ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 2014. — № 8. — С. 1155—1173

ВЫБОР РЕДАКТОРА

С. С. Патрушев^{1,2}, М. М. Шакиров¹, Т. В. Рыбалова¹, Э. Э. Шульц^{1,2*}

СИНТЕТИЧЕСКИЕ ТРАНСФОРМАЦИИ СЕСКВИТЕРПЕНОВЫХ ЛАКТОНОВ 8**. СИНТЕЗ 13-(2-ОКСОФУРО[2,3-*d*]ПИРИМИДИН-3(2*H*)-ИЛ)ЭВДЕСМАНОЛИДОВ

Аза-реакцией Михаэля изоалантолактона с 5-бром- или 5-иодзамещёнными урацилами получены (11*R*)-13-[5-бром(иод)-2,4-диоксотетрагидропиримидин-1-ил]эвдесма-4(15)-ен-8β,12-олиды, проявившие высокую активность в Pd-катализируемой реакции кросс-сочетания с терминальными алкинами. По реакции Манниха (11*R*)-13-(5-этинил-2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8β,12-олида со вторичными аминами и формальдегидом, катализируемой иодидом меди, синтезированы (11*R*)-13-[5-(диэтиламино)пропинил]-, (11*R*)-13-[5-(пирролидин-1-ил)пропинил]-, (11*R*)-13-[5-(4-оксопиперидин-1-ил)пропинил]-, (11*R*)-13-[5-(4-метилпиперазин-1-ил)пропинил]- и (11*R*)-13-(5-{[2-(пиридин-3-ил)пиперидин-1-ил]пропинил}-2,4-диоксотетрагидропиримидин-1-ил)эвдесманолиды. В присутствии нитрата серебра [(5-алкинил)амино]тетрагидропиримидин-1-ил)эвдесманолиды гладко циклизуются в соответствующие (11*R*)-13-(2-оксофуро[2,3-*d*]пиримидин-3(2*H*)-ил)эвдесманолиды. Структуры двух соединений подтверждены данными PCA.

Ключевые слова: изоалантолактон, урацилы, аза-реакция Михаэля, Аg-катализируемая реакция циклизации, Сu-катализируемая реакция Манниха, кросс-сочетание.

Фуро[2,3-d]пиримидины обладают различными видами биологической активности, включая противоопухолевую [2] и противовирусную [3-5]. Эти соединения представляют интерес для медицинской химии, поскольку являются селективными ингибиторами киназ Chk-1 [6], GSK-3β [7], RTK (с-Met) [8], ASK-1 [9] и RIP1 [10]. В ряду противовирусных агентов этого типа выделяются бициклические аналоги нуклеозидов и производные фуро[2,3-d]пиримидин-2(3H)-онов, содержащие фрагмент 4',5'-дидегидро-L-аскорбиновой кислоты при атоме N-3 [3-5]. В связи с этим представляет интерес получение и исследование фуро[2,3-d]пиримидин-2(3H)-онов, содержащих при атоме N-3 фрагменты разнообразных природных биологически активных соединений, в частности сесквитерпеновых лактонов. Ранее реакцией кросс-сочетания сесквитерпеновых лактонов эвдесманового типа – изоалантолактона и его производных [1, 11–13] – мы синтезировали соединения, обладающие значительной противоязвенной активностью на модели индометациновой язвы желудка животных [12] и цитотоксической активностью по отношению к опухолевым клеткам человека [13]. Производные изоалантолактона, содержащие фуро[2,3-d]пиримидиновый фрагмент, ранее не были синтезированы.

Цель данной работы заключалась в разработке способов синтеза эвдесманолидов, содержащих фрагменты фуро[2,3-*d*]пиримидин-2(3*H*)-она в положении С-13, на основе продуктов реакции Михаэля изоалантолактона 1 с замещёнными урацилами. Внимание уделялось получению (фуро[2,3-*d*]-

^{*} Здесь и далее в номере фамилия автора, с которым следует вести переписку, отмечена звёздочкой.

^{**} Сообщение 7 см. [1].

пиримидин-3(2*H*)-ил)эвдесманолидов, содержащих различные заместители в положении C-6 бициклического фрагмента, поскольку известно, что заместители в α -положении фуранового цикла оказывают существенное влияние на противоопухолевую и противовирусную активность соединений с фуро-[2,3-*d*]пиримидиновым остовом [4, 5, 8, 10].

Эксперименты показали, что аза-реакция Михаэля изоалантолактона 1 с урацилом (2а) в водном спирте при комнатной температуре протекает региоселективно с образованием продукта присоединения по экзоциклической двойной связи лактонного цикла – (11R)-13-(2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8 β ,12-олида 3 (выход 85%). Регио- и стереоселективностью характеризуется также взаимодействие соединения 1 с 5-бромили 5-иодурацилами 2b,c; для достижения полной конверсии исходного соединения требуется дополнительное нагревание реакционной смеси до 60 °C. (11R)-13-[5-Бром(иод)-2,4-диоксотетрагидропиримидин-1-ил]эвдесма-4(15)-ен-8 β ,12-олиды 4, 5 выделены с выходами 75 и 83% соответственно. Стереоконфигурация атома C-11 установлена на основании анализа корреляций NOE между *цис*-протонами 7-, 11- и 8-CH в эксперименте NOESY ¹H–¹H. Подобная стереоселективность отмечалась ранее в аза-реакции Михаэля изоалантолактона 1 с различными аминами и алкалоидами [14].

2a, **3** R = H, **2b**, **4** R = Br, **2c**, **5** R = I

В настоящее время в качестве эффективного метода получения фуро-[2,3-*d*]пиримидин-3(2*H*)-онов активно изучаются реакции циклизации 5-алкинилпиримидинов [15–17]. Реакции протекают в мягких условиях в присутствии солей серебра [18], цинка [19], меди [4] и палладия [17, 20].

Для синтеза (фуро[2,3-*d*]пиримидин-3(2*H*)-ил)эвдесманолидов мы исследовали реакции циклизации (5-алкинил-2,4-диоксотетрагидропиримидин-1-ил)эвдесманолидов, полученных по реакции кросс-сочетания (11*R*)-13-(5иод-2,4-диоксотетрагидропиримидин-1-ил)эвдесманолида **5** с терминальными алкинами. Установлено, что соединение **5** обладает высокой активностью в реакции кросс-сочетания с фенилацетиленом **6** и 2-этинилпиридином **7**. Реакцию проводили при комнатной температуре в ДМФА в присутствии Pd(PPh₃)₂Cl₂ (10 моль. %), CuI (20 моль. %) и Et₃N (2 экв.). Выходы 5-алкинипиримидинов **8**, **9** составили 84 и 70% соответственно. Дополнительно выделили продукты циклизации – 3,6-дизамещённые фуро[2,3-*d*]пиримидин-2(3*H*)-оны **10**, **11** (выходы 9 и 3%). При обработке соединений **8**, **9** AgNO₃ (10 моль. %) в ацетоне получали соответствующие фуро[2,3-*d*]пиримидин-2(3*H*)-оны **10**, **11**, содержащие фенильный или пиридиновый заместитель в α-положении фуранового цикла (выходы 81 и 100% соответственно).

Взаимодействие иодида 5 с метилпропиолатом (12) в описанных условиях приводило к образованию продуктов нуклеофильного присоединения 13а,b (конверсия 60%, выходы 54 и 30% соответственно). Соединение 14 (выход 78%) получено в качестве единственного продукта при проведении реакции кросс-сочетания в присутствии большого избытка метилпропиолата (12) и нагревании до 60 °C. Характерно, что в этих условиях образования продуктов циклизации (фуро[2,3-*d*]пиримидинов) не наблюдалось.

Кросс-сочетание иодида 5 с триметилсилилацетиленом (15) протекало с образованием соединения 16 (выход 92%). Взаимодействие бромида 4 с алкином 15 протекало только при 60 °С; после колоночной хроматографии выделили соединение 16 (выход 85%). При действии на соединение 16 тетрабутиламмоний фторида в ТГФ или фтористого аммония в присутствии тетрабутиламмоний бромида в МеОН получали (11*R*)-13-(5-этинил-2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8 β ,12-олид (17) (выходы 70–93%).

Мы исследовали возможность получения (фуро[2,3-d]пиримидин-3(2H)-ил)эвдесманолидов, содержащих аминометильные заместители в положении 6 бициклического фрагмента. Ключевые соединения – [5-(R-амино)пропинил-2,4-диоксотетрагидропиримидин-1-ил]эвдесма-4(15)-ен-8β,12-олиды – получали катализируемой соединениями меди реакцией Манниха терминального алкина 17 с вторичными аминами и формальдегидом. Эта реакция позволяет с хорошими выходами синтезировать пропаргиламинопроизводные различных полифункциональных соединений [21–23]. Мы показали, что при взаимодействии терминального алкина 17 с диэтиламином и формальдегидом в каталитических лиоксане в присутствии количеств CuI образуется 13-{5-[3-(диэтиламино)пропинил]-2,4-диоксотетрагидропиримидин-1-ил}эвдесманолид (18) (выход 73%). Увеличение температуры реакции до 95 °С приводит к смеси соединения 18 и продукта циклизации 19 (соотношение 1:2 по данным спектроскопии ЯМР 1 H). Индивидуальное соединение **19** (выход 82%) получали циклизацией алкина 18 при действии нитрата серебра в ацетоне.

Реакция Манниха алкина 17 с циклическими вторичными аминами – пирролидином (20), *N*-метилпиперазином (21), анабазином (22) или пиперидин-4-оном (23), протекала с образованием целевых соединений 24–27 (таблица). Соединения 24–27 гладко циклизовались в соответствующие фуро[2,3-*d*]пиримидин-2(3*H*)-оны 28–31 при действии AgNO₃ (10 моль. %) в ацетоне.

Состав и строение синтезированных соединений подтверждены результатами элементного анализа, а также данными масс-спектрометрии и ИК, УФ, ЯМР ¹Н и ¹³С спектроскопии.

Присутствие алкинильного заместителя в структуре соединений **8**, **9**, **14**, **16**, **17**, **18**, **24–27** подтверждается данными ИК спектров (интенсивные полосы валентных колебаний при 2186 см⁻¹ для соединения **16** с триметилсилилэтинильным заместителем; 2114 см⁻¹ для соединения **17** с концевым ацетиленовым заместителем; 2220–2237 см⁻¹ для соединений **8**, **9**, **14**, **18**, **24–27**, ацетиленовый линкер в которых соединяет пиримидиндионовый и алкильный, фенильный или пиридиновый заместители) [24]. Спектры ЯМР ¹Н соединений **10**, **11**, **19**, **28–31** содержат синглетные сигналы протонов фуро[2,3-*d*]пиримидинового заместителя при 8.18–8.47 (H-4') и 6.18–7.22 м. д. (H-5'), что согласуется со спектральными данными аналогичных соединений [16, 17].

Данные спектров ЯМР ¹Н и ¹³С подтверждают наличие фрагмента (11*R*)-эвдесма-4(15)-ен-8 β ,12-олида (11,13-дигидроизоалантолактона) в молекулах всех синтезированных соединений. В спектрах ЯМР ¹Н наблюдаются сигналы протонов экзометилиденовой группы 15-CH₂ при 4.40–4.50 и 4.73– 4.80 м. д. в виде дублетов с константой 0.8–1.2 Гц, сигнал протонов метильной группы при атоме C-10 в виде синглета при 0.76–0.82 м. д. и характерный слабопольный сигнал протона 8-CH (4.47–4.57 м. д.) в виде дублетов (КССВ 4.9–6.0; 3.0–4.6 и 1.2–2.0 Гц). Циссочленение лактонного и декагидронафталинового циклов подтверждается значением КССВ между протонами 7- и 8-CH ($J_{7,8} = 4.9$ –6.0 Гц). Протон 7-CH имеет характерное взаимодействие с протоном 11-CH ($J_{7,11} = 5.3$ –6.4 Гц).

Характерной особенностью спектров ЯМР ¹Н соединения **26**, содержащего пропаргиланабазиновый заместитель в положении 5 пиперидиндионового фрагмента, является уширение сигналов протонов пиридинового цикла, в особенности протонов Н-2 и Н-6, и сигналов атомов углерода пиридинового цикла С-2,3,5,6, что может быть следствием инверсии атома азота пиперидино-

17 + R ¹ R ² NH + (CH ₂ O) _n \xrightarrow{CuI} 20–23 $$ диоксан, 60 °C					
$\xrightarrow{Me} \stackrel{H}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$					
Амин R ¹ R ² NH	Реакция Манниха			Циклизация	
	Время, ч	Продукт	Выход, %	Продукт	Выход, %
NH 20	5	24	78	28	82
Me-N_NH 21	5	25	84	29	95
	5	26	70	30	75
0=\NH 23*	10	27	75	31	85

* Амин 23 использовали в виде гидрохлорида. Реакцию проводят в присутствии NaOAc и молекулярных сит 3 Å.

Пространственные структуры соединений 3 (а) и 26 (b) в представлении атомов эллипсоидами тепловых колебаний с 30% вероятностью

вого цикла. При записи спектров соединения 26 при температуре -50 °C (223 К) уширение сигналов исчезает и соответственно увеличивается интенсивность сигналов.

Строение соединений 3 и 26 однозначно установлено на основании данных РСА (рисунок). В обеих структурах транс-сочленённые шестичленные циклы декалинового фрагмента находятся в конформации "кресло", лактонный цикл имеет конформацию "искажённого конверта" с выходом атома С(7) из плоскости атомов С(11)-С(12)-О(1)-С(8) (фрагмент плоский в пределах ±0.010(6) и ±0.013(3) Å) на 0.592(6) и 0.657(3) Å, угол складчатости 36 и 42°. В Кембриджском банке структурных данных [25] имеется всего три лактона эвдесманового типа с такой же конформацией и конфигурацией асимметрических центров трициклического фрагмента [14, 26]. Положение пиримидинового цикла в молекулах соединений 3, 26 определяется торсионными углами C(12)-C(11)-C(13)-N(1') -79.7(3) и -165.0(2)° И C(11)-C(13)-N(1')-C(6') 86.8(3) и -91.6(2)° для соединений 3 и 26 соответственно. В молекулах соединений 3 и 26 наблюдаются сокращённые по Роланду [27] контакты Н····O: С(13)–Н····O(3') 2.38 и 2.48 Å, С(14)–Н····O(1) 2.56 и 2.51 Å в соединениях **3** и **26** соответственно, а также C(6')-H···O(2) 2.46 Å в соединении **3** и C(13)–H···O(2) 2.57 Å в соединении **26**. Значение длины связи C(7')≡C(8') 1.189(2) Å в молекуле соединения 26 не отличается от табличного [28], валентные углы при *sp*-гибридизованных атомах C(7') и C(8') равны 174.1(2) и 174.0(2)° соответственно. Заметим, что отклонение фрагмента С-С≡С-С от линейности отмечается и в других случаях; в 3-фениленбензоциклине, например, один из валентных углов C=C-C равен 170.4° [25]. Пиперидиновый цикл с *sp*³-гибридизованным атомом азота в соединении 26 находится в конформации "ванна", его ориентация определяется торсионными углами C(7')-C(8')-C(9')-N(1") и C(8')-C(9')-N(1")-C(2") равными 21.2(2) и -57.8(2)°, плоскость пиридинового цикла находится под углом 51.4(2)° к связи N(1")–C(2") пиперидинового цикла.

Молекулы соединения 3 образуют в кристалле бесконечные цепочки вдоль оси b посредством межмолекулярной водородной связи N(3')–H···O(4') с расстояниями N-H 0.98(3) Å и H···O 1.89(3) Å и углом N-H···O 165(2)°. Цепочки, в свою очередь, уложены в слои, параллельные плоскости (a, b) с укороченными контактами C(9)-H···O(4') 2.66 Å, C(11)-H···O(2) 2.52 Å и С(8)-Н…С(5') 2.76 Å. Межслоевые укороченные контакты отсутствуют.

a)

В кристаллах соединения **26** также наблюдаются водородно-связанные цепочки вдоль оси *b*, параметры связи N(3)–H···N(1"'): расстояния N–H 0.85(2) Å и H···N 2.01(2) Å, угол N–H···N 167(2)°. В трёхмерной структуре кристалла между водородно-связанными цепочками выделяются укороченные контакты C(4")–H···O(2) 2.44 Å и C(5"")–H···O(3') 2.71 Å.

Таким образом, Pd-катализируемой реакцией кросс-сочетания доступных производных изоалантолактона – (11*R*)-13-[5-бром(иод)урацил-1-ил]эвдесма-4(15)-ен-8β,12-олидов – с терминальными алкинами синтезированы (11*R*)-13-[(5-этинил)урацил-1-ил]эвдесманолиды, для которых предложены условия циклизации в соответствующие 13-(2-оксофуро[2,3-*d*]пиримидин-3(2*H*)-ил)эвдесманолиды действием нитрата серебра в ацетоне. Для получения 6-(диалкиламинометил)замещённых производных фуро[2,3-*d*]пиримидинов предложена оригинальная методика, включающая Сu-катализируемую реакцию Манниха (11*R*)-13-[(5-этинил)урацил-1-ил]эвдесманолида с циклическими вторичными аминами – пирролидином, *N*-метилпиперазином, анабазином или пиперидин-4-оном – и последующую Аg-катализируемую эффективную циклизацию.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на фурье-спектрометре Vector-22 в таблетках КВг. УФ спектры поглощения записаны на спектрометре HP 8453 UV-Vis для растворов в EtOH (10^{-4} моль/л). Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометрах Bruker AV-400 (400 и 100 МГц соответственно, соединения 13a,b) и Bruker AV-600 (600 и 150 МГц соответственно, остальные соединения). Растворитель – CDCl₃+CD₃OD (1:1) (соединения **10**, **11**, **17**) и CDCl₃ (остальные соединения), внутренний стандарт ТМС. Мультиплетность сигналов в спектрах ЯМР ¹³С определена по стандартным методикам записи спектра в режиме монорезонанса. Для отнесения сигналов в спектрах ЯМР использованы различные типы корреляционной спектроскопии ¹H-¹H и ¹H-¹³С (COSY, COLOC, COXH, NOESY – время смешения 1 с, задержка между импульсами 2 с). При описании спектров ЯМР ¹Н и ¹³С использовали нумерацию атомов остова и заместителей, приведенную на схемах. Масс-спектры высокого разрешения записаны на масс-спектрометре DFS Thermo Scientific (температура испарителя 190-270 °С, ионизация электрораспылением). Элементный анализ выполнен на СНN-анализаторе Carlo Erba 1106. Температуры плавления определены на нагревательном столике Stuart SMF-38 и не исправлены. Значения удельного вращения измерены на поляриметре PolAAr 3005, значения вращения выражены в (град мл)/(г дм), а концентрация – в г на 100 мл раствора. Продукты реакции выделены с помощью колоночной хроматографии на силикагеле (фирмы Acros, 0.035-0.240 мм). Ход реакций и чистоту полученных соединений контролировали методом TCX на пластинах Silufol UV-254, элюент CHCl₃-EtOH, 9:1 или PhH-EtOAc, 3:1, проявитель пары иода или УФ свет.

Растворители (ДМФА, МеОН, ТГФ, диоксан, ацетон), а также Et₃N очищены по стандартным методикам и перегнаны в токе аргона непосредственно перед проведением реакций. Использованы урацил, 5-бромцурацил, 5-иодурацил, CuI, NH₄F, Bu₄NBr, AgNO₃, метилпропиолат, фенилацетилен, (2-пиридил)ацетилен, пирролидин, *N*-метилпиперазин, пиперидин-4-он фирмы Alfa Aesar. Комплекс Pd(PPh₃)₂Cl₂ синтезирован по методике [29]. В работе использован изоалантолактон (1), который выделен экстракцией *Inula helenium* L. с последующим разделением через морфолиновые аддукты по методике [30], т. пл. 104–106 °С (петролейный эфир) (т. пл. 113–115 °С (EtOH–H₂O, 1:1) [31]), [α]_D +173° (*c* 5.1 CHCl₃). (–)-Анабазин выделен из надземной части *Anabasis aphylla* L. по методике [31], т. кип. 145–146 °С (14 мм рт. ст.), [α]₂²³₅₇₈ –62 (*c* 5.0, PhH) (т. кип. 104–105 °С (2 мм рт. ст.), [α]_D –71.24 (*c* 6.9, PhH) [31]).

1-{[(3R,3aR,4aS,8aR,9aR)-8а-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}пиримидин-2,4(1Н,3Н)-дион ((11R)-13-(2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8β,12-олид) (3). К суспензии 0.56 г (5.00 ммоль) урацила (2a) в смеси 15 мл H₂O и 20 мл 95% ЕtOH последовательно добавляют 6 мл Et₃N и 1.16 г (5.00 ммоль) изоалантолактона (1). Реакционную смесь перемешивают при комнатной температуре в течение 48 ч и упаривают в вакууме. Остаток растворяют в 20 мл CHCl₃, отфильтровывают от механических примесей, упаривают и перекристаллизовывают из EtOAc. Выход 1.46 г (85%), белые кристаллы, т. пл. 215–217 °С, $R_{\rm f}$ 0.41 (CHCl₃–EtOH, 9:1). [α]₅₈₉²⁶ +41 (c 0.19, CHCl₃). ИК спектр, v, см⁻¹: 1167, 1248, 1369, 1464, 1680, 1757, 2928. УФ спектр, λ_{max} , нм (lg ϵ): 201 (4.09), 264 (3.97). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.79 (3H, с, 14-CH₃); 1.16–1.24 (2H, м, 1-CH_B, 6-CH_B); 1.45 (1H, д. д. *J* = 15.5, *J* = 4.0) и 2.14 (1H, д. д. *J* = 15.6, *J* = 1.5, 9-CH₂); 1.48– 1.59 (3H, м, 1-CH_A, 2-CH₂); 1.66 (1H, д. д. д. *J* = 13.2, *J* = 5.9, *J* = 2.2, 6-CH_A); 1.79 (1H, д, *J* = 12.0, 5-CH); 1.97 (1H, д. д. д. *J* = 14.2, *J* = 12.8, *J* = 7.0) и 2.32 (1H, д. м, *J*_{2ем} = 14.2, 3-СН₂); 2.64 (1Н, д. т. д, J = 12.4, J = 6.1, J = 6.1, J = 5.3, 7-СН); 3.14 (1Н, д. д. д, J=8.3, J = 5.3, J = 4.2, 11-CH); 3.67 (1H, д. д, J = 14.0, J = 8.3) и 4.27 (1H, д. д, *J* = 14.3, *J* = 4.2, 13-CH₂); 4.43 (1H, д, *J* = 0.9) и 4.77 (1H, д, *J* = 0.9, 15-CH₂); 4.50 (1H, д. д. д. J = 6.1, J = 5.6, J = 1.4, 8-CH); 5.70 (1H, д. д, J = 7.9, J = 1.2, H-5'); 7.50 (1H, д, J = 7.9, H-6'); 9.39 (1H, уш. с, 3'-NH). Спектр ЯМР ¹³С, δ , м. д.: 17.6 (14-CH₃); 21.0 (C-2); 22.4 (C-6); 34.5 (C-10); 36.5 (C-3); 39.2 (C-7); 41.1 (C-9); 41.9 (C-1); 45.5 (C-13); 46.2 (C-5); 46.4 (C-11); 78.2 (C-8); 101.8 (C-5'); 106.4 (C-15); 145.7 (C-6'); 148.8 (C-2'); 150.9 (С-4); 163.7 (С-4'); 177.1 (С-12). Найдено, %: С 65.92; Н 6.94; N 7.85. С₁₉Н₂₄N₂O₄. Вычислено, %: С 66.26; Н 7.02; N 8.13.

5-Бром-1-{[(3*R,*3a*R,*4a*S,*8a*R,*9a*R*)-8а-метил-5-метилиден-2-оксододекагидронафто-[2,3-b]фуран-3-ил]метил}пиримидин-2,4(1*H*,3*H*)-дион ((11*R*)-13-(5-бром-2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-86,12-олид) (4). К суспензии 0.95 г (5.00 ммоль) 5-бромурацила (2b) в смеси 10 мл H₂O и 40 мл EtOH последовательно добавляют 1.4 мл Et₃N и 1.28 г (5.50 ммоль) изоалантолактона (1). Реакционную смесь перемешивают в течение 24 ч при комнатной температуре и 3 ч при 60 °С. Образовавшийся при охлаждении осадок отфильтровывают (выход 0.90 г), фильтрат упаривают до половины, вновь выпавший осадок отфильтровывают (выход 0.69 г) и объединяют с первым осадком. Суммарный выход 1.59 г (75%), белые пластинчатые кристаллы, т. пл. 231–233 °С (ЕtOH–H₂O, 1:1). [α]₅₈₉²⁹ +27 (с 0.65, ЕtOH). ИК спектр, v, см⁻¹: 887, 949, 1167, 1194, 1342, 1447, 1460, 1624, 1676, 1749, 2837, 2868, 2889, 2930, 2995, 3026. УФ спектр, λ_{max} , нм (lg ϵ): 202 (5.73), 281 (5.64). Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 0.78 (3H, с, 14-СН₃); 1.14–1.25 (2H, м, 1-СН_В, 6-СН_В); 1.45 (1Н, д. д, J = 15.6, J = 4.2, Н-9) и 2.15 (1Н, д. д, J = 15.6, J = 1.7, 9-СН₂); 1.51–1.59 (3Н, м, 1-СН_А, 2-СН₂); 1.66 (1Н, д. д. д. J = 13.2, J = 6.0, J = 2.4, 6-СН_А); 1.78 (1Н, д, J = 12.3, 5-CH); 1.97 (1Н, д. д. д. Д = 13.9, J = 12.8, J = 5.4) и 2.31 (1Н, д. м, J_{гем} = 13.9, 3-CH₂); 2.64 (1H, д. д. д. д. д. J = 12.3, J = 6.3, J = 5.2, J = 4.1, 7-CH); 3.16 (1H, д. д. д. J=8.3, J = 6.3, J = 4.2, 11-CH); 3.67 (1H, д. д, J = 14.3, J = 8.3) и 4.29 (1H, д. д, J = 14.3, J = 4.2, 13-CH₂); 4.42 (1H, д, J = 1.0) и 4.76 (1H, д, J = 1.0, 15-CH₂); 4.52 (1H, д. д. д. *J* = 5.2, *J* = 4.6, *J* = 1.7, 8-CH); 7.87 (1H, c, H-6'). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 17.6 (14-СН₃); 21.0 (С-2); 22.5 (С-6); 34.5 (С-10); 36.5 (С-3); 39.5 (С-7); 41.1 (С-9); 42.0 (C-1); 45.9 (C-13); 46.2 (C-5); 46.3 (C-11); 78.4 (C-8); 96.1 (C-5'); 106.6 (C-15); 145.1 (С-6'); 148.9 (С-2'); 150.4 (С-4); 159.4 (С-4'); 177.1 (С-12). Спектр ЯМР ¹Н (пиридин-d₅), δ, м. д. (J, Гц): 0.80 (3H, c, 14-CH₃); 1.11 (1H, д. д. д, J = 11.5, J = 9.4, J=8.3) и 1.85 (1H, д. д. д. J = 13.2, J = 5.9, J = 2.2, 6-CH₂); 1.25–1.45 (5H, м, 1-CH₂, 2-CH₂, 9-CH_B); 1.66 (1H, д, *J* = 12.0, 5-CH); 1.87–1.98 (1H, м) и 2.22 (1H, д. м, *J* = 13.7, 3-СН₂); 2.00 (1Н, д. д, J = 15.6, J = 1.9, 9-СН_A); 2.57 (1Н, д. д. д. д. Д. = 12.1, J = 6.2, *J* = 6.0, *J* = 4.2, 7-CH); 3.61 (1H, д. д. д. д. *J* = 7.0, *J* = 6.7, *J* = 6.2, 11-CH); 4.18 (1H, д. д, *J* = 14.0, *J* = 7.0) и 4.51 (1Н, д. д, *J* = 14.0, *J* = 6.2, 13-CH₂); 4.52 (1Н, д, *J* = 1.1) и 4.77 (1Н, д, J = 1.1, 15-СН₂); 4.55 (1Н, д. д. д. д. J = 5.2, J = 4.6, J = 1.7, 8-СН); 7.49 (1Н, с, H-6'); 14.00 (1H, уш. с, 3'-NH). Спектр ЯМР 13 С (пиридин-d₅), δ , м. д.: 17.9 (14-CH₃); 21.6 (C-2); 22.9 (C-6); 34.8 (C-10); 36.8 (C-3); 39.3 (C-7); 41.4 (C-9); 42.1 (C-1); 45.5 (C-13); 46.4 (C-5); 46.8 (C-11); 78.4 (C-8); 96.3 (C-5'); 106.9 (C-15); 146.1 (C-6'); 149.5 (С-2'); 151.7 (С-4); 160.8 (С-4'); 177.3 (С-12). Найдено, %: С 54.17; Н 5.58; Вг 19.15; N 6.82. С₁₉H₂₃BrN₂O₄. Вычислено, %: С 53.91; Н 5.48; Br 18.88; N 6.62.

5-Иод-1-{[(3R,3aR,4aS,8aR,9aR)-8а-метил-5-метилиден-2-оксододекагидронафто-[2,3-b]фуран-3-ил]метил}пиримидин-2,4(1H,3H)-дион ((11R)-13-(5-иод-2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8β,12-олид) (5). К суспензии 1.19 г (5.00 ммоль) 5-иодурацила (2c) в смеси 10 мл H₂O и 40 мл ЕtOH последовательно добавляют 1.40 мл Et₃N и 1.28 г (5.50 ммоль) изоалантолактона (1). Реакционную смесь перемешивают в течение 24 ч при комнатной температуре и в течение 3 ч при 60 °С. Образовавшийся при охлаждении осадок отфильтровывают (выход 0.81 г), фильтрат упаривают до половины, вновь выпавший осадок отфильтровывают (выход 0.70 г), остаток после упаривания вторичного фильтрата хроматографируют на колонке с силикагелем (элюент CHCl3-EtOH, 20:0->20:1). Дополнительно выделяют ещё 0.45 г продукта. Суммарный выход 1.96 г (83%), белые кристаллы, т. пл. 205–207 °С (ЕtOH-H₂O, 1:1). [a]₅₈₉²⁹ +30 (с 0.56, ЕtOH). ИК спектр, v, см⁻¹: 885, 949, 1167, 1192, 1337, 1346, 1427, 1445, 1456, 1611, 1665, 1742, 2831, 2864, 2930, 2993. УФ спектр (EtOH), λ_{max} , нм (lg ϵ): 201 (5.66), 219 (5.42), 284 (5.36). УФ спектр (EtOH+KOH), λ_{max}, HM (lg ε): 205 (4.45), 281 (3.76). Спектр ЯМР ¹H, δ, M. д. (J, Γц): 0.77 (3H, с, 14-CH₃); 1.15–1.26 (2H, м, 1-CH_B, 6-CH_B); 1.48 (1H, д. д, J = 15.6, J = 4.3) и 2.13 (1H, д. д, J = 15.6, J = 1.8, 9-CH₂); 1.50–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.67 (1H, д. д. д. *J* = 13.5, *J* = 6.0, *J* = 2.6, 6-СН_А); 1.80 (1Н, д, *J* = 12.3, 5-СН); 1.98 (1Н, д. д. д. д. *J* = 13.6, J = 12.8, J = 5.5) и 2.31 (1Н, д. м, J = 12.9, 3-CH₂); 2.61 (1Н, д. д. д. д. д. Д. J = 12.3, J = 6.2, *J* = 6.0, *J* = 4.4, 7-CH); 3.19 (1H, д. д. д, *J* = 8.0, *J* = 6.2, *J* = 4.9, 11-CH); 3.77 (1H, д. д. J = 14.2, J = 8.0) и 4.22 (1H, д. д, J = 14.2, J = 4.9, 13-CH₂); 4.45 (1H, д, J = 1.1) и 4.76 (1Н, д, J = 1.1, 15-СН₂); 4.53 (1Н, д. д. д. Д = 5.1, J = 4.4, J = 1.7, 8-СН); 8.01 (1Н, с, H-6'). Спектр ЯМР ¹³С, δ, м. д.: 17.9 (14-CH₃); 21.4 (С-2); 22.9 (С-6); 34.9 (С-10); 36.9 (C-3); 39.5 (C-7); 41.4 (C-9); 42.3 (C-1); 45.8 (C-13); 46.5 (C-5); 46.6 (C-11); 67.7 (C-5'); 79.0 (C-8); 106.7 (C-15); 149.3 (C-6'); 150.8 (C-2'); 151.4 (C-4); 161.9 (C-4'); 177.9 (C-12). Найдено, %: С 48.74; Н 4.87; І 26.68; N 5.78. С₁₉Н₂₃IN₂O₄. Вычислено, %: C 48.52: H 4.93: I 26.98: N 5.96.

1-{[(3R,3aR,4aS,8aR,9aR)-8а-Метил-5-метилиден-2-оксододекагидронафто-[2,3-b]фуран-3-ил]метил}-5-(фенилэтинил)пиримидин-2,4(1H,3H)-дион (8) и 3-{[(3R,3aR,4aS,8aR,9aR)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-6-фенилфуро[2,3-d]пиримидин-2(3H)-он (10). К раствору 235 мг (0.50 ммоль) соединения 5 в 6 мл ДМФА в токе аргона добавляют 35 мг (0.05 ммоль) Pd(PPh₃)₂Cl₂ и 19 мг (0.10 ммоль) CuI. Колбу вакуумируют и заполняют аргоном, затем добавляют 77 мг (0.75 ммоль) фенилацетилена 6 и 101 мг (1.00 ммоль) Et₃N. Реакционную смесь перемешивают при комнатной температуре 20 ч в токе аргона (контроль по TCX), затем разбавляют насыщенным водным раствором NaCl (30 мл), продукт экстрагируют CHCl₃ (5 \times 20 мл). Объединённые органические экстракты промывают H_2O (3 × 30 мл), сушат над MgSO₄, растворитель удаляют в вакууме. Маслянистый остаток растворяют в минимальном количестве CHCl₃ и хроматографируют на колонке с силикагелем (элюент – CHCl₃–EtOH, $20:0 \rightarrow 20:1$). Последовательно выделяют 16 мг (7%) соединения 10 (R_f 0.65, CHCl₃-EtOH, 10:1) и 186 мг (84%) соединения 8 (*R*_f 0.74, CHCl₃-EtOH, 10:1).

Соединение 8. Белый порошок, т. пл. 239–240 °С (ЕtOH). $[a]_{589}^{27}$ +12 (*с* 0.98, CHCl₃). ИК спектр, v, см⁻¹: 754, 1151, 1164, 1223, 1244, 1346, 1369, 1456, 1630, 1647, 1695, 1726, 1757, 2220, 2304, 2922. УФ спектр, λ_{max} , нм (lg ε): 223 (4.10), 264 (4.16), 280 (4.14), 310 (4.32). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 0.79 (3H, с, 14-CH₃); 1.18 (1H, д. д, *J* = 12.9, *J* = 12.7) и 1.68 (1H, д. д. д. *J* = 13.3, *J* = 5.9, *J* = 2.0, 6-CH₂); 1.22 (1H, д. д. д, *J* = 13.3, *J* = 12.8, *J* = 5.3, 1-CH_B); 1.45 (1H, д. д. *J* = 15.6, *J* = 4.1) и 2.15 (1H, д. д. *J* = 15.6, *J* = 0.9, 9-CH₂); 1.51–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.79 (1H, д. *J* = 12.1, 5-CH); 1.97 (1H, д. д. д. *J* = 14.2, *J* = 12.8, *J* = 5.5) и 2.32 (1H, д. м, *J* = 12.9, 3-CH₂); 2.63 (1H, д. д. д. д. *J* = 11.9, *J* = 6.1, *J* = 5.6, *J* = 4.5, 7-CH); 3.16 (1H, д. д. д. *J* = 8.0, *J* = 6.1, *J* = 4.4, 11-CH); 3.71 (1H, д. д. *J* = 14.1, *J* = 8.0) и 4.30 (1H, д. д. *J* = 14.1, *J* = 4.4, 13-CH₂); 4.44 (1H, д. *J* = 1.0) и 4.78 (1H, д. *J* = 1.0, 15-CH₂); 4.52 (1H, д. д. *J* = 5.6, *J* = 3.7, *J* = 1.2, 8-CH); 7.29–7.30 (3H, м, H-3,4,5 Ph); 7.48 (2H, д. д. *J* = 5.9, *J* = 2.4, H-2,6 Ph); 7.83 (1H, с, H-6'); 9.05 (1H, с, 3'-NH). Спектр ЯМР⁻¹³С, δ м. д.: 17.7 (14-CH₃); 21.0 (C-2); 22.5 (C-6); 34.5 (C-10); 36.5 (C-3); 39.2 (C-7); 41.1 (C-9); 41.9 (C-1); 45.9 (C-13); 46.2 (C-5); 46.3 (C-11); 78.3 (C-8); 79.6 (C-7'); 93.9 (C-8'); 100.0

(C-5'); 106.5 (C-15); 122.4 (C-1 Ph); 128.2 (C-3,5 Ph); 128.5 (C-4 Ph); 131.6 (C-2,6 Ph); 147.8 (C-6'); 148.8 (C-4); 149.8 (C-2'); 161.4 (C-4'); 176.9 (C-12). Найдено, %: С 72.87; Н 6.42; N 6.20. С₂₇Н₂₈N₂O₄. Вычислено, %: С 72.95; Н 6.35; N 6.30.

Н 6.42; N 6.20. С₂₇Н₂₈N₂O₄. Вычислено, %: С 72.95; Н 6.35; N 6.30. Соединение 10. Белый порошок, т. пл. 348–349 °С (СНСІ₃). [α]₅₈₉²⁵ +16 (*c* 0.16, СНСІ₃). ИК спектр, v, см⁻¹: 691, 766, 889, 1128, 1166, 1217, 1337, 1377, 1387, 1414, 1443, 1454, 1572, 1595, 1610, 1645, 1668, 1763, 2930, 3451. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.78 (3H, c, 14-CH₃); 1.17–1.26 (2H, м, 1-CH_B, 6-CH_B); 1.46 (1H, д. д, *J* = 15.9, *J* = 4.1) и 2.11 (1H, д. д, J = 15.6, J = 1.7, 9-CH₂); 1.48–1.59 (3H, м, 1-CH_A, 2-CH₂); 1.68 (1H, д. д. д. *J* = 13.2, *J* = 5.7, *J* = 2.5, 6-CH_A); 1.80 (1H, д, *J* = 11.8, 5-CH); 1.98 (1H, д. д. д, *J* = 13.6, *J* = 12.7, *J* = 6.0) и 2.30 (1Н, д. м, *J* = 13.0, 3-CH₂); 2.72 (1Н, д. д. д. д. д. *J* = 12.2, *J* = 6.2, *J* = 5.9, *J* = 4.3, 7-CH); 3.33 (1H, д. д. д, *J* = 9.0, *J* = 6.2, *J* = 3.2, 11-CH); 3.90 (1H, д. д, J = 13.4, J = 9.0) и 4.56 (1Н, д. д, J = 13.4, J = 3.2, 13-CH₂); 4.47 (1Н, д, J = 1.1) и 4.79 (1Н, д, J = 1.1, 15-СН₂); 4.55 (1Н, д. д. д. J = 5.9, J = 4.0, J = 1.8, 8-СН); 6.77 (1Н, с, H-5'); 7.35-7.42 (3H, м, H-3,4,5 Ph); 7.70-7.73 (2H, м, H-2,6 Ph); 8.34 (1H, с, H-4'). Спектр ЯМР¹³С, б, м. д.: 17.6 (14-СН₃); 21.1 (С-2); 22.5 (С-6); 34.5 (С-10); 36.5 (С-3); 39.5 (C-7); 41.1 (C-9); 41.9 (C-1); 45.4 (C-11); 46.1 (C-5); 49.1 (C-13); 78.6 (C-8); 97.5 (C-5'); 106.4 (C-15); 108.5 (C-4a'); 124.9 (C-2,6 Ph); 128.1 (C-1 Ph); 128.9 (C-3,5 Ph); 129.8 (C-4 Ph); 142.4 (С-4'); 149.1 (С-4); 155.8 (С-2'); 155.9 (С-6'); 171.9 (С-7а'); 178.3 (С-12). Найдено, %: С 72.51; Н 6.22; N 6.19. С₂₇Н₂₈N₂O₄. Вычислено, %: С 72.95; Н 6.35; N 6.30.

1-{[(3R,3aR,4aS,8aR,9aR)-8a-Метил-5-метилиден-2-оксододскагидронафто[2,3-*b*]фуран-3-ил]метил}-5-[(пиридин-2-ил)этинил]пиримидин-2,4(1*H*,3*H*)-дион (9) и 3-{[(3R,3aR,4aS,8aR,9aR)-8a-метил-5-метилиден-2-оксододскагидронафто[2,3-*b*]фуран-3-ил]метил}-6-(пиридин-2-ил)фуро[2,3-*d*]пиримидин-2(3*H*)-он (11) получают по описанной выше методике из 470 мг (1.00 ммоль) иодида 5 и 155 мг (1.50 ммоль) 2-этинилпиридина 7 в присутствии 70 мг (0.10 ммоль) Рd(PPh₃)₂Cl₂, 38 мг (0.20 ммоль) СuI и 202 мг (2.00 ммоль) Et₃N в 6 мл ДМФА при комнатной температуре в течение 20 ч. После колоночной хроматографии на силикагеле (элюент CHCl₃) выделяют 311 мг (70%) соединения 9 (R_f 0.53, CHCl₃-EtOH, 10:1) и 14 мг (3%) соединения 11 (R_f 0.63, CHCl₃-EtOH, 10:1).

Соединение 9. Белый порошок, т. пл. 242–243 °С (ЕtOH). [а]₅₈₉²⁷+32 (с 0.21, CHCl₃). ИК спектр, v, см⁻¹: 779, 1155, 1170, 1298, 1385, 1427, 1456, 1583, 1626, 1674, 1713, 1761, 2222, 2934, 3069, 3437. УФ спектр, λ_{max} , нм (lg ϵ): 222 (3.93), 255 (3.88), 315 (4.35). CREKTP SIMP ¹H, δ , M. d. $(J, \Gamma \mu)$: 0.74 (3H, c, 14-CH₃); 1.15 (1H, d. d, J = 12.9, J = 12.7, 6-СН_в); 1.17 (1H, д. д. д. J = 13.3, J = 12.8, J = 5.3) и 1.63 (1H, д. д. д. J = 13.3, J = 6.1, J = 2.2, 6-CH₂); 1.41 (1H, д. д, J = 15.6, J = 4.2) и 2.09 (1H, д. д, J = 15.7, J = 1.3, 9-СН₂); 1.46–1.53 (3Н, м, 1-СН₄, 2-СН₂); 1.74 (1Н, д, *J* = 12.1, 5-СН); 1.92 (1Н, д. д. д. *J* = 13.9, *J* = 12.8, *J* = 5.7) и 2.26 (1Н, д. м, *J* = 12.6, 3-CH₂); 2.57 (1Н, д. д. д. д. *J* = 12.1, *J* = 6.2, *J* = 6.1, *J* = 4.5, 7-CH); 3.17 (1H, д. д. д. д, *J* = 7.6, *J* = 6.2, *J* = 5.2, 11-CH); 3.80 (1Н, д. д, J = 14.2, J = 7.6) и 4.21 (1Н, д. д. J = 14.2, J = 5.2, 13-СН₂); 4.41 (1Н, д. *J* = 0.8) и 4.72 (1H, д, *J* = 0.8, 15-CH₂); 4.47 (1H, д. д. д. д, *J* = 6.1, *J* = 3.9, *J* = 2.0, 8-CH); 7.20 (1H, д. д, J = 6.0, J = 5.9, H-5 Ру); 7.50 (1H, д, J = 7.7, H-3 Ру); 7.63 (1H, д. д. д. J = 6.8, J = 6.0, J = 1.4, H-4 Ру); 7.98 (1H, c, H-6'); 8.50 (1H, д. д, J = 5.9, J = 1.4, H-6 Ру). Спектр ЯМР ¹³С, б, м. д.: 17.3 (14-СН₃); 20.7 (С-2); 22.1 (С-6); 34.2 (С-10); 36.2 (C-3); 38.7 (C-7); 40.8 (C-9); 41.6 (C-1); 45.4 (C-13); 45.8 (2C, C-5,11); 77.9 (C-8); 80.4 (C-7'); 92.0 (C-8'); 98.4 (C-5'); 106.2 (C-15); 122.7 (C-5 Py); 127.0 (C-3 Py); 136.2 (C-4 Py); 142.1 (C-2 Py); 148.4 (C-4); 149.1 (C-6'); 149.2 (C-6 Py); 149.6 (C-2'); 161.4 (C-4'); 176.4 (С-12). Найдено, %: С 70.18; Н 6.25; N 9.52. С₂₆Н₂₇N₃O₄. Вычислено, %: С 70.10; H 6.11; N 9.43.

Соединение 11. Розоватый порошок, т. пл. 324–325 °С (СНСІ₃). [α]₅₈₉²⁵ +117 (*с* 0.06, СНСІ₃). ИК спектр, v, см⁻¹: 775, 1128, 1165, 1346, 1362, 1377, 1414, 1468, 1574, 1616, 1653, 1672, 1757, 2922, 3441. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.76 (3H, с, 14-CH₃); 1.17–1.24 (2H, м, 1-CH_B, 6-CH_B); 1.44 (1H, д. д, *J* = 15.8, *J* = 4.4) и 2.10 (1H, д. д, *J* = 15.7, *J* = 1.7, 9-CH₂); 1.47–1.56 (3H, м, 1-CH_A, 2-CH₂); 1.66 (1H, д. д. д. *J* = 13.0, *J* = 5.8, *J* = 2.2, 6-CH_A); 1.78 (1H, д. *J* = 12.0, 5-CH); 1.95 (1H, д. д. д. *J* = 13.6, *J* = 12.8, *J* = 5.1) и 2.28 (1H, д. м, *J* = 12.9, 3-CH₂); 2.70 (1H, д. д. д. *J* = 12.2, *J* = 6.3, *J* = 5.9, *J* = 4.2, 7-CH); 3.32 (1H, д. д. д. *J* = 9.0, *J* = 6.3, *J* = 3.3, 11-CH); 3.92 (1H, д. д. *J* = 13.4, *J* = 9.0) и 4.53 (1H, д. д. *J* = 13.4, *J* = 3.3, 13-CH₂); 4.42 (1H, д. *J* = 0.9) и 4.74 (1H, д.

J = 0.9, 15-CH₂); 4.50 (1H, д. д. д. J = 5.9, J = 4.0, J = 1.9, 8-CH); 7.22 (1H, с, H-5'); 7.27 (1H, д. д. д. J = 8.3, J = 5.8, J = 6.3, H-5 Py); 7.77–7.78 (2H, м, H-3,4 Py); 8.47 (1H, с, H-4'); 8.58 (1H, д. J = 5.8, H-6 Py). Спектр ЯМР ¹³С, δ , м. д.: 17.5 (14-CH₃); 21.0 (C-2); 22.4 (C-6); 34.4 (C-10); 36.5 (C-3); 39.4 (C-7); 40.9 (C-9); 41.8 (C-1); 45.1 (C-11); 46.1 (C-5); 49.2 (C-13); 78.4 (C-8); 101.6 (C-5'); 106.2 (C-15); 107.8 (C-4a'); 120.4 (C-3 Py); 124.0 (C-5 Py); 127.4 (C-4 Py); 144.3 (C-4'); 146.8 (C-2 Py); 148.9 (C-4); 149.9 (C-6 Py); 154.0 (C-2'); 155.2 (C-6'); 171.7 (C-7a'); 177.9 (C-12). Масс-спектр. m/z ($I_{\text{отн}}$, %): 446 (18), 445 (44), 214 (45), 213 (100), 190 (19), 171 (33), 161 (19), 105 (24), 79 (26), 55 (28). Найдено, m/z: 445.2003 [M]⁺. С₂₆H₂₇N₃O₄. Вычислено, m/z: 445.1999.

(*E*)- и (*Z*)-Метил-3-(3-{[(3*R*,3a*R*,4a*S*,8a*R*,9a*R*)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-*b*]фуран-3-ил]метил}-5-иод-2,6-диоксо-2,3-дигидропиримидин-1(6*H*)-ил)акрилаты 13а,b получают при взаимодействии 470 мг (1.00 ммоль) иодида 5 и 126 мг (1.50 ммоль) метилпропиолата (12) в присутствии 70 мг (0.10 ммоль) Pd(PPh₃)₂Cl₂, 38 мг (0.20 ммоль) CuI и 202 мг (2.00 ммоль) Et₃N в 6 мл ДМФА при комнатной температуре в течение 20 ч. После колоночной хроматографии на силикагеле (элюент – CHCl₃–EtOH, 20:0→20:1) выделяют 155 мг (33%) соединения 5 (R_f 0.44, CHCl₃–EtOH, 10:1), 179 мг (32%) соединения 13а (R_f 0.60, CHCl₃–EtOH, 10:1) и 100 мг (18%) 13b (R_f 0.51, CHCl₃–EtOH, 10:1).

Соединение 13а. Маслообразное вещество. [а]₅₈₉²⁶ +33 (с 0.33, CHCl₃). ИК спектр, v, cm⁻¹: 760, 1165, 1196, 1220, 1229, 1244, 1256, 1281, 1303, 1341, 1362, 1423, 1620, 1678, 1724, 1765, 2930. УФ спектр, λ_{max} , нм (lg ε): 217 (4.15), 264 (3.91), 304 (3.73). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.78 (3H, с, 14-CH₃); 1.17 (1H, д. д, *J* = 12.6, *J* = 12.4) и 1.67 (1Н, д. д. д, *J* = 13.4, *J* = 6.1, *J* = 2.2, 6-СН₂); 1.22 (1Н, д. д. д. *J* = 13.2, *J* = 12.6, J=5.7, 1-CH_B); 1.46 (1H, д. д. J=15.6, J=4.1) и 2.14 (1H, д. д. J=15.6, J=1.8, 9-CH₂); 1.50–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.80 (1H, д, J = 12.0, 5-CH); 1.97 (1H, д. д. д. *J* = 14.2, *J* = 13.0, *J* = 6.2) и 2.31 (1Н, д. м, *J* = 13.0, 3-CH₂); 2.64 (1Н, д. д. д. д. д. *J* = 12.3, *J* = 6.3, *J* = 5.6, *J* = 4.2, 7-CH); 3.14 (1H, д. д. д. д. *J* = 8.2, *J* = 6.3, *J* = 4.2, 11-CH); 3.71 (1H, μ , J = 14.1, J = 8.2) μ 4.31 (1H, μ , J = 14.1, J = 4.2, 13-CH₂); 3.74 (3H, c, СООСН₃); 4.42 (1H, д, *J* = 1.0) и 4.76 (1H, д, *J* = 1.0, 15-СН₂); 4.52 (1H, д. д. д. *J* = 5.6, J = 4.0, J = 1.9, 8-CH); 7.00 (1H, J, J = 14.8, 8'-CH); 7.98 (1H, c, H-6'); 8.16 (1H, J, J) J = 14.8, 7'-CH). Спектр ЯМР¹³С, б, м. д.: 17.3 (14-CH₃); 20.7 (С-2); 22.1 (С-6); 34.2 (C-10); 36.2 (C-3); 39.1 (C-7); 40.8 (C-9); 41.6 (C-1); 46.8 (2C, C-11.13); 46.9 (C-5); 51.4 (COOCH₃); 66.1 (C-5'); 78.0 (C-8); 106.2 (C-15); 114.0 (C-8'); 134.3 (C-7'); 148.3 (C-6'); 148.4 (С-2'); 149.4 (С-4); 158.1 (С-4'); 166.8 (С-9'); 176.6 (С-12). Найдено, %: С 49.46; Н 4.64; I 22.67; N 4.87. C₂₃H₂₇IN₂O₆. Вычислено, %: С 49.83; Н 4.91; I 22.89; N 5.05. Найдено, *m/z*: 554.0907 [M]⁺. С₂₃H₂₇IN₂O₆. Вычислено, *m/z*: 554.0908.

Соединение 13b. Маслообразное вещество. [α]₅₈₉²⁶ +27 (*с* 0.62, CHCl₃). ИК спектр, v, см⁻¹: 756, 1167, 1219, 1259, 1346, 1362, 1429, 1620, 1674, 1724, 1765, 2930, 3435. УФ спектр, λ_{max}, нм (lg ε): 215 (4.08), 399 (3.79). Спектр ЯМР ¹Н, δ, м. д. (J, Гц): 0.78 (3H, c, 14-CH₃); 1.16 (1H, д. д, *J* = 12.8, *J* = 12.5) и 1.68 (1H, д. д. д. *J* = 13.2, *J* = 6.0, J=2.4, 6-CH_A); 1.21 (1H, д. д. д, J= 13.2, J = 12.9, J = 6.0, 1-CH_B); 1.44 (1H, д. д, J = 15.6, J = 4.2) и 2.14 (1Н, д. д, J = 15.6, J = 1.8, 9-CH₂); 1.50–1.60 (3Н, м, 1-CH_A, 2-СН₂); 1.77 (1Н, д. д, J = 12.1, J = 0.9, 5-СН); 1.95 (1Н, д. д. д, J = 13.6, J = 12.8, J = 5.7) и 2.31 (1Н, д. м, J = 12.6, 3-CH₂); 2.61 (1Н, д. д. д. д. д. J = 12.3, J = 6.2, J = 5.1, *J* = 4.3, 7-CH); 3.19 (1H, д. д. д, *J* = 7.4, *J* = 6.2, *J* = 5.0, 11-CH); 3.63 (3H, с, COOCH₃); 3.74 (1H, д. д, J = 14.1, J = 7.4) и 4.28 (1H, д. д, J = 14.1, J = 5.0, 13-CH₂); 4.42 (1H, д, *J* = 1.2) и 4.76 (1H, д, *J* = 1.2, 15-CH₂); 4.50 (1H, д. д. д. д, *J* = 5.1, *J* = 4.4, *J* = 1.7, 8-CH); 6.09 (1H, д, J = 8.9, 8'-CH); 6.66 (1H, д, J = 8.9, 7'-CH); 7.95 (1H, с, H-6'). Спектр ЯМР ¹³С, б, м. д.: 17.8 (14-СН₃); 21.2 (С-2); 22.6 (С-6); 34.6 (С-10); 36.7 (С-3); 39.2 (C-7); 41.3 (C-9); 42.1 (C-1); 46.3 (C-5); 46.6 (C-13); 46.7 (C-11); 51.8 (COO<u>C</u>H₃); 66.6 (C-5'); 78.4 (C-8); 106.7 (C-15); 120.8 (C-8'); 132.3 (C-7'); 148.8 (C-6'); 148.9 (C-2'); 149.6 (С-4); 158.8 (С-4'); 163.9 (С-9'); 176.9 (С-12). Найдено, %: С 49.62; Н 4.58; I 22.44; N 4.94. С23H27IN2O6. Вычислено, %: С 49.83; Н 4.91; I 22.89; N 5.05. Найдено, *m/z*: 554.0903 [M]⁺. С₂₃H₂₇IN₂O₆. Вычислено, *m/z*: 554.0908.

Метил-3-(1-{[(3R,3aR,4aS,8aR,9aR)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-2,4-диоксо-1,2,3,4-тетрагидропиримидин-5-ил)пропиолат (14) получают при взаимодействии 470 мг (1.00 ммоль) иодида 5 с 185 мг

(2.20 ммоль) метилпропиолата (12) в присутствии 70 мг (0.10 ммоль) Pd(PPh₃)₂Cl₂, 38 мг (0.20 ммоль) CuI и 121 мг (1.20 ммоль) Et₃N в 6 мл ДМФА при нагревании до 60 °С в течение 18 ч. Выход 332 мг (78%), белый порошок, т. пл. 165-167 °С (СНСІ₃). $[\alpha]_{589}^{26}$ -2 (*c* 0.50, CHCl₃). ИК спектр, v, см⁻¹: 897, 1086, 1130, 1144, 1161, 1250, 1315, 1344, 1379, 1431, 1445, 1470, 1626, 1647, 1686, 1707, 1757, 2222, 2810, 2839, 2866, 2912, 2943, 2970, 2984, 3046. УФ спектр, λ_{max} , нм (lg ϵ): 248 (3.93), 303 (4.23). Спектр ЯМР⁻¹Н, δ, м. д. (*J*, Гц): 0.78 (3H, с, 14-CH₃); 1.17 (1H, д. д, *J* = 12.8, *J* = 12.6) и 1.66 (1Н, д. д. д. J = 13.2, J = 5.8, J = 2.3, 6-СН₂); 1.22 (1Н, д. д. д. J = 13.3, J = 12.5, J = 5.4, 1-CH_B); 1.46 (1H, д. д, J = 15.7, J = 4.3) и 2.13 (1H, д. д, J = 15.6, J = 1.8, 9-CH₂); 1.50-1.60 (3H, м, 1-CH_A, 2-CH₂); 1.79 (1H, д, J = 12.3, 5-CH); 1.97 (1H, д. д. д, J = 13.7, *J* = 12.8, *J* = 5.6) и 2.31 (1Н, д. м, *J* = 12.8, 3-CH₂); 2.65 (1Н, д. д. д. д. д. *J* = 12.2, *J* = 6.3, *J* = 5.1, *J* = 4.3, 7-CH); 3.19 (1H, д. д. д, *J* = 8.2, *J* = 6.3, *J* = 4.6, 11-CH); 3.75 (3H, с, СООСН₃); 3.77 (1H, д. д, *J* = 14.2, *J* = 8.2) и 4.30 (1H, д. д, *J* = 14.2, *J* = 4.6, 13-CH₂); 4.43 (1H, д, J = 1.0) и 4.76 (1H, д, J = 1.0, 15-CH₂); 4.53 (1H, д. д. д. J = 5.1, J = 3.9, J = 1.9, 8-CH); 8.06 (1H, с, H-6'); 9.59 (1H, с, 3'-NH). Спектр ЯМР ¹³С, δ , м. д.: 17.6 (14-CH₃); 21.0 (C-2); 22.5 (C-6); 34.5 (C-10); 36.5 (C-3); 39.1 (C-7); 41.0 (C-9); 41.9 (C-1); 45.9 (C-13); 46.1 (C-5); 46.3 (C-11); 52.7 (COOCH₃); 78.2 (C-7'); 78.3 (C-8); 84.8 (C-8'); 96.1 (C-5'); 106.5 (C-15); 152.6 (C-6'); 148.8 (C-4); 149.5 (C-2'); 153.8 (C-9'); 161.1 (С-4'); 176.9 (С-12). Найдено, %: С 64.35; Н 5.83; N 6.42. С₂₃H₂₆N₂O₆. Вычислено, %: С 64.78; Н 6.15; N 6.57.

1-{[(3*R*,3a*R*,4a*S*,8a*R*,9a*R*)-8а-Метил-5-метилиден-2-оксододекагидронафто[2,3-*b*]фуран-3-ил]метил}-5-[(триметилсилил)этинил]пиримидин-2,4(1*H*,3*H*)-дион (16).

А. Смесь 1175 мг (2.50 ммоль) иодида 5 и 318 мг (3.25 ммоль) триметилсилилацетилена (15), 88 мг (0.125 ммоль) Pd(PPh₃)₂Cl₂, 24 мг (0.125 ммоль) CuI и 505 мг (5.00 ммоль) Et₃N в 8 мл ДМФА перемешивают при комнатной температуре в течение 20 ч. Растворитель упаривают, остаток хроматографируют на колонке с силикагелем (элюент CHCl₃). Выход 1013 мг (92%).

Б. Смесь 220 мг (0.50 ммоль) бромида 4, 73 мг (0.75 ммоль) триметилсилилацетилена (15), 35 мг (0.05 ммоль) Pd(PPh₃)₂Cl₂, 9 мг (0.05 ммоль) CuI и 101 мг (1.00 ммоль) Et₃N в 3 мл ДМФА перемешивают при 60 °C в течение 10 ч. Реакционную смесь выливают на чашку Петри для свободного испарения, остаток хроматографируют на колонке с силикагелем (элюент CHCl₃). Выход 187 мг (85%), белые кристаллы, т. пл. 213–215 °С (CHCl₃), R_f 0.60 (CHCl₃–EtOH, 9:1), R_f 0.29 (PhH– ЕtOAc, 3:1). [α]₅₈₉²⁶ +22 (с 0.29, CHCl₃). ИК спектр, ν, см⁻¹: 758, 845, 897, 1168, 1231, 1250, 1377, 1454, 1624, 1711, 1763, 2186, 2903, 2932. УФ спектр, λ_{max}, нм (lg ε): 233 (4.07), 296 (4.15). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.19 (9Н, с, Si(CH₃)₃); 0.78 (3H, с, 14-CH₃); 1.16 (1H, μ , μ , J = 12.7, J = 12.5) μ 1.66 (1H, μ , μ , J = 13.3, J = 6.0, J = 2.3, 6-CH_A); 1.21 (1H, π . π . π , J = 14.0, J = 12.5, J = 5.8, 1-CH_B); 1.45 (1H, π . π , J = 15.6, J = 4.3) и 2.14 (1H, д. д. J = 15.6, J = 1.8, 9-CH₂); 1.50–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.78 (1H, д. J = 12.2, 5-CH); 1.97 (1H, д. д. д, J = 13.8, J = 12.9, J = 5.7) и 2.31 (1H, д. м, J = 12.5, 3-СН₂); 2.61 (1Н, д. д. д. д. д. *J* = 12.2, *J* = 6.4, *J* = 5.1, *J* = 4.3, 7-СН); 3.13 (1Н, д. д. д, J=7.9, J = 6.4, J = 4.5, 11-CH); 3.66 (1H, д. д, J = 14.2, J = 7.9) и 4.28 (1H, д. д, J = 14.2, J = 4.5, 13-CH₂); 4.42 (1H, д, J = 1.0) и 4.74 (1H, д, J = 1.0, 15-CH₂); 4.51 (1H, д. д. д. J = 5.1, J = 4.0, J = 2.0, 8-CH); 7.77 (1H, c, H-4'); 9.28 (1H, c, 3'-NH). Спектр ЯМР ¹³C, δ , м. д.: -0.3 (Si(CH₃)₃); 17.6 (14-CH₃); 21.0 (C-2); 22.4 (C-6); 34.5 (C-10); 36.5 (C-3); 39.2 (C-7); 41.1 (C-9); 41.9 (C-1); 45.9 (C-13); 46.1 (C-5); 46.3 (C-11); 78.2 (C-8); 94.6 (C-7'); 99.7 (C-5'); 99.9 (C-8'); 106.4 (C-15); 148.7 (C-4); 148.8 (C-6'); 149.8 (C-2'); 161.5 (C-4'); 176.9 (C-12). Найдено, %: С 65.85; Н 7.12; N 6.19. С₂₄Н₃₂N₂O₄Si. Вычислено, %: С 65.42; Н 7.32; N 6.36.

5-Этинил-1-{[(3*R*,3a*R*,4a*S*,8a*R*,9a*R*)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-*b*]фуран-3-ил]метил}пиримидин-2,4(1*H*,3*H*)-дион ((11*R*)-13-(5-этинил-2,4-диоксотетрагидропиримидин-1-ил)эвдесма-4(15)-ен-8β,12-олид) (17).

А. К раствору 1025 мг (2.30 ммоль) соединения **16** в 40 мл ТГФ при перемешивании в токе аргона прикапывают 3 мл 1 М раствора Bu_4NF в ТГФ. Смесь перемешивают при комнатной температуре в течение 1 ч, растворитель удаляют в вакууме, остаток хроматографируют на колонке с силикагелем (элюент – CHCl₃–EtOH, 100:0–100:1). Выход 592 мг (70%).

Б. К раствору 882 мг (2.00 ммоль) соединения 16 в 60 мл МеОН при перемешивании в токе аргона последовательно добавляют 644 мг (2.00 ммоль) Ви₄NBr и 223 мг (6.00 ммоль) NH₄F. Реакционную смесь перемешивают при комнатной температуре в течение 1 сут. Образовавшийся осадок соединения 17 (448 мг) отфильтровывают, фильтрат упаривают и хроматографируют на силикагеле, получая ещё 237 мг соединения 17. Общий выход 685 мг (93%), белый порошок, т. пл. 305-311 °C (CHCl₃), $R_{\rm f}$ 0.57 (CHCl₃-EtOH, 9:1), $R_{\rm f}$ 0.14 (PhH-EtOAc, 3:1). [α]₅₈₉²⁶ +28 (c 0.39, СНСІ₃). ИК спектр, v, см⁻¹: 885, 955, 1163, 1178, 1192, 1221, 1344, 1361, 1431, 1452, 1470, 1626, 1653, 1682, 1734, 1749, 2114, 2845, 2866, 2934, 2972, 2992, 3036, 3088, 3219, 3437. УФ спектр, λ_{тах}, нм (lg ε): 227 (3.96), 289 (4.06). Спектр ЯМР ¹Н , δ, м. д. (Ј, Гц): 0.81 (3H, с, 14-СН₃); 1.22 (1H, д. д, J = 13.0, J = 12.6) и 1.71 (1H, д. д. д, J = 13.3, J = 6.0, J = 2.4, 6-CH_A); 1.28 (1H, д. д. д. J = 13.3, J = 12.8, J = 5.3, 1-CH_B); 1.52 (1Н, д. д, *J* = 15.6, *J* = 4.4) и 2.16 (1Н, д. д, *J* = 15.6, *J* = 1.8, 9-СН₂); 1.54–1.63 (3Н, м, 1-CH_A, 2-CH₂); 1.84 (1H, д, *J* = 12.2, 5-CH); 2.02 (1H, д. д. д. *J* = 13.5, *J* = 12.8, *J* = 5.6) и 2.34 (1H, д. м, *J* = 12.7, 3-CH₂); 2.65 (1H, д. д. д. д. *J* = 12.2, *J* = 6.3, *J* = 4.9, *J* = 4.3, 7-CH); 3.26 (1H, д. д. д, *J* = 7.9, *J* = 6.3, *J* = 5.1, 11-CH); 3.32 (1H, c, H-8'); 3.84 (1Н, д. д, J = 14.2, J = 7.9) и 4.26 (1Н, д. д, J = 14.2, J = 5.1, 13-СН₂); 4.50 (1Н, д, J = 1.1) и 4.80 (1Н, д, J = 1.1, 15-CH₂); 4.57 (1Н, д. д. д, J = 4.9, J = 4.4, J = 1.8, 8-CH); 7.96 (1H, с, H-6'). Спектр ЯМР ¹³С, б, м. д.: 17.9 (14-СН₃); 21.6 (С-2); 23.0 (С-6); 35.0 (C-10); 37.0 (C-3); 39.6 (C-7); 41.6 (C-9); 42.4 (C-1); 46.1 (C-13); 46.6 (C-5); 46.7 (C-11); 74.7 (C-7'); 79.2 (C-8); 82.5 (C-8'); 98.9 (C-5'); 106.8 (C-15); 149.4 (C-4); 150.2 (C-6'); 150.8 (С-2'); 163.6 (С-4'); 178.1 (С-12). Найдено, %: С 68.12; Н 6.34; N 7.42. С₂₁Н₂₄N₂O₄. Вычислено, %: С 68.46; Н 6.57; N 7.60.

5-[3-(Диэтиламино)проп-1-инил]-1-{[(3R,3aR,4aS,8aR,9aR)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}пиримидин-2,4(1H,3H)-дион (18). В двугорлую колбу в атмосфере аргона последовательно загружают 60 мг (2.00 ммоль) параформа, 22 мг (0.30 ммоль) Et₂NH, 2 мг (0.01 ммоль) CuI, 76 мг (0.20 ммоль) соединения 17 и 4 мл диоксана. Реакционную смесь перемешивают при 60 °С в течение 5 ч (контроль ТСХ). По охлаждении реакционную смесь выливают в насыщенный водный раствор NaCl (30 мл), продукт экстрагируют CHCl₃ (3 × 30 мл). Объединённые экстракты промывают H_2O (3 × 30 мл), сушат над MgSO₄ и упаривают. Остаток растворяют в минимальном количестве CHCl₃ и хроматографируют на колонке с силикагелем (элюент – CHCl₃-EtOH, 50:0→50:1). Выход 66 мг (73%), белый порошок, т. пл. 150–152 °С (CHCl₃), $R_{\rm f}$ 0.38 (CHCl₃–EtOH, 9:1). [α]₅₈₉²⁶ +22 (c 0.48, CHCl₃). ИК спектр, v, см⁻¹: 1169, 1198, 1232, 1246, 1348, 1379, 1456, 1629, 1649, 1709, 1761, 2234, 2839, 2932, 2970. УФ спектр, λ_{max}, нм (lg ε): 231 (4.05), 293 (4.12). Спектр ЯМР ¹Н, δ, м. д. (J, Гц): 0.77 (3H, с, 14-CH₃); 1.05 (6H, т, J = 7.2, N(CH₂C<u>H₃)</u>₂); 1.16 (1H, д. д, *J* = 12.8, *J* = 12.6) и 1.66 (1H, д. д. д, *J* = 13.3, *J* = 5.8, J = 2.4, 6-CH₂); 1.21 (1H, д. д. д, J = 3.1, J = 12.6, J = 6.0, 1-CH_B); 1.44 (1H, д. д, J = 15.7, J = 4.2) и 2.14 (1H, д. д, J = 15.5, J = 1.8, 9-CH₂); 1.50–1.59 (3H, м, 1-CH_A, 2-СН₂); 1.78 (1Н, д, *J* = 12.2, 5-СН); 1.97 (1Н, д. д. д. д, *J* = 13.7, *J* = 12.8, *J* = 5.8) и 2.31 (1H, д. м, J = 12.9, 3-CH₂); 2.58 (4H, к, J = 7.3, N(CH₂CH₃)₂); 2.61 (1H, д. д. д. д. J = 12.2, J = 6.2, J = 5.1, J = 4.2, 7-CH); 3.16 (1H, д. д. д. д. J = 7.7, J = 6.2, J = 4.6, 11-СН); 3.60 (2H, с, 9'-СН₂); 3.68 (1H, д. д, J = 14.1, J = 7.7) и 4.25 (1H, д. д, J = 14.1, J = 4.6, 13-CH₂); 4.42 (1H, д, J = 1.2) и 4.77 (1H, д, J = 1.2, 15-CH₂); 4.50 (1H, д. д. д, J = 5.1, J = 4.2, J = 1.8, 8-CH); 7.69 (1H, с, H-6'). Спектр ЯМР ¹³С, δ , м. д.: 12.2 (N(CH₂CH₃)₂); 17.6 (14-CH₃); 21.0 (C-2); 22.4 (C-6); 34.5 (C-10); 36.5 (C-3); 39.2 (C-7); 41.1 (C-9); 41.4 (N(CH₂CH₃)₂); 41.9 (C-1); 45.8 (C-13); 46.2 (C-5); 46.4 (C-11); 47.0 (C-9'); 75.4 (C-7'); 78.2 (C-8); 89.3 (C-8'); 99.9 (C-5'); 106.4 (C-15); 147.6 (C-6'); 148.8 (C-4); 150.0 (C-2'); 161.9 (C-4'); 176.8 (C-12). Найдено, %: С 68.66; Н 7.52; N 9.12. С₂₆Н₃₅N₃O₄. Вычислено, %: С 68.85; Н 7.78; N 9.26.

1-{[(3*R*,3a*R*,4a*S*,8a*R*,9a*R*)-8a-Метил-5-метилиден-2-оксододекагидронафто[2,3-*b*]фуран-3-ил]метил}-5-[3-(пирролидин-1-ил)проп-1-инил]пиримидин-2,4(1*H*,3*H*)-дион (24) получают при взаимодействии 76 мг (0.20 ммоль) соединения 17, 21 мг (0.30 ммоль) пирролидина (20), 60 мг (2.00 ммоль) параформа и 2 мг (0.01 ммоль) CuI в 4 мл диоксана в условиях, описанных для получения соединения 18. Выход 70 мг (78%), белые кристаллы, т. пл. 139–140 °C (CHCl₃). [α]₅₈₉²⁷ +15 (*c* 0.68, CHCl₃). ИК спектр,

v, см⁻¹: 1163, 1246, 1346, 1379, 1443, 1630, 1647, 1697, 1765, 2237, 2930. УФ спектр, λ_{max}, нм (lg ε): 231 (3.99), 292 (4.07). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.77 (3H, с, 14-CH₃); 1.16 (1H, д. д, *J* = 12.8, *J* = 12.5) и 1.65 (1H, д. д. д. *J* = 13.2, *J* = 5.7, *J* = 2.2, 6-CH_A); 1.21 (1H, д. д. д. J = 13.1, J = 12.6, J = 6.0, 1-CH_B); 1.44 (1H, д. д, J = 15.7, J = 4.3) и 2.13 (1Н, д. д, J = 15.6, J = 1.6, 9-CH₂); 1.50–1.59 (3Н, м, 1-CH_B, 2-CH₂); 1.76–1.79 (5Н, м, 5-СН_в, 3,4-СН₂ пирролидин); 1.96 (1Н, д. д. д, J = 13.6, J = 12.8, J = 5.7) и 2.30 (1Н, д. м, J = 12.5, 3-CH₂); 2.60 (1Н, д. д. д. д. д. J = 12.2, J = 6.3, J = 4.9, J = 4.0, 7-CH); 2.67 (4H, м, 2,5-CH₂ пирролидин); 3.14 (1H, д. д. д, J = 7.8, J = 6.3, *J* = 4.7, 11-CH); 3.61 (2H, д, *J* = 1.2, 9'-CH₂); 3.68 (1H, д. д, *J* = 14.1, *J* = 7.8) и 4.23 (1H, д. д. J = 14.1, J = 4.7, 13-CH₂); 4.42 (1H, д, J = 0.8) и 4.75 (1H, д, J = 0.8, 15-CH₂); 4.50 (1H, д. д. д. J = 4.9, J = 4.0, J = 1.8, 8-CH); 7.70 (1H, с, H-6'). Спектр ЯМР ¹³С, б, м. д.: 17.6 (14-СН₃); 21.0 (С-2); 22.4 (С-6); 23.7 (3,4-СН₂ пирролидин); 34.5 (С-10); 36.5 (С-3); 39.1 (С-7); 41.1 (С-9); 41.9 (С-1); 43.4 (2,5-СН₂ пирролидин); 45.7 (С-13); 46.1 (C-5); 46.3 (C-11); 52.1 (C-9'); 75.1 (C-7'); 78.2 (C-8); 89.8 (C-8'); 99.6 (C-5'); 106.5 (C-15); 147.8 (C-6'); 148.8 (C-4); 150.2 (C-2'); 162.2 (C-4'); 176.8 (C-12). Масс-спектр, *m/z* (*I*_{отн}, %): 452 [M+H]⁺ (14), 451 [M]⁺ (44), 450 (12), 382 (27), 232 (39), 218 (17), 217 (35), 191 (19), 190 (100), 177 (19), 176 (29), 164 (25), 150 (59), 149 (30), 145 (36), 131 (36), 121 (41), 105 (49), 93 (59), 91 (73), 79 (64), 70 (90). Найдено, *m/z*: 451.2465 [M]⁺. С₂₆Н₃₃N₃O₄. Вычислено, *m/z*: 451.2466.

1-{[(3R,3aR,4aS,8aR,9aR)-8a-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-5-[3-(4-метилпиперазин-1-ил)проп-1-инил]пиримидин-2,4(1H,3H)-дион (25) получают при взаимодействии 76 мг (0.20 ммоль) соединения 17, 30 мг (0.30 ммоль) 4-метилпиперазина (21), 60 мг (2.00 ммоль) параформа и 2 мг (0.01 ммоль) CuI в 4 мл диоксана в условиях, описанных для получения соединения **18**. Выход 81 мг (84%), белый порошок, т. пл. 170–173 °С (СНСІ₃). [α]₅₈₉²⁶ +33 (с 0.25, CHCl₃). ИК спектр, v, см⁻¹: 758, 1146, 1165, 1250, 1288, 1331, 1346, 1375, 1450, 1629, 1645, 1693, 1711, 1763, 2235, 2800, 2839, 2909, 2936. УФ спектр, λ_{max}, нм (lg ε): 231 (4.02), 292 (4.08). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.79 (3Н, с, 14-СН₃); 1.17 (1Н, д. д, J = 12.7, J = 12.6) и 1.66 (1Н, д. д. д. д. J = 13.2, J = 6.0, J = 2.3, 6-CH_A); 1.22 (1Н, д. д. д. J = 13.2, J = 12.6, J = 5.0, 1-CH_B); 1.44 (1H, д. д. J = 15.5, J = 4.1) и 2.14 (1H, д. д. J = 15.6, J = 1.6, 9-CH₂); 1.50–1.59 (3H, м, 1-CH_A, 2-CH₂); 1.78 (1H, д, J = 12.2, 5-CH); 1.97 (1Н, д. д. д. J = 13.9, J = 12.7, J = 5.8) и 2.31 (1Н, д. м, J = 12.5, 3-СН₂); 2.27 (3Н, с, NCH₃); 2.52 (4H, уш. с, 3,5-CH₂ пиперазин); 2.60 (1H, д. д. д. д. *J* = 12.2, *J* = 6.3, J = 5.0, J = 4.2, 7-CH); 2.66 (4H, уш. с, 2,6-CH₂ пиперазин); 3.16 (1H, д. д. д. J = 7.8, *J* = 6.3, *J* = 4.7, 11-CH); 3.48 (2H, c, 9'-CH₂); 3.67 (1H, д. д, *J* = 14.1, *J* = 7.8) и 4.26 (1H, д. д. J = 14.1, J = 4.7, 13-CH₂); 4.44 (1H, д, J = 0.9) и 4.77 (1H, д, J = 0.9, 15-CH₂); 4.51 (1H, д. д. д. J = 5.0, J = 3.0, J = 1.6, 8-CH); 7.71 (1H, с, H-6'). Спектр ЯМР ¹³С, б, м. д.: 17.6 (14-CH₃); 21.1 (C-2); 22.5 (C-6); 34.5 (C-10); 36.6 (C-3); 39.2 (C-7); 41.2 (C-9); 42.0 (C-1); 45.4 (NCH₃); 45.6 (C-13); 46.2 (C-5); 46.4 (C-11); 47.4 (3,5-CH₂ пиперазин); 51.3 (2,6-СН₂ пиперазин); 54.6 (С-9'); 74.2 (С-7'); 78.2 (С-8); 88.9 (С-8'); 99.5 (С-5'); 106.5 (С-15); 147.8 (С-6'); 148.8 (С-4); 150.1 (С-2'); 161.9 (С-4'); 176.9 (С-12). Найдено, %: С 67.29; Н 7.22; N 11.34. С₂₇Н₃₆N₄O₄. Вычислено, %: С 67.48; Н 7.55; N 11.66.

1-{[(3*R***,3***aR***,4***aS***,8***aR***,9***aR***)-8***a***-Метил-5-метилиден-2-оксододекагидронафто[2,3-***b***]фуран-3-ил]метил}-5-{3-[2-(пиридин-3-ил)пиперидин-1-ил]проп-1-инил}пиримидин-2,4(1***H***,3***H***)-дион (26) получают при взаимодействии 76 мг (0.20 ммоль) соединения 17, 49 мг (0.30 ммоль) анабазина (22), 60 мг (2.00 ммоль) параформа и 2 мг (0.01 ммоль) CuI в 4 мл диоксана в условиях, описанных для получения соединения 18. Выход 76 мг (70%), белые кристаллы, т. пл. 197–198 °С (ЕtOH), [\alpha]_{589}^{25} –136 (***c* **0.27, CHCl₃). ИК спектр, v, см⁻¹: 891, 961, 1097, 1109, 1122, 1167, 1217, 1246, 1285, 1296, 1327, 1344, 1371, 1425, 1443, 1622, 1639, 1670, 1680, 1709, 1772, 2228, 2808, 2851, 2924, 2934. УФ спектр, \lambda_{max}, нм (lg \varepsilon): 232 (3.97), 293 (4.04). Спектр ЯМР ¹H, \delta, м. д. (***J***, Гц): 0.78 (3H, с, 14-CH₃); 1.18 (1H, д. д.** *J* **= 12.7,** *J* **= 12.6) и 1.66 (1H, д. д. д.** *J* **= 13.1,** *J* **= 5.5,** *J* **= 1.9, 6-CH₂); 1.21 (1H, д. д.** *J* **= 13.6,** *J* **= 12.3,** *J* **= 5.6, 1-CH_B); 1.33–1.40 (1H, м, 4-CH_B пиперидин); 1.44 (1H, д. д.** *J* **= 15.7,** *J* **= 4.2) и 2.13 (1H, д. д.** *J* **= 15.5,** *J* **= 1.5, 9-CH₂); 1.50–1.58 (4H, м, 1-CH_A, 2-CH₂, 3-CH_B пиперидин); 1.71–1.81 (5H, м, 5-CH, 3-CH_A пиперидин, 4-CH_A пиперидин, 5-CH₂ пиперидин); 1.96 (1H, д. д. д.** *J* **= 13.6,** *J* **= 12.8,** *J* **= 5.8) и 2.30 (1H, д. м,** *J* **= 12.8, 3-CH₂); 2.58–2.64 (2H, м, 7-CH,**

6-CH_в пиперидин); 2.97 (1Н, д, J = 11.5, 6-CH_A пиперидин); 3.16–3.18 (1Н, м, 11-CH); 3.21 (1Н, д, J = 17.5) и 3.31 (1Н, д, J = 17.5, 9'-СН₂); 3.45 (1Н, д, J = 10.0, 2-СН пиперидин); 3.72 (1H, д. д, J = 14.1, J = 7.7) и 4.26 (1H, д. д, J = 14.1, J = 4.5, 13-CH₂); 4.43 (1H, д, *J* = 0.8) и 4.74 (1H, д, *J* = 0.8, 15-CH₂); 4.50 (1H, д. д. д. д, *J* = 5.1, *J* = 3.9, J = 1.3, 8-CH); 7.30–7.36 (1H, м, H-5 Ру); 7.74 (1H, с, H-6'); 7.91 (1H, д, J = 7.0, H-4 Ру); 8.48-8.55 (1Н, м, Н-6 Ру); 8.67 (1Н, уш. с, *J*_{полуширины} = 10.0, Н-2 Ру); 10.51 (1Н, уш. с, 3'-NH). Сигналы протонов пиридинового кольца в спектре ЯМР ¹Н при 223 К: 7.34 (1Н, т, J = 7.0, Н-5 Ру); 7.89 (1Н, д, J = 7.0, Н-4 Ру); 8.50 (1Н, уш. д, J = 7.0, Н-6 Ру); 8.68 (1H, ym. c, $J_{\text{полуширины}} = 3.0$, H-2 Py). Спектр ЯМР ¹³C, δ , м. д.: 17.6 (14-CH₃); 21.0 (С-6); 22.4 (С-2); 24.5 (С-4 пиперидин); 25.7 (С-5 пиперидин); 34.5 (С-10); 35.2 (С-3 пиперидин); 36.5 (С-3); 39.2 (С-7); 41.1 (С-9); 41.9 (С-1); 44.9 (С-9); 45.7 (С-13); 46.2 (С-5); 46.4 (С-11); 53.2 (С-6 пиперидин); 63.4 (С-2 пиперидин); 76.5 (С-7'); 78.2 (С-8); 88.8 (C-8'); 99.8 (C-5'); 106.4 (C-15); 135.1 (C-4 Py); 147.6 (C-4); 148.8 (C-6'); 150.2 (С-2'); 162.1 (С-4'); 176.8 (С-12). Сигналы атомов углерода пиридинового кольца в спектре ЯМР ¹³С при 223 К: 124.2 (С-5 Ру); 135.0 (С-4 Ру); 138.3 (С-3 Ру); 148.3 (С-6 Ру); 150.1 (С-2 Ру). Найдено, %: С 70.62; Н 6.87; N 10.19. С₃₂Н₃₈N₄O₄. Вычислено, %: C 70.83; H 7.06; N 10.32.

1-{[(3R,3aR,4aS,8aR,9aR)-8a-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-5-[3-(4-оксопиперидин-1-ил)проп-1-инил]пиримидин-2,4(1H,3H)дион (27) получают из 221 мг (0.60 ммоль) соединения 17, 111 мг (0.72 ммоль) моногидрата гидрохлорида пиперидин-4-она (23), 180 мг (6.00 ммоль) параформа, 246 мг (3.00 ммоль) NaOAc и 6 мг (0.03 ммоль) CuI в 12 мл диоксана в присутствии молекулярных сит 3 Å. Реакционную смесь нагревают при 60 °C в течение 10 ч. Выход 216 мг (75%). Т. пл 136–138 °С (ЕtOH). [а]₅₈₉²⁶ +8 (с 0.85, CHCl₃). ИК спектр, v, см⁻¹: 1169, 1219, 1281, 1385, 1435, 1454, 1624, 1709, 1765, 2222, 2930. УФ спектр, λ_{max}, нм (lg ε): 224 (4.14), 292 (4.07). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.77 (3H, с, 14-СН₃); 1.16 (1Н, д. д, *J* = 12.8, *J* = 12.4) и 1.65 (1Н, д. д. д. д. *J* = 13.3, *J* = 5.8, *J* = 2.3, 6-CH₂); 1.21 (1H, д. д. д, J = 13.4, J = 12.8, J = 5.6, 1-CH_B); 1.44 (1H, д. д, J = 15.7, J = 4.3) и 2.13 (1H, д. д, J = 15.6, J = 1.8, 9-CH₂); 1.50–1.59 (3H, м, 1-CH_A, 2-CH₂); 1.78 (1Н, д, J = 12.4, 5-СН); 1.96 (1Н, д. д. д. J = 13.5, J = 12.8, J = 5.4) и 2.30 (1Н, д. м. J = 12.5, 3-CH₂); 2.49 (4H, д. д. J = 6.1, J = 6.0, 3,5-CH₂ пиперидин); 2.61 (1H, д. д. д. д. д. J = 12.2, J = 6.4, J = 5.2, J = 4.1, 7-CH); 2.89 (4H, д. д, J = 6.1, J = 6.0, 2,6-CH₂ пиперидин); 3.14 (1H, д. д. д. J = 8.1, J = 6.4, J = 4.3, 11-CH); 3.62 (2H, с, 9'-CH₂); 3.66 (1H, μ , μ , J = 14.1, J = 8.1) μ 4.27 (1H, μ , μ , J = 14.1, J = 4.3, 13-CH₂); 4.41 (1H, μ , J = 1.1) и 4.75 (1H, д, J = 1.1, 15-CH₂); 4.51 (1H, д. д. д. д, J = 5.2, J = 4.4, J = 1.8, 8-CH); 7.75 (1H, с, H-6'); 9.88 (1H, с, 3'-NH). Спектр ЯМР ¹³С, δ, м. д.: 17.6 (14-CH₃); 21.0 (С-2); 22.4 (С-6); 34.5 (С-10); 36.5 (С-3); 39.2 (С-7); 40.8 (3,5-СН₂ пиперидин); 41.0 (С-9); 41.9 (С-1); 45.9 (С-13); 46.1 (С-5); 46.2 (С-11); 47.0 (2,6-СН₂ пиперидин); 51.8 (C-9'); 76.2 (C-7'); 78.2 (C-8); 88.6 (C-8'); 99.2 (C-5'); 106.4 (C-15); 148.3 (C-6'); 148.8 (С-4); 149.9 (С-2'); 162.0 (С-4'); 177.0 (С-12); 208.2 (4-СО пиперидин). Найдено, %: С 67.23; Н 6.71; N 8.42. С₂₇Н₃₃N₃O₅. Вычислено, %: С 67.62; Н 6.94; N 8.76.

Получение 6-замещённых 3-{[(3R,3aR,4aS,8aR,9aR)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}фуро[2,3-d]пиримидин-2(3H)-онов 10, 11, 19, 28–31 (общая методика). К раствору 0.10 ммоль 5-алкинилпиримидин-2,4(1H,3H)-диона 8, 9, 18, 24–27 в 3 мл ацетона добавляют 2 мг (0.01 ммоль) AgNO₃. Смесь перемешивают в темноте при комнатной температуре в течение 24–48 ч (контроль TCX). Растворитель удаляют в вакууме, остаток хроматографируют на колонке с силикагелем (элюент CHCl₃–EtOH, 20:0→20:1).

6-[(Диэтиламино)метил]-3-{[(3*R***,3***aR***,4***aS***,8***aR***,9***aR***)-8а-метил-5-метилиден-2-оксододекагидронафто[2,3-***b***]фуран-3-ил]метил}фуро[2,3-***d***]пиримидин-2(3***H***)-он (19). Выход 37 мг (82%), маслообразное вещество. [α]₅₈₉²⁷ –35 (***c* **0.89, CHCl₃). ИК спектр, ν, см⁻¹: 1124, 1165, 1344, 1375, 1416, 1572, 1616, 1672, 1759, 2932, 2966. УФ спектр, λ_{max}, нм (lg ε): 245 (4.05), 328 (3.75). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 0.80 (3H, с, 14-CH₃); 1.06 (6H, д. д.** *J* **= 7.1,** *J* **= 7.1, N(CH₂C<u>H₃)₂); 1.19–1.26 (2H, м, 1-CH_B, 6-CH_B); 1.46 (1H, д. д.** *J* **= 15.8,** *J* **= 4.3) и 2.13 (1H, д. д,** *J* **= 15.6,** *J* **= 1.9, 9-CH₂); 1.51–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.68 (1H, д. д. д.** *J* **= 13.3,** *J* **= 5.9,** *J* **= 2.5, 6-CH_A); 1.80 (1H, д.** *J* **= 12.2, 5-CH); 1.99 (1H, д. д. д.** *J* **= 13.3,** *J* **= 12.8,** *J* **= 5.5) и 2.32 (1H, д. м,** *J* **= 12.8,**</u> 3-CH₂); 2.58 (4H, д. д. J = 14.3, J = 7.1, N(CH₂CH₃)₂); 2.73 (1H, д. д. д. д. J = 12.3, J = 6.2, J = 4.9, J = 4.2, 7-CH); 3.32 (1H, д. д. д. J = 8.9, J = 6.2, J = 3.1, 11-CH); 3.66 (2H, c, 8'-CH₂); 3.81 (1H, д. д. J = 13.3, J = 8.9) и 4.57 (1H, д. d. J = 13.3, J = 3.1, 13-CH₂); 4.43 (1H, d. J = 1.2) и 4.77 (1H, d. J = 1.2, 15-CH₂); 4.50 (1H, d. d. d. J = 4.9, J = 3.9, J = 1.7, 8-CH); 6.32 (1H, c, H-5'); 8.20 (1H, c, H-4'). Спектр ЯМР ¹³С, δ , м. d.: 12.0 (N(CH₂CH₃)₂); 17.7 (14-CH₃); 21.1 (C-2); 22.5 (C-6); 34.5 (C-10); 36.6 (C-3); 39.6 (C-7); 41.2 (C-9); 42.0 (C-1); 45.5 (C-11); 46.2 (C-5); 47.2 (N(CH₂CH₃)₂); 48.9 (C-8'); 49.1 (C-13); 78.2 (C-8); 101.5 (C-5'); 106.4 (C-15); 107.2 (C-4a'); 141.6 (C-4'); 148.9 (C-4); 155.2 (C-2'); 156.6 (C-6'); 172.2 (C-7a'); 177.9 (C-12). Macc-cпектр. m/z (I_{OTH} , %): 454 [M+H]⁺ (2), 453 [M]⁺ (6), 382 (30), 381 (100), 185 (21), 149 (51), 133 (29), 123 (25), 107 (31), 105 (26), 93 (34), 91 (45), 84 (34), 77 (38). Найдено, m/z: 453.2627 [M]⁺. C₂₆H₃₅N₃O₄. Вычислено, m/z: 453.2622.

3-{[(3R,3aR,4aS,8aR,9aR)-8а-Метил-5-метилиден-2-оксододекагидронафто-[2,3-*b*]фуран-3-ил]метил}-6-[(пирролидин-1-ил)метил]фуро[2,3-*d*]пиримидин-2(3H)-он (28). Выход 37 мг (82%), белый порошок, т. пл. ~200 °С (с разл., CHCl₃). [α]₅₈₉²⁷ -47 (*с* 0.51, CHCl₃). ИК спектр, ν, см⁻¹: 1111, 1128, 1161, 1196, 1344, 1377, 1416, 1441, 1574, 1622, 1647, 1674, 1680, 1757, 2930. УФ спектр, λ_{max} , нм (lg ε): 245 (4.03), 330 (3.79). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.79 (3Н, с, 14-СН₃); 1.18–1.25 (2Н, м, 1-CH_B, 6-CH_B); 1.45 (1H, д. д, *J* = 15.6, *J* = 4.1) и 2.12 (1H, д. д, *J* = 15.6, *J* = 1.8, 9-CH₂); 1.50–1.60 (3H, м, 1-CH_A, 2-CH₂); 1.66 (1H, д. д. д, J = 13.1, J = 5.8, J = 2.3, 6-CH_A); 1.77–1.80 (5H, м, 5-CH, 3,4-CH₂ пирролидин); 1.97 (1H, д. д. д. J = 13.5, J = 12.7, J = 5.4) и 2.30 (1H, д. м, J = 12.9, 3-CH₂); 2.58–2.64 (4H, м, 2,5-CH₂ пирролидин); 2.72 (1H, д. д. д. д. д. J = 12.3, J = 6.2, J = 5.0, J = 4.2, 7-СН); 3.32 (1H, д. д. д. д. J = 8.9, J = 6.2, J = 3.1, 11-CH); 3.66 (2H, c, 8'-CH₂); 3.81 (1H, д. д, J = 13.3, J = 8.9) и 4.56 (1H, д. д, J = 13.3, J = 3.1, 13-CH₂); 4.42 (1H, д, J = 1.1) и 4.76 (1H, д, J = 1.1, 15-CH₂); 4.50 (1H, д. д. д. *J* = 5.0, *J* = 3.9, *J* = 1.6, 8-CH); 6.33 (1H, c, H-5'); 8.22 (1H, c, H-4'). Спектр ЯМР ¹³C, δ, м. д.: 17.6 (14-СН₃); 21.0 (С-2); 22.4 (С-6); 23.4 (3,4-СН₂ пирролидин); 34.5 (С-10); 36.5 (C-3); 39.5 (C-7); 41.1 (C-9); 41.9 (C-1); 45.3 (C-11); 46.1 (C-5); 48.9 (C-13); 51.8 (2,5-CH₂) пирролидин); 53.9 (С-8'); 78.2 (С-8); 101.2 (С-5'); 106.3 (С-15); 107.1 (С-4а'); 141.9 (С-4'); 148.9 (С-4); 155.2 (С-2'); 156.1 (С-6'); 172.1 (С-7а'); 177.9 (С-12). Масс-спектр, *m/z* (*I*_{отн}, %): 452 [M+H]⁺ (4), 451 [M]⁺ (14), 382 (47), 381 (100), 232 (5), 218 (11), 190 (12), 150 (18), 149 (29). Найдено, *m/z*: 451.2468 [M]⁺. С₂₆Н₃₃N₃O₄. Вычислено, *m/z*: 451.2466.

3-{[(3R,3aR,4aS,8aR,9aR)-8a-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-6-[(4-метилпиперазин-1-ил)метил]фуро[2,3-d]пиримидин-**2(3H)-он (29)**. Выход 46 мг (95%), маслообразное вещество. $[\alpha]_{589}^{28}$ -43 (с 0.75, СНСІ₃). ИК спектр, v, см⁻¹: 893, 1130, 1167, 1207, 1283, 1336, 1348, 1377, 1416, 1454, 1572, 1614, 1647, 1678, 1755, 2801, 2839, 2858, 2934, 3435. УФ спектр, λ_{max} , нм (lg є): 244 (4.13), 327 (3.73). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.82 (3H, с, 14-СН₃); 1.23–1.30 (2H, м, 1-CH_B, 6-CH_A); 1.51 (1H, д. д, J = 15.8, J = 4.2) и 2.15 (1H, д. д, J = 15.7, *J* = 1.7, 9-CH₂); 1.53–1.63 (3H, м, 1-CH_A, 2-CH₂); 1.71 (1H, д. д. д. *J* = 13.2, *J* = 5.7, *J* = 2.5, 6-CH_A); 1.85 (1H, д, *J* = 12.0, 5-CH); 2.02 (1H, д. д. д, *J* = 14.0, *J* = 12.6, *J* = 5.6) и 2.34 (1Н, д. м, J = 12.9, 3-CH₂); 2.17 (3Н, с, NCH₃); 2.74 (1Н, д. д. д. д. д. J = 12.2, J = 6.2, J = 5.4, J = 4.3, 7-CH); 2.78 (4H, уш. с, 3,5-CH₂ пиперазин); 2.90 (4H, уш. с, 2,6-CH₂ пиперазин); 3.34 (1Н, д. д. д. д. J = 9.0, J = 6.3, J = 3.5, 11-CH); 3.67 (2Н, с, 8'-CH₂); 3.99 (1H, д. д, J = 13.5, J = 9.0) и 4.54 (1H, д. д, J = 13.5, J = 3.5, 13-CH₂); 4.50 (1H, д, J = 1.2) и 4.80 (1H, д, J = 0.9, 15-CH₂); 4.57 (1H, д. д. д, J = 5.4, J = 4.0, J = 1.8, 8-CH); 6.54 (1H, с, H-5'); 8.43 (1H, с, H-4'). Спектр ЯМР ¹³С, δ , м. д.: 17.9 (14-CH₃); 21.4 (C-2); 22.8 (C-6); 34.8 (C-10); 36.9 (C-3); 39.8 (C-7); 41.4 (C-9); 42.3 (C-1); 43.4 (NCH₃); 45.4 (С-11); 46.5 (С-5); 49.4 (С-13); 49.8 (3,5-СН₂ пиперазин); 53.9 (3С, С-8', 2,6-СН₂ пиперазин); 78.9 (С-8); 104.0 (С-5'); 106.6 (С-15); 107.4 (С-4а'); 144.0 (С-4'); 149.3 (С-4); 153.8 (С-2'); 156.0 (С-6'); 172.4 (С-7а'); 178.5 (С-12). Масс-спектр, *m/z* (*I*_{0тн}, %): 481 [M+H]⁺ (7), 480 [M]⁺ (25), 382 (7), 381 (7), 249 (19), 248 (100), 232 (35), 217 (42), 190 (87), 177 (69), 176 (22), 149 (44), 131 (21), 99 (66), 91 (43), 70 (29). Найдено, m/z: 480.2727 [M]⁺. С₂₇Н₃₆N₄O₄. Вычислено, *m/z*: 480.2731.

3-{[(3R,3aR,4aS,8aR,9aR)-8а-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-6-{[(R)-2-(пиридин-3-ил)пиперидин-1-ил]метил}фуро[2,3-d]пиримидин-2(3H)-он (30). Выход 41 мг (75%), белый порошок, т. пл. 202–207 °С

(EtOH). [α]₅₈₉²⁸ –94 (с 0.48, CHCl₃). ИК спектр, ν, см⁻¹: 781, 891, 1101, 1115, 1128, 1165, 1323, 1333, 1373, 1391, 1414, 1425, 1440, 1568, 1618, 1647, 1670, 1769, 1782, 2858, 2930. УФ спектр, λ_{max}, нм (lg ε): 247 (4.13), 328 (3.84). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.79 (3H, с, 14-CH₃); 1.21 (1H, д. д, *J* = 12.8, *J* = 12.5, 6-CH_B); 1.19–1.24 (1H, м, 1-CH_B); 1.31 (1H, д. д. д. д. Д = 13.0, J = 12.9, J = 3.8, J = 3.7, 4-CH_B пиперидин); 1.45 (1Н, д. д, J = 15.7, J = 4.3) и 2.12 (1Н, д. д, J = 15.6, J = 1.8, 9-СН₂); 1.49–1.79 (10Н, м, 1-CH_A, 2-CH₂, 5-CH, 6-CH_A, 4-CH_A пиперидин, 3,5-CH₂ пиперидин); 1.97 (1Н, д. д. д, J = 13.8, J = 12.8, J = 5.6) и 2.30 (1Н, д. м, J = 13.5, 3-CH₂); 2.27 (1Н, д. д. д, J = 12.3, *J* = 11.5, *J* = 2.8) и 3.09 (1Н, д, *J* = 11.5, 6-СН₂ пиперидин); 2.70 (1Н, д. д. д. д. д. *J* = 12.3, *J* = 6.2, *J* = 4.9, *J* = 4.2, 7-CH); 3.19 (1H, д, *J* = 15.8, 8'-CH₂); 3.24 (1H, д. д, *J* = 11.1, *J* = 2.7, 2-СН пиперидин); 3.32 (1Н, д. д. д, *J* = 8.9, *J* = 6.2, *J* = 3.1, 11-СН); 3.52 (1Н, д, J = 15.8, 8'-CH₂); 3.80 (1H, д. д, J = 13.3, J = 8.9) и 4.55 (1H, д. д, J = 13.3, J = 3.1, 13-CH₂); 4.42 (1H, д, J = 1.1) и 4.75 (1H, д, J = 1.1, 15-CH₂); 4.49 (1H, д. д. д. J = 4.9, J = 4.3, J = 1.7, 8-CH); 6.18 (1H, c, H-5'); 7.25 (1H, д. д, J = 8.0, J = 4.8, H-5 Ру); 7.75 (1Н, д, J = 8.0, Н-4 Ру); 8.18 (1Н, с, Н-4'); 8.47 (1Н, д. д, J = 4.7, J = 1.5, Н-6 Ру); 8.55 (1H, д, J = 1.5, H-2 Ру). Спектр ЯМР ¹³С, δ, м. д.: 17.6 (14-CH₃); 21.0 (С-6); 22.4 (С-2); 24.5 (С-4 пиперидин); 25.7 (С-5 пиперидин); 34.5 (С-10); 36.5 (С-3); 36.7 (С-3 пиперидин); 39.5 (С-7); 41.0 (С-9); 41.9 (С-1); 45.3 (С-11); 46.1 (С-5); 48.9 (С-13); 51.4 (С-8'); 53.6 (С-6 пиперидин); 64.9 (С-2 пиперидин); 78.2 (С-8); 101.7 (С-5'); 106.3 (C-15); 106.9 (C-4a'); 123.6 (C-5 Py); 135.1 (C-4 Py); 139.6 (C-3 Py); 141.7 (C-4'); 148.7 (C-6 Py); 148.9 (C-4); 149.9 (C-2 Py); 155.1 (C-2'); 155.9 (C-6'); 172.1 (C-7a'); 177.9 (С-12). Найдено, %: С 70.46; Н 7.11; N 10.04. С₃₂Н₃₈N₄O₄. Вычислено, %: С 70.83; Н 7.06; N 10.32. Масс-спектр, *m/z* (*I*_{отн}, %): 543 [M+H]⁺ (7), 542 [M]⁺ (11), 382 (20), 381 (63), 310 (39), 298 (32), 246 (26), 232 (100), 192 (24), 190 (47), 161 (51), 149 (97), 131 (22), 105 (34), 91 (55), 84 (53), 69 (40). Найдено, *m/z*: 542.2884 [M]⁺. С₃₂H₃₈N₄O₄. Вычислено, *m/z*: 542.2888.

3-{[(3R,3aR,4aS,8aR,9aR)-8а-Метил-5-метилиден-2-оксододекагидронафто[2,3-b]фуран-3-ил]метил}-6-[(4-оксопиперидин-1-ил)метил]фуро[2,3-d]пиримидин-2(3H)-он (31). Выход 41 мг (85%), белый порошок, т. пл. 187-191 °С (СНСІ₃). ¹⁸ –52 (с 1.03, CHCl₃). ИК спектр, v, см⁻¹: 756, 1130, 1165, 1200, 1346, 1377, 1416, $[\alpha]_{589}^{2}$ 1562, 1572, 1645, 1672, 1720, 1761, 2926. УФ спектр, λ_{max}, нм (lg ε): 245 (4.15), 326 (3.76). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.76 (3H, с, 14-СН₃); 1.19 (1H, д. д, *J* = 12.8, *J* = 12.6) и 1.64 (1H, д. д. д. д. *J* = 13.2, *J* = 5.6, *J* = 1.9, 6-CH₂); 1.20 (1H, д. д. д. *J* = 13.2, *J* = 12.9, *J* = 4.9, 1-CH_B); 1.44 (1H, д. д. *J* = 15.6, *J* = 4.1) и 2.10 (1H, д. д. *J* = 15.6, J = 1.4, 9-CH₂); 1.47–1.57 (3H, м, 1-CH_A, 2-CH₂); 1.77 (1H, д, J = 12.1, 5-CH); 1.95 (1H, д. д. д, J = 13.2, J = 12.7, J = 5.1) и 2.28 (1Н, д. м, J = 12.9, 3-CH₂); 2.43 (4Н, д. д. J = 6.0, J = 5.9, 3,5-CH₂ пиперидин); 2.69 (1Н, д. д. д. д. J = 12.1, J = 6.4, J = 5.0,J = 4.2, 7-CH); 2.81 (4H, д. д. J = 6.0, J = 5.9, 2,6-CH₂ пиперидин); 3.31 (1H, д. д. д. д. *J* = 9.0, *J* = 6.4, *J* = 3.1, 11-CH); 3.66 (2H, c, 8'-CH₂); 3.82 (1H, д. д, *J* = 13.3, *J* = 9.0) и 4.54 (1H, д. д, J = 13.3, J = 3.1, 13-CH₂); 4.40 (1H, д, J = 1.0) и 4.73 (1H, д, J = 1.0, 15-СН₂); 4.49 (1Н, д. д. д, J = 5.0, J = 3.9, J = 1.8, 8-СН); 6.18 (1Н, с, Н-5'); 8.27 (1Н, с, H-4'). Спектр ЯМР ¹³С, δ, м. д.: 17.6 (14-CH₃); 20.9 (С-2); 22.3 (С-6); 34.4 (С-10); 36.4 (С-3); 39.4 (С-7); 40.9 (3С, С-9, 3,5-СН₂ пиперидин); 41.8 (С-1); 45.1 (С-11); 46.0 (С-5); 48.9 (C-13); 52.6 (2,6-CH₂ пиперидин); 53.8 (С-8'); 78.1 (С-8); 102.3 (С-5'); 106.3 (С-15); 106.6 (C-4a'); 142.4 (C-4'); 148.9 (C-4); 154.5 (C-2'); 155.0 (C-6'); 172.0 (C-7a'); 177.8 (C-12); 208.0 (4-СО пиперидин). Масс-спектр, *m/z* (*I*_{отн}, %): 480 [M+H]⁺ (2), 479 [M]⁺ (4), 382 (16), 381 (34), 247 (37), 232 (17), 217 (11), 190 (40), 150 (21), 149 (100), 131 (10), 121 (12), 105 (12), 91 (16), 79 (15). Найдено, *m/z*: 479.2409 [M]⁺. С₂₇Н₃₃N₃O₅. Вычислено, *m/z*: 479.2415.

Рентгеноструктурное исследование соединений 3, 26 проведено на дифрактометре Bruker Карра АРЕХ II (МоКа-излучение, графитовый монохроматор, ССДдетектор, максимальный угол 20 55.0 и 54.1° для соединений 3 и 26 соответственно) при температуре 296(2) К. Поправка на поглощение введена по программе SADABS [32]. Структуры соединений расшифрованы прямым методом по программе SHELXS-97 [33] и уточнены в анизотропно-изотропном (для атомов H) приближении по программе SHELXL-97 [34]. Позиции атомов водорода рассчитаны геометрически, параметры атомов H уточнены в изотропном приближении по модели "наездник", кроме атома водорода при атоме N-3', параметры которого уточнялись независимо. Соединение 3. Монокристаллы соединения 3 ($C_{19}H_{24}N_2O_4$, *M* 344.41) выращены из EtOAc. Кристаллы моноклинные: *a* 11.6850(7), *b* 6.7151(5), *c* 11.8035(8) Å; β 98.303(3)°; *V* 916.5(1) Å³; пространственная группа *P*2₁; *Z* 2; *d*_{выч} 1.248 г/см³; μ 0.088 мм⁻¹; трансмиссия 0.8746–0.9280; размер кристалла 0.34 × 0.30 × 0.18 мм. Всего собрано 3338 независимых отражений. Окончательные параметры уточнения: *wR*₂ 0.1697, *S* 1.096, уточнены 230 параметров (*R* 0.0538 для 2876 отражений с *F* > 4 σ). Координаты атомов и геометрические параметры депонированы в Кембриджском банке структурных данных (депонент CCDC 995028).

Соединение 26. Монокристаллы соединения 26 ($C_{32}H_{38}N_4O_4$, *M* 542.68) выращены из EtOH. Кристаллы моноклинные: *а* 10.8880(4), *b* 10.8946(3), *c* 13.2628(4) Å; β 108.778(1)°; *V* 1489.50(8) Å³; пространственная группа *P*2₁; *Z* 2; *d*_{выч} 1.210 г/см³; μ 0.081 мм⁻¹; трансмиссия 0.8023–0.8620; размер кристалла 0.80 × 0.70 × 0.60 мм. Всего собрано 6212 независимых отражений. Окончательные параметры уточнения: *w*R₂ 0.1244, *S* 1.059, уточнены 366 параметров (*R* 0.0390 для 5634 отражений с *F* > 4 σ). Координаты атомов и геометрические параметры депонированы в Кембриджском банке структурных данных (депонент ССDС 995029).

Работа выполнена при финансовой поддержке Российского научного фонда (проект 14-13-00822) и Совета по грантам Президента РФ (грант НШ-2625.2014.3).

Аналитические и спектральные исследования были выполнены в ЦКП Химический сервисный центр СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. С. Патрушев, М. М. Шакиров, Т. В. Рыбалова, Э. Э. Шульц, Журн. орган. химии, **49**, 1802 (2013). [Russ. J. Org. Chem., **49**, 1783 (2013).]
- 2. A. Gangjee, Y. Zeng, J. J. McGuire, R. L. Kisliuk, J. Med. Chem., 48, 5329 (2005).
- 3. F. Amblard, V. Aucagne, P. Guenot, R. F. Schinazi, L. A. Agrofoglio, *Bioorg. Med. Chem.*, **13**, 1239 (2005).
- T. Gazivoda, M. Šokčević, M. Kralj, L. Šuman, K. Pavelić, E. De Clercq, G. Andrei, R. Snoeck, J. Balzarini, M. Mintas, S. Raić-Malić, *J. Med. Chem.*, 50, 4105 (2007).
- M. J. Robins, I. Nowak, V. K. Rajwanshi, K. Miranda, J. F. Cannon, M. A. Peterson, G. Andrei, R. Snoeck, E. De Clercq, J. Balzarini, *J. Med. Chem.*, 50, 3897 (2007).
- 6. N. Foloppe, L. M. Fisher, R. Howes, P. Kierstan, A. Potter, A. G. S. Robertson, A. E. Surgenor, *J. Med. Chem.*, 48, 4332 (2005).
- Y. Miyazaki, Y. Maeda, H. Sato, M. Nakano, G. W. Mellor, *Bioorg. Med. Chem. Lett.*, 18, 1967 (2008).
- A. Zhao, X. Gao, Y. Wang, J. Ai, Y. Wang, Y. Chen, M. Geng, A. Shang, *Bioorg. Med. Chem.*, **19**, 3906 (2011).
- X. Y. Jiao, D. J. Kopecky, J. S. Liu, J. Q. Liu, J. C. Jaen, M.G. Cardozo, R. Sharma, N. Walker, H. Wesche, S. Li, E. Farrelly, S.-H. Xiao, Z. Wang, F. Kayser, *Bioorg. Med. Chem. Lett.*, 22, 6212 (2012).
- P. A. Harris, D. Bandyopadhyay, S. B. Berger, N. Campobasso, C. A. Capriotti, J. A. Cox, L. Dare, J. N. Finger, S. J. Hoffman, K. M. Kahler, R. Lehr, J. D. Lich, R. Nagilla, R. T. Nolte, M. T. Ouellette, C. S. Pao, M. C. Schaeffer, A. Smallwood, H. H. Sun, B. A. Swift, R. D. Totoritis, P. Ward, R. W. Marquis, J. Bertin, P. J. Gough, *ACS Med. Chem. Lett.*, 4, 1238 (2013).
- А. В. Беловодский, Э. Э. Шульц, М. М. Шакиров, И. Ю. Багрянская, Ю. В. Гатилов, Г. А. Толстиков, *Журн. орган. химии*, 46, 1710 (2010). [*Russ. J.* Org. Chem., 46, 1719 (2010).]
- Э. Э. Шульц, А. В. Беловодский, Т. Г. Толстикова, М. П. Долгих, Е. А. Морозова, Г. А. Толстиков, РФ Пат. 2413724; Бюл. изобрет., № 7, 10 (2011).

- Э. Э. Шульц, А. В. Беловодский, М. М. Шакиров, Ю. В. Гатилов, А. Г. Покровский, М. А. Покровский, Г. А. Толстиков, *Химия природ. соединений*, 48, 215 (2012). [*Chem. Nat. Compd.*, 48, 238 (2012).]
- 14. С. Г. Клочков, И. В. Ананьев, С. А. Пухов, С. В. Афанасьева, *XГС*, 750 (2012). [*Chem. Heterocycl. Compd.*, **48**, 698 (2012).]
- F. J. B. Mendonca, Jr., J. V. dos Anjos, D. Sinou, S. J. de Melo, R. M. Srivastava, Synthesis, 1890 (2007).
- N. Fresneau, M.-A. Hiebel, L. A. Agrofoglio, S. Berteina-Raboin, *Tetrahedron Lett.*, 53, 1760 (2012).
- 17. T. G. Kraljević, A. Bistrović, M. Dedić, S. K. Pavelić, M. Sedić, S. Raić-Malić, *Tetrahedron Lett.*, **53**, 5144 (2012).
- 18. V. Aucagne, F. Amblard, L. A. Agrofoglio, Synlett, 2406 (2004).
- A. Sniady, A. Durham, M. S. Morreale, A. Marcinek, S. Szafert, T. Lis, K. R. Brzezinska, T. Iwasaki, T. Ohshima, K. Mashima, R. Dembinski, *J. Org. Chem.*, 73, 5881 (2008).
- Z. Janeba, J. Balzarini, G. Andrei, R. Snoeck, E. De Clercq, M. J. Robins, J. Med. Chem., 48, 4690 (2005).
- С. А. Осадчий, Э. Э. Шульц, Е. В. Полухина, М. М. Шакиров, С. Ф. Василевский, А. А. Степанов, Г. А. Толстиков, *Изв. АН, Сер. хим.*, 1215 (2007). [*Russ. Chem. Bull.*, *Int. Ed.*, 56, 1261 (2007).]
- 22. В. Т. Бауман, Э. Э. Шульц, М. М. Шакиров, Г. А. Толстиков, *Журн. орган. химии*, **48**, 1489 (2012). [*Russ. J. Org. Chem.*, **48**, 1473 (2012).]
- 23. R. Csuk, C. Nitsche, R. Sczepek, S. Schwarz, B. Siewert, Arch. Pharm. Chem. Life Sci., 346, 232 (2013).
- 24. К. Наканиси, Инфракрасные спектры и строение органических соединений, Мир, Москва, 1965, с. 33.
- 25. F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., B58, 380 (2002).
- 26. M. Currie, G. A. Sim, J. Chem. Soc., Perkin Trans. 2, 400 (1973).
- 27. R. S. Rowland, R. Taylor, J. Phys. Chem., 100, 7384 (1996).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- 29. У. М. Джемилев, Н. Р. Поподько, Е. В. Козлова, Металлокомплексный катализ в органическом синтезе, Химия, Москва, 1999, с.104.
- S. C. Srivastava, M. M. Mehra, G. K. Trivedi, S. C. Bhattacharyya, *Indian J. Chem.*, 9, 512 (1971).
- 31. А. С. Садыков, *Химия алкалоидов Anabasis aphylla*, Изд-во АН Узб. ССР, Ташкент, 1956, с. 166.
- G. M. Sheldrick, SADABS. Version 2.01, Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- G. M. Sheldrick, SHELXS-97 Programs for Crystal Structure Analysis (Release 97-2), Univ. Göttingen, Germany, 1997.
- G. M. Sheldrick, SHELXL-97 A Program for Exploiting the Redundancy of Areadetector X-Ray Data, Univ. Göttingen, Germany, 1999.

¹ Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН, пр. Лаврентьева, 9, Новосибирск 630090, Россия

e-mail: schultz@nioch.nsc.ru

Поступило 30.05.2014

² Новосибирский национальный исследовательский государственный университет, ул. Пирогова, 2, Новосибирск 630090, Россия