств [1]. В результате исследований последнего десятилетия группой проф. Тамура был открыт новый класс органических хиральных стержнеобразных ЖК на основе нитроксильных радикалов (НР) пирролидинового ряда (PROXYLs) **1** (рис. 1) [2, 3], которые проявили уникальные межмолекулярные ферромагнитные взаимодействия, индуцируемые слабыми магнитными полями в различных ЖК фазах [4–6]. Сюда можно отнести феномен нелинейной парамагнитной восприимчивости [7, 8], генерацию второй оптической гармоники [9], существование двух магнитных бистабильных состояний в ферроэлектрической ЖК фазе [10] хирального нитроксида и др.

Рис. 1. Пример ЖК НР пирролидинового ряда PROXYLs

В этой связи представляется перспективным синтез и исследование новых органических ЖК парамагнетиков с центральным фрагментом на основе стабильного HP, но имеющим другой тип гетероциклического остова, например производных 2,5-дигидроимидазола. Введение дополнительного sp^2 -гибридного атома азота позволит модифицировать молекулы радикалов за счёт донорных свойств иминного атома азота, что может привести к созданию веществ, переход которых в ЖК состояние может происходить при изменении pH среды.

Спироциклический фрагмент, использующийся как структурное звено для построения молекулы термотропного ЖК соединения, является темой исследований ряда зарубежных научных групп. Так, в работах проф. Фёгтле с сотр. описан синтез стержнеобразных ЖК 2–4 на основе моноспиро- и диспиропроизводных циклобутанового, циклопентанового и циклогексанового рядов (рис. 2) [11–15].

Рис. 2. Спироциклические термотропные ЖК 2-8

Многообещающие результаты были получены в синтезе ферроэлектрических ЖК (ФЖК) **5** на основе триангулановых структур (3+3+3) [16, 17] и *гем*-дифторпроизводных диспироциклопропанов (3+6+3) **6**, проявляющих смектические фазы SmA и SmC* в различных условиях [18]. Совсем недавно проф. Лемье с сотр. обнаружили, что аксиально-хиральные мезогенные 5-алкокси-5'-алкокси(алкоксибензоилокси)-2,2'-спиробииндан-1,1-дионы **7**, **8** способны выступать либо как эффективные хиральные допанты для образования ферроэлектрических ЖК композиций [19], либо быть самостоятельными ФЖК со значениями спонтанной поляризации $P_{\rm S}$ от 102 до 120 нКл·см⁻², что в три раза превышает значение $P_{\rm S}$, когда-либо полученное для аксиально-хирального SmC* мезогена [20].

Настоящая статья является продолжением начатых нами ранее исследований, имеющих своей целью получение спироциклических нитроксильных моно- и бирадикалов (СНР) ряда азолов [21–23], обладающих мезогенными свойствами, или способных выступать в качестве спиновых зондов для изучения ЖК методами ЭПР, будучи растворенными в диамагнитных ЖК материалах [24]. В данной работе описан синтез и проведено установление пространственного строения двух типов диастереомерных НР 3-имидазолинового ряда, содержащих в своём составе спироциклический фрагмент, а также две мезогенные группы при атоме С-4 гетероцикла и в положении 4 циклогексанового цикла.

Эффективным методом синтеза функционально замещённых HP 3-имидазолина является конденсация замещённых алкилароматических α-гидроксиламинокетонов с циклическими кетонами в присутствии аммиака или ацетата аммония с последующим окислением промежуточных 1-гидрокси-3-имидазолинов [25–28]. Вследствие высокой стабильности HP ряда имидазола [29], возможна их дальнейшая модификация по имеющимся в ароматическом и спироциклическом заместителях гидроксильным группам с сохранением радикального центра. Действительно, взаимодействием *O*-алкилированного α-гидроксиламинокетона 9 с 4-гидроксициклогексаноном (10) [30] в насыщенном аммиаком метаноле и последующим окислением промежуточного 1-гидроксиимидазолина двуокисью марганца в MeOH был синтезирован HP 11 с выходом 45%. С целью получения нитроксидов 12а,b с двумя различными мезогенными группами было необходимо провести реакцию ацилирования радикала 11, имеющего в циклогексановом фрагменте гидроксильную группу, с производными 4-алкоксибензойных кислот.

В процессе подбора оптимальных условий ацилирования вторичной гидроксильной группы в нитроксиде 11 были протестированы следующие системы: а) 4-алкилоксибензойная кислота, карбонилдиимидазол, CHCl₃; б) 4-алкилоксибензойная кислота, дициклогексилкарбодиимид, ТГФ; в) 4-алкилоксибензойная кислота, дициклогексилкарбодиимид, ДМАП, ТГФ;

г) ангидрид 4-алкилоксибензойной кислоты, ДМАП, Et_3N , $TГ\Phi$; д) хлорангидрид 4-алкилоксибензойной кислоты, NEt_3 , $TГ\Phi$; е) хлорангидрид 4-алкилоксибензойной кислоты, NEt_3 , CH_2Cl_2 ; ж) 4-алкилоксибензойная кислота, пиридин, $CHCl_3$, $SOCl_2$. Ни один из перечисленных выше способов не привёл к желаемым ацилированным производным **12**, конверсия радикала **11** в этих условиях не наблюдается. Лишь только проведение ацилирования в условиях реакции Мицунобу [31] позволило получить целевые нитроксиды **12а,b** с выходами 39% в виде смеси диастереомеров, которую затем подвергли хроматографическому разделению методом препаративной TCX на силикагеле, выделив индивидуальные изомерные нитроксиды *цис*-**12а,b** и *транс*-**12а,b** в соотношении 2.3:1.0.

Вследствие высокой липофильности полученных СНР нам не удалось вырастить приемлемые кристаллы для проведения рентгеноструктурного исследования, поэтому для доказательства структуры и определения стереохимического строения оба изомерных нитроксида *цис*-12b и *mpaнс*-12b были восстановлены в системе Zn–NH₄Cl до соответствующих диамагнитных *N*-гидроксипроизводных *цис*-13b и *mpaнс*-13b.

Стереохимия соединений **13b** была определена в пользу экваториального расположения группы NOH на основании анализа их спектров ЯМР с учётом вкладов достаточно большой конформационной энергии имидазолинового фрагмента (расчёт 2.1 ккал/моль) [32] и небольшой – ацильного заместителя (0.7–0.8 ккал/моль [33, 34]).

Основному диастереомеру **13b** было приписано строение *цис*-изомера. Так, в его спектре ЯМР ¹Н протон при атоме углерода С-8 не имеет характерных аксиально-аксиальных констант, что подразумевает его экваториальное расположение, также подтверждающееся наличием соответствующего кросс-пика в спектрах ROESY/NOESY между аксиальными протонами 6,10-CH_{ax} и *орто*-протонами фрагмента алкоксибензойной кислоты, что возможно только для аксиального расположения ацильного заместителя. В спектрах минорного соединения **13b** протоны циклогексанового кольца проявляются в виде сильносвязанной спиновой системы, вследствие чего необходимые константы были получены путём симуляции спектров (рис. 3). Это соединение было отнесено к *транс*-изомеру на основании наличия у протона 8-CH аксиально-аксиальных констант, что говорит о его аксиальном расположении и, соответственно, экваториальном расположении ацильного заместителя.

Для получения нитроксильного радикала 16, содержащего фенольную и вторичную гидроксильные группы, в качестве исходного соединения был использован синтезированный из ациклического нитрона 14 α -гидроксиламинокетон 15. Конденсация последнего с 4-гидроксициклогексаноном (10) в присутствии ацетата аммония и последующее окисление MnO₂ промежуточного 1-гидроксиимидазолина без его выделения и очистки привели к нитроксиду 16 с выходом 36%. При увеличении загрузок в описанной реакции с 1 до 10 ммоль выход радикала 16 уменьшался до 8–10%. Для получения радикала 16 в количествах, позволяющих рассматривать его в качестве синтетического блока, был применён модифицированный метод, заключающийся в использовании бензильной защиты фенольной группы. Для этого нитрон 14 подвергли реакции алкилирования с BnCl и далее действием концентрированной соляной кислоты на бензилпроизводное 17 был получен α -гидроксиламинокетон 18 с выходом 85%. Его конденсация с 4-гидрокси-

циклогексаноном (10) и окисление полученного имидазолина двуокисью марганца в хлороформе привели к нитроксиду 19 с выходом 41%. Дебензилирование радикала 19 гидрированием на палладиевом катализаторе неизбежно сопровождалось побочным процессом восстановления фрагмента N–O[•] до гидроксиламина. Окисление полученного имидазолина MnO_2 в метаноле привело к целевому нитроксиду 16 с выходом 45%. Несмотря на то, что выходы продуктов в вышеописанной цепочке превращений являются средними, все стадии синтеза воспроизводимы и пригодны для масштабирования, поэтому для наработки целевого нитроксида 16 был выбран именно этот синтетический путь.

Двойное ацилирование нитроксида 16 *пара*-нонилоксибензойной кислотой в условиях реакции Мицунобу дало диастереомерную смесь радикалов 20 с выходом 41%. Хроматографическое разделение полученной смеси методом препаративной TCX на силикагеле позволило выделить индивидуальные изомеры *цис*-20 и *транс*-20 в соотношении 2.7:1.0. Для установления стереохимии полученных нитроксидов 20 каждый из изомеров был восстановлен в системе Zn–NH₄Cl до соответствующих диамагнитных *N*-гидроксипроизводных *цис*-21 и *транс*-21, строение которых аналогично соединениям 13b было установлено на основании анализа их спектров ЯМР ¹H и ¹³C.

Для нитроксидов *цис*-12a,b, *транс*-12a,b, *цис*-20 и *транс*-20 были записаны термограммы дифференциальной сканирующей калориметрии (ДСК) в температурном диапазоне 25–150 °C, в котором эти соединения проявили высокую термодинамическую стабильность. Для радикалов *цис*-12a,b, *транс*-12a,b и *транс*-20 на кривых термограммы ДСК были зафиксированы только пики переходов из кристаллического состояния в изотропное. Для радикала *цис*-20 на термограмме ДСК при нагревании наблюдаются два пика. Однако

Рис. 3. Фрагменты спектров ЯМР ¹Н соединения *транс*-13b, содержащие сигналы циклогексанового кольца: *а*) экспериментальный спектр (500 МГц), *b*) симулированный спектр (500 МГц). Для большей наглядности показана симуляция рассматриваемой спиновой системы с теми же параметрами, как и *b*), но в более высоком поле: *c*) 2000 МГц, *d*) 10000 МГц

наблюдение фазовых переходов соединения *цис*-20 с использованием поляризационного микроскопа показало, что эти пики соответствуют полиморфным переходам, при этом появления мезофаз для этого соединения не наблюдалось. В результате проведённого исследования можно сделать вывод, что ни одно из полученных нами соединений не является ЖК в указанном температурном диапазоне.

Таким образом, продемонстрирована перспективность использования 4-гидроксициклогексанона в синтезе бифункциональных спироциклических нитроксильных радикалов ряда 3-имидазолина и разработан подход к получению диастереомерных нитроксильных радикалов, содержащих в своём составе две различные или две одинаковые мезогенные группы. Пространственное строение полученных изомерных нитроксидов установлено при помощи анализа спектров ЯМР их диамагнитных восстановленных производных – гидроксиламинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Vector-22 фирмы Bruker в таблетках КВг. Спектры ЯМР ¹Н и ¹³С записаны на спектрометрах фирмы Bruker AV-400 (400 и 100 МГц соответственно, соединения **17**, **18**), Bruker DRX-500 (500 и 125 МГц соответственно, соединения *цис*-**13b** и *mpaнс*-**13b**) и Bruker AV-600 (600 и 150 МГц соответственно, соединения *цис*-**21** и *mpaнс*-**21**). Растворители – CDCl₃–ДМСО-d₆, 5:1 (спектры ЯМР ¹Н соединений **13b**, **21**) и ДМСО-d₆ (спектры ЯМР ¹H и ¹³С остальных соединений); в качестве внутреннего стандарта использованы сигналы ДМСО-d₆ (2.50 м. д. для ядер ¹H, 39.5 м. д. для ядер ¹³С). Структуры *цис/транс*-изомеров соединений **13b** и **21** установлены с использованием стандартных одномерных спектров ЯМР и двумерных экспериментов (¹H–¹H NOESY, ¹H–¹H ROESY, ¹³C–¹H HETCOR, ¹H–¹³C HSQC, ¹H–¹³C HMBC). В экспериментах NOESY и ROESY исполь-

зовано время смешивания и спин-лока 0.3 с. Константы и химические сдвиги в имидазолинах 13b и 21 для циклогексановых спиновых систем уточнены путём симуляции с использованием программы gNMR (v5.0.6.0) [35]. Квантово-химические расчёты проведены на кластере Новосибирского государственного университета [36]. Первоначальные наборы конформеров генерировались с помощью программ ChemAxon's Marvin (conformers plugin) [37], Verachem Vconf [38]. Далее полученные структуры оптимизировали с помощью метода функционала плотности (функционал РВЕ [39], базис L22 [40], аналогичный сс-рСVTZ) программой PRIRODA [40]. ЭПР измерения проведены для растворов нитроксидов в CHCl₃ в концентрации 0.1 мМ с использованием ЭПР спектрометра X-диапазона (Elexsys E540, Bruker, Germany) со следующими настройками прибора: амплитуда модуляции 1 Гс, мощность микроволнового излучения 10 мВт, время записи спектра 40 с. g-Фактор радикалов рассчитывали, используя 2,2-дифенил-1-пикрилгидразил (g 2.0036) в качестве внешнего стандарта. Элементный анализ выполнен на автоматическом CHNS-анализаторе Euro ЕА3000 Температуры плавления и термограммы дифференциальной сканирующей калориметрии зарегистрированы на приборе марки FP 81 HT Mettler Toledo.

Контроль за ходом реакций осуществлён с помощью тонкослойной хроматографии на пластинах Sorbfil UV-254 и POLYGRAM ALOX N/UV₂₅₄, элюенты CHCl₃, CHCl₃-MeOH, гексан-EtOAc. Нитроксильные радикалы выделены и очищены методом колоночной хроматографии или препаративной TCX с использованием силикагеля Acros (0.060-0.200 мм). Для реакций ацилирования использован свежеперегнанный абсолютный ТГФ. Все другие растворители, если это не оговорено в тексте специально, дополнительной очистке не подвергались.

Исходные соединения, нитрон 14 и α-гидроксиламинокетоны 9, 15 синтезированы согласно патенту [41]. 4-Алкилоксибензойные кислоты [42], 4-гидроксициклогексанон (10) [30] получены согласно литературным методикам.

8-Гидрокси-3,3-диметил-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро[4.5]дец-1-ен-4-оксил (11). Раствор 2.135 г (5 ммоль) гидрохлорида гидроксиламинокетона **9** и 0.678 г (6 ммоль) 4-гидроксициклогексанона (**10**) в 75 мл МеОН, насыщенного аммиаком, выдерживают при 20 °С в течение 6 ч в атмосфере аргона, смесь концентрируют, к остатку добавляют 30 мл H₂O, осадок отфильтровывают и сушат. Полученное вещество смешивают с 50 мл CHCl₃ и 2.150 г (25 ммоль) MnO₂, суспензию перемешивают при 20 °С в течение 2 ч, избыток окислителя отфильтровывают, фильтрат упаривают в вакууме. Остаток хроматографируют на колонке с силикагелем, элюент гексан–ЕtOAc, 2:1. Выход 1.091 г (45%), светло-жёлтые мелкие кристаллы, т. пл. 105–107 °С (гексан–EtOAc). ИК спектр, v, см⁻¹: 3415 (OH), 1604, 1568 (C=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 74.01; H 10.11; N 5.70. С₃₀H₄₉N₂O₃. Вычислено, %: С 74.18; H 10.17; N 5.77.

8-[(4-Алкокси)бензоил]окси-3,3-диметил-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро[4.5]дец-3-ен-4-оксилы 12а,b (общая методика). В круглодонную колбу, заполненную аргоном, помещают 0.194 г (0.4 ммоль) нитроксида **11**, 0.445 г (1.7 ммоль) Ph₃P, 1.6 ммоль 4-алкилоксибензойной кислоты и 4 мл ТГФ. К полученной смеси при перемешивании добавляют 0.278 г (1.6 ммоль) диэтилазодикарбоксилата и перемешивают в токе аргона при 20 °C в течение 1 сут. Смесь концентрируют в вакууме водоструйного насоса, к остатку добавляют Et_2O и охлаждают до 0 °C. Осадок отфильтровывают, фильтрат концентрируют, остаток хроматографируют с помощью препаративной ТСХ на силикагеле, элюент гексан– EtOAc, 4:1, собирают фракции с $R_f 0.30$ (*цис*-изомеры) и с $R_f 0.35$ (*транс-изомеры*).

(5s,8s)-3,3-Диметил-8-[(4-октилокси)бензоил]окси-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (*цис*-12а). Выход 27%, светло-жёлтые мелкие кристаллы, т. пл. 61–63 °С (гексан). ИК спектр, v, см⁻¹: 1716 (С=О), 1608, 1596 (С=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 75.53; Н 9.45; N 4.06. С₄₅H₆₉N₂O₅. Вычислено, %: С 75.27; Н 9.69; N 3.90.

(5r,8r)-3,3-Диметил-8-[(4-октилокси)бензоил]окси-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (*транс*-12а). Выход 12%, светло-жёлтые мелкие кристаллы, т. пл. 68–70 °С (гексан). ИК спектр, v, см⁻¹: 1706 (С=О), 1608, 1596 (С=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 75.06; Н 9.47; N 4.08. С₄₅Н₆₉N₂O₅. Вычислено, %: С 75.27; Н 9.69; N 3.90.

(5s,8s)-3,3-Диметил-2-[(4-тетрадецилокси)фенил]-8-[(4-ундецилокси)бензоил]окси-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (цис-12b). Выход 27%, светло-жёлтый порошок, т. пл. 80–82 °С (гексан). ИК спектр, v, см⁻¹: 1712 (С=О), 1604, 1581 (С=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 75.76; Н 9.83; N 3.90. С₄₈H₇₅N₂O₅. Вычислено, %: С 75.85; Н 9.95; N 3.69.

(5*r*,8*r*)-3,3-Диметил-2-[(4-тетрадецилокси)фенил]-8-[(4-ундецилокси)бензоил]окси-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (*транс*-12b). Выход 12%, светло-жёлтый порошок, т. пл. 76–78 °С (гексан). ИК спектр, v, см⁻¹: 1706 (С=О), 1608, 1594 (С=N). Спектр ЭПР: триплет, *g*_{iso} 2.0058, *a*_N 1.45 мТл. Найдено, %: С 75.81; Н 9.84; N 3.85. С₄₈H₇₅N₂O₅. Вычислено, %: С 75.85; Н 9.95; N 3.69.

(5s,8s)-{4-Гидрокси-3,3-диметил-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро-[4.5]дец-3-ен-8-ил}(4-ундецилокси)бензоат (*цис*-13b). К раствору 51 мг (0.067 ммоль) соединения *цис*-12b в 1.5 мл ТГФ добавляют 8 мг (0.130 ммоль) цинковой пыли, затем к полученной суспензии при перемешивании добавляют раствор 4 мг (0.068 ммоль) NH₄Cl в 50 мкл H₂O и перемешивают при 20 °C в атмосфере аргона в течение 1 ч. Осадок Zn/ZnO отфильтровывают, фильтрат концентрируют, остаток растирают с EtOH, осадок отфильтровывают, промывают EtOH.

Выход 41 мг (80%), белый порошок, т. пл. 89–91 °С. ИК спектр, v, см⁻¹: 1709 (C=O), 1608, 1596 (C=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 0.80 (3H+3H, два т, *J* = 6.9, 2CH₃); 1.13–1.40 (38H, м, (CH₂)₁₁, (CH₂)₈); 1.37 (6H, с, 3,3-(CH₃)₂); 1.41 (2H, д. д. д. ${}^{2}J$ = 13.0, $J_{6e,7a}$ = 3.7, $J_{6e,7e}$ = 3.1, 6,10-CH_{eq}); 1.67–1.75 (4H, м, 2OCH₂CH₂); 1.94 (2H, м, ${}^{2}J$ = 13.0, $J_{7e,6a}$ = $J_{7e,8e}$ = 4.0, $J_{7e,6e}$ = 3.1, 7,9-CH_{eq}); 2.08 (2H, д. д. д. д. ${}^{2}J$ = 13.0, $J_{7a,6a}$ = 3.0, 7,9-CH_{ax}); 2.25 (2H, д. д. д. ${}^{2}J$ = 13.0, $J_{6a,7a}$ = 12.7, $J_{6a,7e}$ = 4.0, 6,10-CH_{ax}); 3.92 (2H, т, *J* = 6.5, Ar¹OCH₂); 3.95 (2H, т, *J* = 6.5, Ar²OCH₂); 5.14 (1H, д. д. д. д. ${}^{3}J$ = 8.8, H-3,5 Ar²); 7.37 (1H, с, NOH); 7.71 (2H, ${}^{3}J$ = 8.8, H-3,5 Ar¹); 6.86 (2H, ${}^{3}J$ = 8.8, H-2,6 Ar²). Спектр ЯМР ¹³С, 5 , м. д.: сигналы остова: 24.5 (к, 3,3-(CH₃)₂); 27.3 (т. C-7,9); 30.5 (т. C-6,10); 69.3 (д. C-8); 70.1 (с, C-3); 88.5 (с, C-5); 113.6 (д. C-3,5 Ar¹, C-3,5 Ar²); 122.5 (с, C-1 Ar²); 125.5 (с, C-1 Ar¹); 128.8 (д. C-2,6 Ar¹); 130.9 (д. C-2,6 Ar²); 160.0 (с, C-4 Ar¹); 162.3 (с, C-4 Ar²); 164.9 (с, COO); 172.1 (с, C-2); сигналы алкильных заместителей: 13.70 (к, 2CH₃); (далее – все триплеты) 22.04; 25.36; 25.38; 28.48; 28.54; 28.67; 28.68; 28.72; 28.91; 28.93; 28.94; 28.97; 29.00; 29.01; 31.24; 31.25; 67.38 (Ar¹O<u>C</u>H₂); 67.60 (Ar²O<u>C</u>H₂). Найдено, %: C 75.79; H 9.94; N 3.69. C₄₈H₇₆N₂O₅. Вычислено, %: C 75.75; H 10.06; N 3.68.

(5*r*,8*r*)-{4-Гидрокси-3,3-диметил-2-[(4-тетрадецилокси)фенил]-1,4-диазаспиро-[4.5]дец-3-ен-8-ил}(4-ундецилокси)бензоат (*транс*-13b) получен аналогично *цис*изомеру 13b восстановлением соединения *транс*-12b.

Выход 80%, белый порошок, т. пл. 87–89 °С. ИК спектр, v, см⁻¹: 1708 (С=О), 1607, 1597 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.82 (3H, т, *J* = 6.9, CH₃); 0.83 (3H, т, *J* = 6.9, CH₃); 1.16–1.44 (38H, м, (CH₂)₁₁, (CH₂)₈); 1.37 (6H, с, 3,3-(CH₃)₂); 1.56 (2H, м, ²*J* = 12.5, *J*_{6e,7a} = 3.7, *J*_{6e,7e} = 3.1, 6,10-CH_{eq}); 1.68–1.75 (4H, м, 2OCH₂CH₂); 1.97 (2H, м, ²*J* = 11.5, *J*_{7e,8a} = 5.0, *J*_{7e,6a} = 4.0, *J*_{7e,6e} = 3.1, 7,9-CH_{eq}); 2.00 (2H, м, *J*_{7a,6a} = 12.7, ²*J* = 11.5, *J*_{7a,8a} = 10.0, *J*_{7a,6e} = 3.7, 7,9-CH_{ax}); 2.01 (2H, м, *J*_{6a,7a} = 12.7, ²*J* = 12.5, *J*_{6a,7e} = 4.0, 6,10-CH_{ax}); 3.96 (2H, т, *J* = 6.5, Ar¹OCH₂); 3.98 (2H, т, *J* = 6.5, Ar²OCH₂); 4.90 (1H, м, *J*_{8a,7a} = *J*_{8a,9a} = 10.0, *J*_{8a,7e} = *J*_{8a,9e} = 5.0, 8-CH_{ax}); 6.89 (2H, д, ³*J* = 8.8, H-3,5 Ar¹); 6.92 (2H, д, ³*J* = 8.8, H-3,5 Ar²). Спектр ЯМР ¹³С, δ, м. д.: сигналы остова: 24.5 (к, 3,3-(CH₃)₂); 28.4 (т, C-7,9); 33.1 (т, C-6,10); 69.9 (с, C-3); 72.5 (д, C-8); 88.1 (с, C-5); 113.9 (д, C-3,5 Ar¹, C-3,5 Ar²); 122.3 (с, C-1 Ar²); 125.3 (с, C-1 Ar¹); 129.1 (д, C-2,6 Ar¹); 131.1 (д, C-2,6 Ar²); 160.1 (с, C-4 Ar¹); 162.4 (с, C-4 Ar²); 164.9 (с, COO); 171.9 (с, C-2); сигналы алкильных заместителей: 13.88 (к, 2CH₃); (далее – все триплеты) 22.12; 25.42; 25.47; 28.53; 28.60; 28.74; 28.77; 28.78; 28.99; 29.01; 29.04; 29.06; 29.07; 31.32; 67.44 (Ar¹0<u>C</u>H₂); 67.67 (Ar²O<u>C</u>H₂); Hайдено, %: C 75.80; H 9.92; N 3.70. C₄₈H₇₆N₂O₅.

N-Бензилиден-1-(4-бензилоксифенил)-2-метил-1-оксопропан-2-амин-*N*-оксид (17). Смесь 14.150 г (50 ммоль) нитрона 14, 16.455 г (130 ммоль) бензилхлорида и 5.600 г (100 ммоль) КОН в 100 мл абс. ЕtOH кипятят при перемешивании в течение 9 ч. Смесь охлаждают до 0 °C, осадок отфильтровывают, промывают водой и EtOH, кристаллизуют из EtOH. Выход 7.230 г (39%), белые мелкие иглы, т. пл. 153–155 °C. ИК спектр, v, см⁻¹: 1676 (С=О), 1602, 1575 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.85 (6H, с, 2CH₃); 5.03 (2H, с, OC<u>H</u>₂Ph); 6.89 (2H, д, *J* = 9.0, H Ar); 7.27–7.41 (9H, м, H Ar, PhC<u>H</u>=N→O); 7.95 (2H, д, *J* = 9.0, H Ar); 8.15–8.21 (2H, м, H Ar). Спектр ЯМР ¹³С, δ, м. д.: 25.8 (2CH₃); 69.9 (<u>C</u>Me₂); 80.2 (O<u>C</u>H₂Ph); 114.5 (2CH Ar); 126.6 (C Ar); 127.3 (2CH Ar); 128.0 (CH Ar); 128.4 (CH Ar); 128.5 (4CH Ar); 130.2 (C Ar); 130.4 (2CH Ar); 131.2 (2CH Ar); 133.4 (Ph<u>C</u>H=N→O); 135.8 (C Ar); 162.5 (C Ar); 194.0 (C=O). Найдено, %: C 76.97; H 5.99; N 3.67. C₂₄H₂₃NO₃. Вычислено, %: C 77.19; H 6.21; N 3.75.

Гидрохлорид 1-[4-(бензилокси)фенил]-2-(гидроксиламино)-2-метилпропан-1-она (18). Смесь 1.119 г (3 ммоль) соединения 17, 3 мл Et₂O и 3 мл конц. HCl перемешивают при 20 °C в течение 45 мин, охлаждают до 0 °C, осадок гидрохлорида α-гидроксиламинокетона 18 отфильтровывают, промывают ледяной водой и Et₂O, сушат и очищают перекристаллизацией из ацетона. Выход 0.820 г (85%), белый порошок, т. пл. 169–171 °C. ИК спектр, v, см⁻¹: 1679 (C=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.72 (6H, с, 2CH₃); 5.22 (2H, с, OCH₂Ph); 7.13 (2H, д, *J* = 8.8, H Ar); 7.14-7.46 (5H, м, H Ar); 7.99 (2H, д, *J* = 8.8, H Ar); 10.84 (1H, уш. с, NH₂⁺OH); 11.75 (2H, уш. с, NH₂⁺OH). Спектр ЯМР ¹³С, δ , м. д.: 20.8 (2CH₃); 69.1 (<u>C</u>Me₂); 69.9 (O<u>C</u>H₂Ph); 115.2 (2CH Ar); 126.0 (C Ar); 128.1 (2CH Ar); 128.3 (CH Ar); 128.8 (2CH Ar); 132.2 (2CH Ar); 136.6 (C Ar); 162.7 (C Ar); 196.3 (C=O). Найдено, %: C 63.23; H 5.99; Cl 10.90; N 4.34. C₁₇H₂₀CINO₃. Вычислено, %: C 63.45; H 6.26; Cl 11.02; N 4.35.

2-[4-(Бензилокси)фенил]-8-гидрокси-3,3-диметил-1,4-диязаспиро[4.5]дец-3-ен-4-оксил (19). В насыщенный метанольный раствор аммиака (40 мл) добавляют 1.446 г (4.5 ммоль) соединения **18** и 0.513 г (4.5 ммоль) 4-гидроксициклогексанона (**10**), перемешивают смесь при 20 °С в течение 3 ч в атмосфере аргона. Растворитель упаривают, остаток смешивают с 10 мл H₂O, осадок отфильтровывают и высушивают на воздухе до постоянного веса. Полученное вещество растворяют в 45 мл CHCl₃, добавляют 1.960 г (22.5 ммоль) MnO₂ и перемешивают смесь в течение 2 ч. Отфильтровывают осадок окислителя, фильтрат упаривают, остаток хроматографируют на колонке с силикагелем, элюент гексан–ЕtOAc, 2:1. Выход 0.705 г (41%), светложёлтые мелкие кристаллы, т. пл. 123–125 °С (гексан). ИК спектр, v, см⁻¹: 3415 (OH), 1606, 1568 (C=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 72.46; Н 7.08; N 7.36. С₂₃H₂₇N₂O₃. Вычислено, %: С 72.80; Н 7.17; N 7.38.

8-Гидрокси-2-(4-гидроксифенил)-3,3-диметил-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (16). А. Раствор 0.195 г (1 ммоль) 2-(гидроксиламино)-1-(4-гидроксифенил)- 2-метилпропан-1-она (15), 0.114 г (1 ммоль) 4-гидоксициклогексанона (10) и 0.308 г (4 ммоль) NH₄OAc в 5 мл MeOH кипятят в течение 4 ч. Растворитель упаривают, остаток смешивают с 7 мл ацетона, осадок отфильтровывают. Фильтрат упаривают, остаток растворяют в 10 мл CHCl₃ и добавляют 0.430 г (5 ммоль) MnO₂. Суспензию перемешивают при 20 °C в течение 2 ч, осадок окислителя отфильтровывают, фильтрат упаривают. Остаток хроматографируют на колонке с силикагелем, элюент гексан–EtOAc, 1:1. Выход 0.109 г (38%).

Б. К раствору 0.317 г (0.836 ммоль) нитроксида **19** в смеси 6 мл ЕtOH и 2 мл ТГФ добавляют 0.100 г 10% Pd/C, суспензию гидрируют при 20 °C и атмосферном давлении, пропуская ток H₂ в течение 1.5 ч. Катализатор отфильтровывают, фильтрат концентрируют, остаток растворяют в 20 мл MeOH, добавляют 1.000 г (11.494 ммоль) MnO₂ и перемешивают при 20 °C в течение 2 ч. Избыток окислителя отфильтровывают, фильтрат упаривают в вакууме, остаток хроматографируют на колонке с силикагелем, элюент гексан–EtOAc, 1:1. Выход 0.109 г (45%), жёлтые мелкие кристаллы, т. пл. 192–194 °C (гексан). ИК спектр, v, см⁻¹: 3425, 3141 (OH), 1608, 1577 (C=N). Спектр ЭПР: триплет, $g_{iso}2.0058$, a_N 1.45 мТл. Найдено, %: С 66.43; H 7.19; N 9.67. С₁₆H₂₁N₂O₃. Вычислено, %: С 66.42; H 7.32; N 9.68.

Цис- и транс-3,3-диметил-8-[(4-нонилокси)бензоил]окси-2-{4-[(4-нонилокси)бензоил]фенил}-1,4-диазаспиро[4.5]дец-3-ен-4-оксилы (20). В круглодонную колбу, заполненную аргоном, помещают 0.103 г (0.35 ммоль) соединения 16, 0.393 г (1.50 ммоль) Ph₃P, 0.369 г (1.40 ммоль) 4-нонилоксибензойной кислоты и 4 мл ТГФ. К полученной смеси добавляют 0.369 г (1.40 ммоль) диэтилазодикарбоксилата и перемешивают при 20 °С в течение 1 сут. Смесь концентрируют в вакууме, остаток разбавляют Et₂O, охлаждают до 0 °С, осадок отфильтровывают. После упаривания фильтрата остаток хроматографируют с помощью препаративной TCX на силикагеле, элюент гексан–EtOAc, 4:1, собирают фракции с R_f 0.30 (цис-изомер) и R_f 0.35 (транс-изомер). Суммарный выход 41%.

(5s,8s)-3,3-Диметил-8-[(4-нонилокси)бензоил]окси-2-{4-[(4-нонилокси)бензоил]фенил}-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (цис-20). Выход 30%, светло-жёлтые мелкие кристаллы. На термограмме ДСК при нагревании наблюдаются два пика при 86 и 91 °С. ИК спектр, v, см⁻¹: 1741, 1712 (С=О), 1606, 1577 (С=N). Спектр ЭПР: триплет, g_{iso} 2.0058, a_N 1.45 мТл. Найдено, %: С 73.39; Н 8.19; N 3.61. С₄₈H₆₅N₂O₇. Вычислено, %: С 73.72; Н 8.38; N 3.58.

(5*r*,8*r*)-3,3-Диметил-8-[(4-нонилокси)бензоил]окси-2-{4-[(4-нонилокси)бензоил]фенил}-1,4-диазаспиро[4.5]дец-3-ен-4-оксил (*транс-20*). Выход 11%, светложёлтые мелкие кристаллы, т. пл. 69–71 °С (гексан). ИК спектр, *v*, см⁻¹: 1741, 1712 (С=О), 1606, 1578 (С=N). Спектр ЭПР: триплет, *g*_{iso} 2.0058, *a*_N 1.45 мТл. Найдено, %: С 73.42; Н 8.25; N 3.60. С₄₈H₆₅N₂O₇. Вычислено, %: С 73.72; Н 8.38; N 3.58.

(5s,8s)-(4-Гидрокси-3,3-диметил-2-{4-[(4-нонилокси)бензоил]фенил}-1,4-диазаспиро[4.5]дец-3-ен-8-ил)(4-нонилокси)бензоат (цис-21) получен аналогично цисизомеру 13b восстановлением соединения цис-20.

Выход 78%, белый порошок, т. пл. 96–98 °С (ЕtOH). ИК спектр, v, см⁻¹: 1733, 1712 (С=О), 1604, 1581 (С=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 0.83 (6H, т, *J* = 6.9, 2CH₃); 1.18–1.44 (24H, м, 2(CH₂)₆); 1.42 (6H, с, 3,3-(CH₃)₂); 1.46 (2H, д. д. д. ²*J* = 13.0, *J*_{6e,7a} = 3.7, *J*_{6e,7e} = 3.1, 6,10-CH_{eq}); 1.70–1.77 (4H, м, 2OCH₂CH₂); 1.96 (2H, м, ²*J* = 13.0, *J*_{7e,6a} = *J*_{7e,8e} =

1217

= 4.0, $J_{7e,6e}$ = 3.1, 7,9-СН_{eq}); 2.09 (2H, д. д. д. д., ${}^{2}J$ = 13.0, $J_{7a,6a}$ = 12.7, $J_{7a,6e}$ = 3.7, $J_{7a,8e}$ = 3.0, 7,9-СН_{ax}); 2.29 (2H, д. д. д., ${}^{2}J$ = 13.0, $J_{6a,7a}$ = 12.7, $J_{6a,7e}$ = 4.0, 6,10-СН_{ax}); 3.98 (2H, т. J = 6.5, Ar²OC<u>H</u>₂); 4.02 (2H, т. J = 6.5, Ar³OC<u>H</u>₂); 5.17 (1H, д. д. д. $J_{8e,7e}$ = $J_{8e,9e}$ = 4.0, $J_{8e,7a}$ = $J_{8e,9a}$ = 3.0, 8-CH_{eq}); 6.91 (2H, д., ${}^{3}J$ = 8.8, H-3,5 Ar²); 6.98 (2H, д., ${}^{3}J$ = 8.8, H-3,5 Ar³); 7.23 (2H, д., ${}^{3}J$ = 8.6, H-3,5 Ar¹); 7.57 (1H, с, NOH); 7.88 (2H, д., ${}^{3}J$ = 8.6, H-2,6 Ar²); 7.92 (2H, д., ${}^{3}J$ = 8.8, H-2,6 Ar¹); 8.04 (2H, д., ${}^{3}J$ = 8.8, H-2,6 Ar³). Спектр ЯМР ¹³С, δ , м. д.: сигналы остова: 24.4 (к. 3,3-(CH₂)₃); 27.3 (т. С-7,9); 30.4 (т. C-6,10); 69.1 (д. C-8); 70.2 (с. C-3); 88.9 (с. C-5); 113.8 (д. C-3,5 Ar²); 114.1 (д. C-3,5 Ar³); 120.5 (д. C-1 Ar³); 122.5 (с. C-1, Ar²); 128.6 (д. C-2,6 Ar¹); 130.7 (д. C-1 Ar¹); 130.9 (д. C-2,6 Ar²); 131.7 (д. C-2,6 Ar³); 151.9 (с. C-4 Ar¹); 162.3 (с. C-4 Ar²); 163.1 (с. C-4 Ar³); 163.7 (с. Ar³<u>C</u>OO); 164.7 (с. Ar²<u>C</u>OO); 171.9 (с. C-2); сигналы алкильных заместителей: 13.72 (к. 2CH₃); (далее – все триплеты) 22.02; 25.34; 25.36; 28.43; 28.48; 28.58; 28.70; 28.72; 28.86; 28.87; 31.20; 67.61 (Ar³O<u>C</u>H₂); 67.77 (Ar²O<u>C</u>H₂). Найдено, %: C 73.51; H 8.40; N 3.62. C₄₈H₆₆N₂O₇. Вычислено, %: C 73.62; H 8.50; N 3.58.

(5*r*,8*r*)-(4-Гидрокси-3,3-диметил-2-{4-[(4-нонилокси)бензоил]фенил}-1,4-диазаспиро[4.5]дец-3-ен-8-ил)(4-нонилокси)бензоат (*транс*-21) получен аналогично *цис*изомеру 13b восстановлением соединения *транс*-20.

Выход 78%, белый порошок, т. пл. 78–80 °С (ЕtOH). ИК спектр, v, см⁻¹: 1732, 1708 (С=О), 1606, 1579 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.82 (3H, т, *J* = 6.9, CH₃); 0.83 (3H, т, *J* = 6.9, CH₃); 1.17–1.43 (24H, м, 2(CH₂)₆); 1.41 (6H, с, 3,3-(CH₃)₂); 1.61 (2H, м, ²*J* = 12.5, *J*_{6e,7a} = 3.7, *J*_{6e,7e} = 3.1, 6,10-CH_{eq}); 1.69–1.77 (4H, м, 2OCH₂C<u>H₂</u>); 1.99 (2H, м, ²*J* = 11.5, *J*_{7e,8a} = 5.0, *J*_{7e,6a} = 4.0, *J*_{7e,6e} = 3.1, 7,9-CH_{eq}); 2.02 (2H, м, *J*_{7a,6a} = 12.7, ²*J* = 11.5, *J*_{7a,8a} = 10.0, *J*_{7e,6a} = 3.7, 7,9-CH_{ax}); 2.06 (2H, м, *J*_{6a,7a} = 12.7, ²*J* = 12.5, *J*_{6a,7e} = 4.0, 6,10-CH_{ax}); 3.97 (2H, т, *J* = 6.5, Ar²OCH₂); 4.02 (2H, т, *J* = 6.5, Ar³OCH₂); 4.92 (1H, м, *J*_{8a,7a} = *J*_{8a,9a} = 10.0, *J*_{8a,7e} = *J*_{8a,9e} = 5.0, 8-CH_{ax}); 6.89 (2H, д, ³*J* = 8.8, H-3,5 Ar²); 6.99 (2H, д, ³*J* = 8.8, H-3,5 Ar³); 7.24 (2H, д, ³*J* = 8.6, H-3,5 Ar¹); 7.59 (1H, с, NOH); 7.88 (2H, д, ³*J* = 8.8, H-2,6 Ar²); 7.91 (2H, д, ³*J* = 8.6, H-2,6 Ar¹); 8.05 (2H, д, ³*J* = 8.8, H-2,6 Ar³); 120.5 (д, C-1 Ar³); 121.5 (д, C-3,5 Ar¹); 122.2 (c, C-1 Ar²); 128.7 (д, C-2,6 Ar¹); 130.6 (д, C-1 Ar¹); 130.9 (д, C-2,6 Ar²); 131.8 (д, C-2,6 Ar³); 152.0 (c, C-4 Ar¹); 162.3 (c, C-4 Ar²); 163.1 (c, C-4 Ar³); 163.8 (c, Ar³<u>C</u>OO); 164.8 (c, Ar²<u>C</u>OO); 171.9 (c, C-2); сигналы алкильных заместителей: 13.73 (к, CH₃); 13.74 (к, CH₃); (далее – все триплеты) 22.01; 22.02; 25.34; 28.44; 28.46; 28.57; 28.58; 28.70; 28.86; 31.19; 31.20; 67.59 (Ar³O<u>CH₂); 67.78 (Ar²O<u>CH₂).</u> Haйдено, %: C 73.56; H 8.41; N 3.60. C₄₈H₆₆N_{2O₇}.</u>

Работа выполнена при финансовой поддержке РФФИ – JSPS (Японское общество содействия науке) (проект №11-03-92107-ЯФ-а), Интеграционной программы СО РАН (Партнерские фундаментальные исследования, проект № 1) и Министерства образования и науки Российской Федерации (соглашение 8456).

Спектральные исследования, элементный анализ и запись термограмм ДСК выполнены в Аккредитованном испытательном аналитическом центре НИОХ СО РАН (Новосибирск).

- 1. Magnetic Properties of Organic Materials, P. M. Lahti (Ed.), Marcel Dekker, New York, 1999, p. 728.
- N. Ikuma, R. Tamura, S. Shimono, N. Kawame, O. Tamada, N. Sakai, J. Yamauchi, Y. Yamamoto, *Angew. Chem.*, *Int. Ed.*, 43, 3677 (2004).
- 3. R. Tamura, Y. Uchida, N. Ikuma, J. Mater. Chem., 18, 2872 (2008).
- R. Tamura, Y. Uchida, K. Suzuki, in *Handbook of Liquid Crystals: 8 Volume Set*, J. W. Goodby, P. J. Collings, T. Kato, C. Tschierske, H. F. Gleeson, P. Raynes (Eds.), Wiley-VCH, Weinheim, 2014, vol. 8, p. 837.
- 5. R. Tamura, Y. Uchida, K. Suzuki, in *Liquid Crystals Beyond Display: Chemistry*, *Physics, and Applications*, Q. Li (Ed.), J.Wiley & Sons, Inc., Hoboken, 2012, p. 83.
- 6. R. Tamura, Y. Uchida, K. Suzuki, in *Nitroxides Theory, Experiment and Applications*, A. I. Kokorin (Ed.), InTech, Rijeka, 2012, p. 191.
- Y. Uchida, N. Ikuma, R. Tamura, S. Shimono, Y. Noda, J. Yamauchi, Y. Aoki, H. Nohira, *J. Mater. Chem.*, 18, 2950 (2008).
- Y. Uchida, K. Suzuki, R. Tamura, N. Ikuma, S. Shimono, Y. Noda, J. Yamauchi, J. Am. Chem. Soc., 132, 9746 (2010).
- 9. R. Kogo, F. Araoka, Y. Uchida, R. Tamura, K. Ishikawa, H. Takezoe, *Appl. Phys. Express*, **3**, 041701 (2010).
- K. Suzuki, Y. Uchida, R. Tamura, Y. Noda, N. Ikuma, S. Shimono, J. Yamauchi, *Soft Matter*, 9, 4687 (2013).
- 11. W. Schmidt, F. Vögtle, E. Poetsch, Liebigs Ann., 1319 (1995).
- 12. W. Calaminus, F. Vögtle, R. Eidenschink, Z. Naturforsch., B: Anorg. Chem., Org. Chem., 41B, 1011 (1986).
- 13. J. Boettcher, R. Hartmann, F. Vögtle, Chem. Ber., 125, 1865 (1992).
- 14. E. Poetsch, W. Schmidt, F. Vögtle, N. Feuerbacher, DE Pat. Appl. 19755245; Chem. Abstr., 131, P65963j (1999).
- 15. N. Feuerbacher, F. Vögtle, J. Windscheidt, E. Poetsch, M. Nieger, Synthesis, 117 (1999).
- K. Miyazawa, D. S. Yufit, J. A. K. Howard, A. de Meijere, *Eur. J. Org. Chem.*, 4109 (2000).
- 17. K. Miyazawa, D. Demus, A. de Meijere, Mol. Cryst. Liq. Cryst., 364, 253 (2001).
- T. Itoh, M. Kanbara, S. Nakajima, Y. Sakuta, S. Hayase, M. Kawatsura, T. Kato, K. Miyazawa, H. Uno, *J. Fluorine Chem.*, 130, 1157 (2009).
- 19. Q. Cui, R. P. Lemieux, J. Mater. Chem. C, 1, 1011 (2013).
- 20. Q. Cui, R. P. Lemieux, Liq. Cryst., 40, 1609 (2013).
- Y. Uchida, N. Matsuoka, H. Takahashi, S. Shimono, N. Ikuma, R. Tamura, *Heterocycles*, 74, 607 (2007).
- 22. K. Suzuki, D. G. Mazhukin, H. Takahashi, Y. Uchida, R. Tamura, I. A. Grigor'ev, *Heterocycles*, **78**, 3091 (2009).
- Е. В. Зайцева, Ю. В. Гатилов, С. А. Амитина, Р. Тамура, И. А. Григорьев, Д. Г. Мажукин, Журн. орган. химии, 50, 78 (2014). [Russ. J. Org. Chem., 50, 72 (2014).]
- 24. R. Tamura, K. Suzuki, Y. Uchida, Y. Noda, in *Electron Paramagnetic Resonance*, B. C. Gilbert, D. M. Murphy, V. Chechik (Eds.), RSC Publishing, 2013, vol. 23, p.1.
- 25. Т. К. Севастьянова, Л. Б. Володарский, Изв. АН СССР, Сер. хим., 2339 (1972). [Bull. Acad. Sci. USSR, Div. Chem. Sci., 21, 2276 (1972).]
- В. А. Резников, Л. Б. Володарский, *ХГС*, 772 (1990). [*Chem. Heterocycl. Compd.*, 643 (1990).]
- 27. F. Hintermaier, L. B. Volodarsky, K. Polborn, W. Beck, Liebigs Ann., 2189 (1995).
- В. А. Резников, Л. Б. Володарский, Изв. АН, Сер. хим., 1654 (1997). [Russ. Chem. Bull.), 46, 1577 (1997).]
- L. B. Volodarsky, in *Imidazoline Nitroxides: Synthesis and properties*, L. B. Volodarsky (Ed.), CRC Press, Boca Raton, 1988, vol. 1, p. 232.
- 30. M. Haslanger, R. G. Lawton, Synth. Commun., 4, 155 (1974).

- K. C. Kumara Swamy, N. N. Bhuvan Kumar, E. Balaraman, K. V. P. Pavan Kumar, *Chem. Rev.*, **109**, 2551 (2009).
- 32. http://limor1.nioch.nsc.ru/quant/conformers/shern/spiroimidazol/
- 33. F. R. Jensen, C. H. Bushweller, B. H. Beck, J. Am. Chem. Soc., 91, 344 (1969).
- 34. H.-J. Schneider, V. Hoppen, J. Org. Chem., 43, 3866 (1978).
- 35. http://home.cc.umanitoba.ca/~budzelaa/gNMR/gNMR.html
- 36. http://www.nusc.ru
- G. Impre, I. Jakli, A. Kalaszi, O. Farkas, Advanced Automatic Generation of 3D Molecular Structures, 1st European Chemistry Congress, Budapest, Hungary, 27–31 August, 2006.
- 38. C.-E. Chang, M. K. Gilson, J. Comput. Chem, 24, 1987 (2003).
- 39. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
- 40. D. N. Laikov, Chem. Phys. Lett., 416, 116 (2005).
- Л. Б. Володарский, А. С. Лапик, В. В. Русских, В. С. Кобрин, Е. Ф. Лаврецкая, Л. И. Волкова, Д. А. Саркисян, М. М. Борисов, А. с. СССР 657016; *Chem. Abstr.*, **91**, P68767q (1979).
- 42. U. B. Vasconcelos, E. Dalmolin, A. A. Merlo, Org. Lett., 7, 1027 (2005).

¹ Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН, пр. Академика Лаврентьева, 9, Новосибирск 630090, Россия e-mail: elena@nioch.nsc.ru

Поступило 26.03.2014

² Высшая школа изучения человека и окружающей среды Университета г. Киото, Сакио-ку, Йошида Нихонмацу-чо, Киото 606-8501, Япония e-mail: tamura.rui.8c@kyoto-u.ac.jp

³ Новосибирский национальный исследовательский государственный университет, ул. Пирогова, 2, Новосибирск 630090, Россия e-mail: d-mazhukin@yandex.ru