И. В. Украинец, Е. А. Таран, О. В. Шишкин^а, О. В. Горохова, С. Г. Таран, Джарадат Нидаль Амин, А. В. Туров⁶

4-ОКСИХИНОЛОНЫ-2

43*. ТЕРМОЛИЗ ЭТИЛОВЫХ ЭФИРОВ 1-R-2-ОКСО-4-ГИДРОКСИХИНОЛИН-3-КАРБОНОВЫХ КИСЛОТ

Этиловые эфиры 1-R-2-оксо-4-гидроксихинолин-3-карбоновых кислот в условиях термолиза превращаются в 5,9-ди-R-6,7,8-триоксодихинолино[3,4-*b*;3',4'-*e*]-4Н-пираны. Проведено рентгеноструктурное исследование одного из синтези- рованных соединений.

Ключевые слова: 3-карбэтокси-4-оксихинолон-2, хинолинопиран, термолиз, рентгеноструктурный анализ.

Ранее нами уже отмечалась возможность осуществления конденсации Кляйзена [2] и ее внутримолекулярного варианта — реакции Дикмана [3] в условиях термолиза без применения основных катализаторов. Еще одним интересным примером термически активированной сложноэфирной конденсации является термолиз этиловых эфиров 1-R-2-оксо-4-гидроксихинолин-3-карбоновых кислот 1. Как оказалось, при их нагревании до 230—250 °C с

2 a R = H, **b** R = Me, **c** R = Et

высокими выходами могут быть получены новые продукты, в образовании

^{*} Сообщение 42. см. [1]. 516

которых, по данным масс-спектрометрии, принимают участие по крайней мере две молекулы исходного эфира, причем, судя по спектрам $\text{ЯМР}^{1}\text{H}$, эти соединения имеют симметричное строение. Рентгеноструктурное исследоание, проведенное на примере N-этильного производного, подтвердило эти данные и, кроме того, позволило установить, что изучаемые вещества представляют собой 5,9-ди-R-6,7,8-триоксодихинолино[3,4-b;3',4'-e]-4Нпираны 2. Формирование таких конденсированных систем, очевидно, можно объяснить способностью 2-оксо-4-гидроксихинолинов существовать при повышенных температурах в различных таутомерных формах [4]. Значительный вклад в резонансный гибрид одной из них — 2,4-диоксоформы **3** — обусловливает возможность межмолекулярного ацилирования, приводящего к карбонилдихинолину 4, за которым следует обычное пиролитическое разложение второй этоксикарбонильной группировки (вероятно, в виде этилена и СО₂ [5]) и последующее необратимое замыкание пиранового кольна.

Рентгеноструктурным исследованием (табл. 1—3) установлено, что в независимой части элементарной ячейки кристалла соединения **2**с находится две молекулы (А и Б), которые отличаются строением пирановых и пиридоновых фрагментов. Пиридоновые циклы молекулы Б плоские, а в молекуле А находятся в конформации софы (отклонения атомов $C_{(14)}$ и $C_{(18)}$ от среднеквадратичных плоскостей остальных атомов цикла составляют 0.06 и – 0.07 Å соответственно). Пирановые кольца обеих молекул находятся в конформации ванны, но с различной степенью складчатости. Отклонения атомов $C_{(16)}$ и $O_{(1)}$ от среднеквадратичных плоскостей остальных атомов цикла составляют –0.09 Å (А), -0.17 Å (Б) и –0.05 Å (А), -0.08 Å (Б) соответственно. Атомы $O_{(2)}$, $O_{(4)}$ и $O_{(3)}$ отклоняются в противоположные стороны относительно средней плоскости обеих молекул.

Этильные группы повернуты относительно связей $C_{(19)}$ — $N_{(2)}$ и $C_{(13)}$ — $N_{(1)}$ (торсионные углы $C_{(19)}$ — $N_{(2)}$ — $C_{(20)}$ — $C_{(21)}$ 82.3(3)° (A), 90.2(2)° (B), $C_{(13)}$ — $N_{(1)}$ — $C_{(22)}$ — $C_{(23)}$ –75.1(2)° (A), -80.8(3)° (Б).

Отталкивание между алкильными заместителями при атомах $N_{(1)}$, $N_{(2)}$ и $O_{(2)}$, $O_{(4)}$ (укороченные внутримолекулярные контакты $H_{(22a)}...O_{(2)}$ 2.26 Å (A), 2.01 Å (Б), $H_{(20b)}...O_{(4)}$ 2.30 Å (A), 2.31 Å (Б), сумма ван-дер-ваальсовых радиусов 2.45 Å [6]) приводит к удлинению связей $N_{(1)}$ — $C_{(13)}$ 1.390(2) Å (A), 1.389(3) Å (Б), $N_{(2)}$ — $C_{(19)}$ 1.393(3) Å (A), 1,388(3) Å (Б) по сравнению со средним значением 1.371 Å [7] и $N_{(1)}$ — $C_{(14)}$ 1.398(3) Å (A), 1.397(3) Å (Б), $N_{(2)}$ — $C_{(18)}$ 1.397(3) Å (A), 1.400(3) Å (Б) среднее значение 1.355 Å). Аналогичные эффекты наблюдались в других N-алкильных производных хинолона-2 [8].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н синтезированных соединений записаны на приборе Bruker WP-100 SY в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры регистрировали на квадрупольном спектрометре Finnigan MAT Incos 50 в режиме полного сканирования в диапазоне 33—700 *m/z*, ионизация электронным ударом 70 эВ, прямой ввод, скорость нагрева ~5 °С/с. Этиловые эфиры 1-R-2-оксо-4-гидроксихинолин-3-карбоновых кислот **1а—с** получены по методике [9].

Таблица 1

Атом	x	y	Z	$U_{ m 3KB}$
N	8413(2)	11672(2)	4470(1)	40(1)
^{IN} (1) N	$\frac{8413(2)}{11260(2)}$	110/3(2)	44/9(1)	40(1)
N ₍₂₎	8781(1)	7774(2) 8406(1)	2000(1) 2520(1)	44(1) 42(1)
$O_{(1)}$	9897(2)	12589(2)	3760(2)	42(1) 62(1)
$O_{(2)}$	10688(2)	12339(2) 11017(2)	2444(2)	80(1)
$O_{(3)}$	10000(2) 11784(2)	9542(2)	1682(2)	64(1)
C(4)	10622(2)	5788(2)	2239(2)	49(1)
$C_{(1)}$	9871(2)	4927(2)	2582(2)	55(1)
$C_{(2)}$	8988(2)	5109(2)	3031(2)	56(1)
C ₍₄₎	8872(2)	6177(2)	3155(2)	49(1)
C(5)	9635(2)	7080(2)	2824(2)	39(1)
C ₍₆₎	9594(2)	8247(2)	2985(2)	36(1)
C ₍₇₎	8721(2)	9525(2)	3832(2)	37(1)
C ₍₈₎	7901(2)	9599(2)	4465(2)	37(1)
C ₍₉₎	7237(2)	8619(2)	4776(2)	43(1)
C ₍₁₀₎	6444(2)	8730(2)	5367(2)	48(1)
C(11)	6290(2)	9817(2)	5670(2)	49(1)
C(12)	6928(2)	10797(2)	5391(2)	45(1)
C ₍₁₃₎	7749(2)	10705(2)	4779(2)	38(1)
C ₍₁₄₎	9284(2)	11658(2)	3919(2)	42(1)
C ₍₁₅₎	9396(2)	10473(2)	3542(2)	39(1)
C ₍₁₆₎	10184(2)	10283(2)	2839(2)	45(1)
C ₍₁₇₎	10290(2)	9106(2)	2636(2)	39(1)
C ₍₁₈₎	11155(2)	8853(2)	2067(2)	44(1)
$C_{(19)}$	10512(2)	6880(2)	2342(2)	40(1)
$C_{(20)}$	12258(2)	/030(2)	1597(2)	5/(1)
C ₍₂₁₎	11855(5) 9191(2)	$\frac{008}{(3)}$	414(2) 4738(2)	82(1) 50(1)
$C_{(22)}$	6999(2)	12781(2) 12431(3)	3985(2)	50(1) 63(1)
N(23)	6395(2)	5358(2)	6986(1)	44(1)
N ₍₁₎	3210(2)	951(2)	9313(1)	43(1)
$O_{(1)}$	3850(1)	3983(1)	8525(1)	43(1) 42(1)
$O_{(2)}$	6714(2)	3629(2)	6586(2)	64(1)
O _(3')	5187(1)	1647(2)	7024(1)	51(1)
O _(4')	4583(2)	568(2)	8490(2)	69(1)
C(1')	1748(2)	1369(2)	10225(2)	51(1)
C(2')	1196(2)	2105(2)	10553(2)	58(1)
C(3')	1439(2)	3151(2)	10314(2)	55(1)
C _(4')	2261(2)	3457(2)	9739(2)	46(1)
C(5')	2843(2)	2715(2)	9384(2)	37(1)
C _(6')	3668(2)	2953(2)	8747(2)	36(1)
C _(7')	4690(2)	4371(2)	7986(2)	37(1)
C _(8')	4901(2)	5548(2)	7930(2)	39(1)
C _(9')	4283(2)	6225(2)	8368(2)	46(1)
C(10')	4334(2)	/ 35 /(2) 7845(2)	8299(2)	55(1)
C _(11')	5420(2)	7045(2)	/815(2) 7301(2)	50(1)
C(12')	5793(2)	6037(2)	7391(2)	42(1)
C(13')	5795(2) 6160(2)	4179(2)	6998(2)	43(1)
$C_{(14')}$	5247(2)	3679(2)	7540(2)	38(1)
$C_{(15)}$	4926(2)	2436(2)	7587(2)	38(1)
$C_{(17)}$	4205(2)	2218(2)	8359(2)	38(1)
$C_{(18)}$	4034(2)	1187(2)	8697(2)	45(1)
C(19)	2600(2)	1656(2)	9636(2)	40(1)
C(20')	3003(2)	-123(2)	9603(2)	52(1)
C _(21')	1978(3)	-1370(2)	8736(2)	73(1)
C(22')	7341(2)	5872(3)	6469(2)	60(1)
C _(23')	6795(3)	5597(3)	5305(2)	72(1)

Координаты неводородных атомов (× 10^4) и эквивалентные изотропные тепловые параметры (Å × 10^3) в структуре пирана 2с

Длины связей (*w*) в структуре пирана 2с

Связь	l, Å	Связь	l. Å
$N_{(1)} - C_{(12)}$	1 390(2)	$N_{(1)} = C_{(14)}$	1 398(3)
$N_{(1)} - C_{(22)}$	1.590(2) 1 475(3)	$N_{(1)} = C_{(14)}$	1 393(3)
$N_{(1)} = C_{(22)}$	1 397(3)	$N_{(2)} - C_{(19)}$	1.575(3) 1.474(3)
$\Omega_{(2)} = C_{(18)}$	1.397(3) 1.360(2)	$\Omega_{(2)} = C_{(20)}$	1.363(2)
$O_{(1)} = C_{(1)}$	1.200(2)	$O_{(1)} = O_{(1)}$	1.202(2) 1.217(2)
$O_{(2)} - C_{(14)}$	1.220(2)	$C_{(1)} = C_{(2)}$	1.374(3)
$C_{(1)} - C_{(10)}$	1.220(2) 1 401(3)	$C_{(1)} = C_{(2)}$	1.37(3)
$C_{(1)} - C_{(1)}$	1 369(3)	$C_{(2)} = C_{(5)}$	1.301(3) 1.402(3)
$C_{(5)} - C_{(10)}$	1.003(3)	C(5) - C(6)	1.434(3)
$C_{(5)} - C_{(17)}$	1 353(3)	$C_{(3)} = C_{(15)}$	1.367(3)
$C_{(0)} - C_{(1)}$	1.333(3) 1 420(3)	$C_{(1)} = C_{(12)}$	1.307(3) 1 410(3)
$C_{(8)} - C_{(8)}$	1411(3)	$C_{(8)} - C_{(10)}$	1 363(3)
$C_{(10)} - C_{(11)}$	1.388(3)	$C_{(1)} - C_{(12)}$	1.374(3)
$C_{(12)} - C_{(13)}$	1.406(3)	$C_{(14)} - C_{(15)}$	1.473(3)
$C_{(12)} - C_{(15)}$	1.477(3)	$C_{(14)} = C_{(15)}$	1.477(3)
$C_{(17)} - C_{(18)}$	1.472(3)	$C_{(20)} - C_{(21)}$	1.504(4)
$C_{(22)} - C_{(23)}$	1.512(3)	$N_{(1)}$ $-C_{(13)}$	1.389(3)
$N_{(1)} - C_{(14')}$	1.397(3)	$N_{(1)}$ $-C_{(22)}$	1.478(3)
$N_{(2)} - C_{(19)}$	1.388(3)	$N_{(2)} - C_{(18)}$	1.400(3)
$N_{(2')} - C_{(20')}$	1.473(3)	$O_{(1)} - C_{(7)}$	1.369(2)
$O_{(1)} - C_{(6)}$	1.370(2)	$O_{(2)} - C_{(14)}$	1.219(3)
$O_{(3')} - C_{(16')}$	1.213(2)	$O_{(4')} - C_{(18')}$	1.222(3)
$C_{(1')} - C_{(2')}$	1.359(3)	$C_{(1')} - C_{(19')}$	1.407(3)
$C_{(2')} - C_{(3')}$	1.389(3)	$C_{(3')} - C_{(4')}$	1.369(3)
$C_{(4')} - C_{(5')}$	1.401(3)	$C_{(5')} - C_{(19')}$	1.415(3)
$C_{(5')} - C_{(6')}$	1.423(3)	$C_{(6')} - C_{(17')}$	1.356(3)
$C_{(7')} - C_{(15')}$	1.357(3)	$C_{(7')} - C_{(8')}$	1.428(3)
$C_{(8')} - C_{(9')}$	1.404(3)	$C_{(8')} - C_{(13')}$	1.412(3)
$C_{(9')} - C_{(10')}$	1.369(3)	$C_{(10')} - C_{(11')}$	1.393(3)
$C_{(11')} - C_{(12')}$	1.367(3)	$C_{(12')} - C_{(13')}$	1.400(3)
$C_{(14')} - C_{(15')}$	1.470(3)	$C_{(15')} - C_{(16')}$	1.477(3)
$C_{(16')} - C_{(17')}$	1.480(3)	$C_{(17')} - C_{(18')}$	1.470(3)
C _(20') —C _(21')	1.501(3)	C _(22') —C _(23')	1.518(4)

6,7,8-Триоксодихинолино[3,4-*b***;3',4'-***e***]-4Н-пиран (2а). Выдерживают 2.33 г (0.01 моль) этилового эфира 1H-2-оксо-4-гидроксихинолин-3-карбоновой кислоты (1а) на металлической бане при 250 °С в течение 15 мин. Охлаждают, промывают спиртом, сушат. Выход 1.62 г (98%). Т. пл. > 360 °С (ДМФА). Спектр ЯМР ¹H: 11.54 (2H, c, NH); 8.46 (2H, д, 1,13-H); 7.83 (2H, т, 3,11-H); 7.63 (2H, д, 4,10-H); 7.37 м. д. (2H, т, 2,12-H). Масс-спектр,** *m/z* **(относительная интенсивность, %): 330 (32) [М]⁺, 302 (44), 274 (10), 44 (56), 39 (100). Найдено, %: С 69.21; Н 3.10; N 8.34. С₁₉Н₁₀N₂O₄. Вычислено, %: С 69.09; Н 3.05; N 8.48.**

5,9-Диметил-6,7,8-триоксодихинолино[3,4-*b***;3',4'-***e***]-4Н-пиран (2b) получают аналогично. Выход 96%. Т. пл. >360 °С (ДМФА). Спектр ЯМР ¹Н: 8.48 (2H, д, 1,13-H); 7.84 (2H, т, 3,11-H); 7.66 (2H, д, 4,10-H); 7.41 (2H, т, 2,12-H); 3.58 м. д. (6H, с, Ме). Масс-спектр: 358 (36) [М]⁺, 329 (100). Найдено, %: С 70.28; Н 3.99; N 7.84. С₂₁Н₁₄N₂O₄. Вычислено, %: С 70.39; Н 3.94; N 7.82.**

5,9-Диэтил-6,7,8-триоксодихинолино[3,4-*b***;3',4'-***e***]-4Н-пиран (2с) получают аналогично. Выход 94%. Т. пл. >360 °С (ДМФА). Спектр ЯМР ¹Н: 8.48 (2H, д, 1,13-H); 7.86 (2H, т, 3,11-H); 7.65 (2H, д, 4,10-H); 7.44 (2H, т, 2,12-H); 4.29 (4H, к, NCH₂); 1.29 м. д. (6H, т, Me). Масс-спектр: 386 (100) [M]⁺, 357 (61), 343 (12), 315 (33). Найдено, %: С 71.43; H 4.67; N 7.29. С₂₃H₁₈N₂O₄. Вычислено, %: С 71.49; H 4.70; N 7.25.**

Рентгеноструктурное исследование. Кристаллическая система пирана 2с триклинная; при 20 °C a = 12.555(3), b = 12.617(3), c = 13.630(3) Å, $\alpha = 110.43(2)^{\circ}$, $\beta = 95.82(2)^{\circ}$, $\gamma = 114.32(2)^{\circ}$, V = 1766.1(7) Å³, $d_{\text{выч}} = 1.453$ г/см³, пространственная группа P1, Z = 4.

Таблица З

Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.
$C_{(13)}$ $N_{(1)}$ $C_{(14)}$	124.1(2)	$C_{(13)} - N_{(1)} - C_{(22)}$	118.9(2)
$C_{(14)} - N_{(1)} - C_{(22)}$	117.0(2)	$C_{(19)} - N_{(2)} - C_{(18)}$	123.8(2)
$C_{(19)} - N_{(2)} - C_{(20)}$	119.7(2)	$C_{(18)} - N_{(2)} - C_{(20)}$	116.5(2)
$C_{(0)} = O_{(1)} = C_{(2)}$	119.7(2)	$C_{(10)} - C_{(1)} - C_{(10)}$	120.5(2)
$C_{(1)} - C_{(2)} - C_{(3)}$	121.2(2)	$C_{(2)} = C_{(1)} = C_{(2)}$	119.4(2)
$C_{(1)} = C_{(2)} = C_{(3)}$	120 7(2)	C(4) = C(5) = C(10)	119 9(2)
$C_{(3)} = C_{(4)} = C_{(3)}$	122 9(2)	$C_{(4)} = C_{(5)} = C_{(19)}$	117.9(2)
$C_{(4)} = C_{(5)} = C_{(6)}$	123.2(2)	$C_{(17)} = C_{(3)} = C_{(6)}$	123.8(2)
O(1) = O(1)	113.0(2)	$C_{(1)} = C_{(6)} = C_{(5)}$	123.0(2) 122.2(2)
O(1) = C(6) = C(5)	113.0(2)	$C_{(1)} = C_{(2)} = C_{(3)}$	122.2(2) 124 2(2)
$C_{(1)} = C_{(7)} = C_{(8)}$	119.7(2)	$C_{(15)} = C_{(7)} = C_{(8)}$	127.2(2) 117 $A(2)$
$C_{(13)} - C_{(8)} - C_{(9)}$	119.0(2)	$C_{(13)} - C_{(8)} - C_{(7)}$	117.4(2) 120.5(2)
$C_{(9)} - C_{(8)} - C_{(7)}$	123.0(2)	$C_{(10)} - C_{(9)} - C_{(8)}$	120.3(2) 121.2(2)
$C_{(9)} - C_{(10)} - C_{(11)}$	119.9(2)	$C_{(12)} - C_{(11)} - C_{(10)}$	121.3(2) 122.0(2)
$C_{(11)} - C_{(12)} - C_{(13)}$	120.0(2)	$N_{(1)} - C_{(13)} - C_{(12)}$	122.0(2)
$\mathcal{N}_{(1)} - \mathcal{C}_{(13)} - \mathcal{C}_{(8)}$	119.5(2)	$C_{(12)} - C_{(13)} - C_{(8)}$	110.7(2)
$U_{(2)} - U_{(14)} - N_{(1)}$	120.1(2)	$U_{(2)} - U_{(14)} - U_{(15)}$	123.4(2)
$N_{(1)} - C_{(14)} - C_{(15)}$	116.4(2)	$C_{(7)} - C_{(15)} - C_{(14)}$	118.3(2)
$C_{(7)} - C_{(15)} - C_{(16)}$	120.2(2)	$C_{(14)} - C_{(15)} - C_{(16)}$	121.5(2)
$O_{(3)} - C_{(16)} - C_{(15)}$	123.2(2)	$O_{(3)} - C_{(16)} - C_{(17)}$	122.7(2)
$C_{(15)} - C_{(16)} - C_{(17)}$	114.1(2)	$C_{(6)} - C_{(17)} - C_{(18)}$	119.0(2)
$C_{(6)} - C_{(17)} - C_{(16)}$	120.0(2)	$C_{(18)} - C_{(17)} - C_{(16)}$	121.1(2)
$O_{(4)} - C_{(18)} - N_{(2)}$	120.0(2)	$O_{(4)} - C_{(18)} - C_{(17)}$	123.7(2)
$N_{(2)} - C_{(18)} - C_{(17)}$	116.3(2)	$N_{(2)} - C_{(19)} - C_{(1)}$	122.1(2)
$N_{(2)} - C_{(19)} - C_{(5)}$	119.7(2)	$C_{(1)} - C_{(19)} - C_{(5)}$	118.2(2)
$N_{(2)}$ $C_{(20)}$ $C_{(21)}$	112.8(2)	$N_{(1)}$ $C_{(22)}$ $C_{(23)}$	111.9(2)
$C_{(13')} - N_{(1')} - C_{(14')}$	123.6(2)	$C_{(13')} - N_{(1')} - C_{(22')}$	120.2(2)
$C_{(14')} - N_{(1')} - C_{(22')}$	116.2(2)	$C_{(19')} - N_{(2')} - C_{(18')}$	123.8(2)
$C_{(19')} - N_{(2')} - C_{(20')}$	120.4(2)	$C_{(18')} - N_{(2')} - C_{(20')}$	115.8(2)
$C_{(7')} - O_{(1')} - C_{(6')}$	119.5(2)	$C_{(2')} - C_{(1')} - C_{(19')}$	120.5(2)
$C_{(1')} - C_{(2')} - C_{(3')}$	121.7(2)	$C_{(4')} - C_{(3')} - C_{(2')}$	119.5(2)
$C_{(3')} - C_{(4')} - C_{(5')}$	120.4(2)	$C_{(4')} - C_{(5')} - C_{(19')}$	120.1(2)
$C_{(4')} - C_{(5')} - C_{(6')}$	123.0(2)	$C_{(19')} - C_{(5')} - C_{(6')}$	116.9(2)
$C_{(17)} - C_{(6')} - O_{(1')}$	122.2(2)	$C_{(17')} - C_{(6')} - C_{(5')}$	124.0(2)
$O_{(1)} - C_{(6)} - C_{(5)}$	113.8(2)	$C_{(15)} - C_{(7)} - O_{(1)}$	122.3(2)
$C_{(15)} - C_{(7)} - C_{(8)}$	124.1(2)	$O_{(1)} - C_{(7)} - C_{(8)}$	113.7(2)
$C_{(9')} - C_{(8')} - C_{(13')}$	120.2(2)	$C_{(9)} - C_{(8)} - C_{(7)}$	123.0(2)
$C_{(13)} - C_{(8)} - C_{(7)}$	116.9(2)	$C_{(10')} - C_{(9')} - C_{(8')}$	120.3(2)
$C_{(9)} - C_{(10)} - C_{(11)}$	119.5(2)	$C_{(12)} - C_{(11)} - C_{(10)}$	121.4(2)
$C_{(11)} - C_{(12)} - C_{(13)}$	120.5(2)	$N_{(1)} - C_{(13)} - C_{(12)}$	121.9(2)
$N_{(1')} - C_{(13')} - C_{(8')}$	119.9(2)	$C_{(12)} - C_{(13)} - C_{(8)}$	118.2(2)
$O_{(2)} - C_{(14)} - N_{(1)}$	120.1(2)	$O_{(2)} - C_{(14)} - C_{(15)}$	123.3(2)
$N_{(1)} - C_{(14)} - C_{(15)}$	116.7(2)	$C_{(7)} - C_{(15)} - C_{(14)}$	118.8(2)
$C_{(7)} - C_{(15)} - C_{(16)}$	120.3(2)	$C_{(14)} - C_{(15)} - C_{(16)}$	120.8(2)
$O_{(3)} - C_{(16)} - C_{(15)}$	123.7(2)	$O_{(14)} - C_{(15)} - C_{(17)}$	123.0(2)
$C_{(15)} - C_{(16)} - C_{(17)}$	113.3(2)	$C_{(6)} - C_{(17)} - C_{(19)}$	118 9(2)
$C_{(15)} = C_{(16)} = C_{(17)}$	120 3(2)	$C_{(18)} - C_{(17)} - C_{(18)}$	120 8(2)
$O_{(4)} - C_{(10)} - N_{(10)}$	119 9(2)	$O_{(10)} = C_{(17)} = C_{(17)}$	123.8(2)
$N_{(2)} = C_{(18)} = C_{(2)}$	116.2(2)	$V_{(4')} = C_{(18')} = C_{(17')}$	123.0(2) 122.4(2)
$N_{(2')} = C_{(18')} = C_{(17')}$	110.2(2) 119 7(2)	$C_{(19)} = C_{(19')} = C_{(1')}$	122.4(2) 117 Q(2)
$N_{(2')} = C_{(19')} = C_{(5')}$	119.7(2) 110.0(2)	$C_{(1')} - C_{(19')} - C_{(5')}$	117.7(2) 112.2(2)
LN(20 (200 (210	110.7(2)	N(1) - V(22) - V(22)	112.2121

Валентные углы (*l*) в структуре пирана 2с

Строение соединения 2с

Параметры элементарной ячейки и интенсивности 5960 независимых отражений ($R_{int} = 0.03$) измерены на автоматическом дифрактометре Siemens P3/PC (λ МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 50^{\circ}$). Структура расшифрована прямым методом с использованием комплекса программ SHELXTL PLUS [10]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с фиксированным $U_{uso} = nU_{eq}$ неводородного атома, связанного с данным атомом водорода (n = 1.5 для метильных групп и 1.2 для остальных атомов водорода). Уточнение по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов проведено до $wR_2 = 0.128$ ($R_1 = 0.051$ по 4198 отражениям с $F>4\sigma$ (F), S = 1.07).

СПИСОК ЛИТЕРАТУРЫ

- 1. И.В. Украинец, Е. А. Таран, О. В. Горохова, Джарадат Нидаль Амин, Л. Н. Воронина, И. В. Порохняк, *ХГС*, № 3, 409 (2000).
- V. Ukrainets, P. A. Bezugly, V. I. Treskach, S. G. Taran, O. V. Gorokhova, *Tetrahedron*, 50, 10331 (1994).
- 3. И. В. Украинец, С. Г. Таран, П. А. Безуглый, О. А. Евтифеева, ХГС, № 9, 1219 (1993).
- И. В. Украинец, С. Г. Таран, О. В. Горохова, И. В. Горлачева, П. А. Безуглый, А. В. Туров, XTC, № 8, 1104 (1996).
- 5. П. Сайкс, Механизмы реакций в органической химии, Химия, Москва, 1991.
- 6. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **64**, № 5, 446 (1995).
- 7. H.-B. Bürgi, J. D. Dunitz, Structure correlation, VCH, Weinheim, 1994, 2, 926.
- 8. Ru-Ji Wang, Hong-Gen Wang, T. Matsuura, J. Heterocycl. Chem., 28, 1481 (1991).
- И. В. Украинец, О. В. Горохова, С. Г. Таран, П. А. Безуглый, А. В. Туров, Н. А. Марусенко, О. А. Евтифеева, XГС, № 7, 958 (1994).
- 10. G. M. Sheldrick, *SHELXTL PLUS. PC Version.* A system of computer programs for the determination of crystal structure from X-ray diffraction data, 1994, Rev. 5.02.

Национальная фармацевтическая академия Украины, Харьков 310002 e-mail: igor@uiv.kharkov.ua Поступило в редакцию 21.12.98

^аИнститут монокристаллов НАН Украины, Харьков 310001

⁶Киевский университет им. Тараса Шевченко, Киев 252033, Украина