В. К. Василин¹, Д. Ю. Лукина¹, Т. А. Строганова¹, Г. Д. Крапивин^{1*}

ВЗАИМОДЕЙСТВИЕ 2-(1*Н*-БЕНЗИМИДАЗОЛ-2-ИЛ)-ТИЕНО[2,3-*b*]ПИРИДИН-3-АМИНОВ С *орто*-ФОРМИЛБЕНЗОЙНЫМИ КИСЛОТАМИ

Описан двустадийный синтез гептациклических структур – изоиндоло-[1',2':2,3]пиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6(10b*H*)-онов, и промежуточных соединений – 5,6-дигидропиридо[3",2":4',5']тиено[3',2':4,5]пиримидо-[1,6-*a*]бензимидазол-6-ил]бензойных кислот, продуктов взаимодействия 3-амино-2-бензимидазолилтиено[2,3-*b*]пиридинов и *орто*-формилбензойных кислот. Показано, что 5,6-дигидропиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6-ил]бензойные кислоты легко окисляются (ароматизируются) до соответствующих пиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6-ил]бензойных кислот. Методом РСА исследованы молекулярная и кристаллическая структуры 2-метил-4-(метоксиметил)изоиндоло[1',2':2,3]пиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6(10b*H*)-она и 2-[2-метил-4-(метоксиметил)пиридо[3",2":4',5']тиено-[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6-ил]-

Ключевые слова: 2-(1*H*-бензимидазол-2-ил)тиено[2,3-*b*]пиридин-3-амины, (5,6-дигидропиридо[3",2":4',5']тиено[3',2':4,5]пиримидино[1,6-*a*]бензимидазол-6-ил)бензойные кислоты, (\pm)-изоиндоло[1',2':2,3]пиридо[3",2":4',5']тиено[3',2':4,5]пиримидино[1,6-*a*]бензимидазол-6(10b*H*)-оны, *орто*-формилбензойные кислоты, (пиридо[3",2":4',5']тиено-[3',2':4,5]пиримидино[1,6-*a*]бензимидазол-6-ил)бензойные кислоты, молекулярные структуры, РСА.

Известно [1–13], что при взаимодействии ароматических и гетероароматических *орто*-аминоамидов с формилбензойной кислотой (ФБК, FBA) и её производными в условиях кислого катализа происходит домино-реакция последовательного формирования пиримидинонового и изоиндольного циклов системы.

В нашем предварительном сообщении [14] показано, что аналог *орто*аминоамидов – производное 3-амино-2-бензимидазолилтиено[2,3-*b*]пиридина – в тех же условиях взаимодействует с ФБК иначе: кипячение в толуоле приводит к замыканию только одного (дигидропиримидинонового) цикла, а для замыкания второго (изоиндольного) необходимо нагревание промежуточного продукта в полифосфорной кислоте (ПФК, РРА).

Цель настоящей работы – расширение границ применимости данной реакции, изучение свойств и стереостроения промежуточных и конечных продуктов реакции.

Действительно, кипячение эквимолярных количеств соединений **1а**-е и производных ФБК в толуоле в присутствии каталитических количеств *пара*-толуолсульфокислоты приводит к ярко-жёлтым кристаллическим веществам – 2-гетарилбензойным кислотам **2а**-е с выходами 65–90% (табл. 1).

В ИК спектрах соединений **2а-е** присутствуют характеристичные сигналы групп NH и C=O при 3394–3260 и 1710–1633 см⁻¹ соответственно (табл. 2).

В спектрах ЯМР ¹Н соединений **2а–е** (табл. 2) при 5.88–6.13 и 7.59–7.69 м. д. наблюдаются два однопротонных дублета, соответствующих резонансу протонов группы СН–NH. Уширенный синглет протона карбоксильной группы находится в слабом поле (10.17–14.60 м. д.).

При нагревании кислот **2а–е** в ПФК при 110–120 °C в течение 2–4 ч происходит внутримолекулярная дегидратация, приводящая к образованию изоиндолонов **3а–е** с выходами 40–72%.

Соединения **3а**-е представляют собой светло-жёлтые или бесцветные кристаллы, физико-химические и спектральные характеристики которых приведены в табл. 1 и 2.

В ИК спектрах соединений **За-е** (табл. 2) присутствуют характеристичные полосы поглощения валентных колебаний лактамных амидных групп в области 1728–1744 см⁻¹.

В спектрах ЯМР ¹Н сигнал метинового протона (H-10b) в результате замыкания лактамного цикла смещается в аномально слабые для алифатических протонов поля – в область 7.43–7.49 м. д. (табл. 2), тогда как у исходных веществ **2а–е** протон соответствующей группы СН резонирует в области 5.88–6.13 м. д. (табл. 2), что свидетельствует о значительном изменении магнитного окружения этой группы. Полное отнесение сигналов в спектрах ЯМР ¹Н соединений **3а–е** сделано с помощью гомоядерного метода COSY. Например, наличие в спектре соединения **3b** кросс-пика с координатами 2.68/7.47 позволяет сделать однозначным отнесение одного из двух сигналов атомов водорода H-3 и H-10b: сигнал с химическим сдвигом 7.47 м. д. принадлежит протону H-3 пиридинового фрагмента, тогда как второй сигнал с химическим сдвигом 7.49 м. д. отвечает резонансу протона H-10b. Согласно спектрам COSY, в молекулах соединений **За-е** имеются две связанные спин-спиновым взаимодействием ABCD-системы: например в спектре соединения **3b** система сигналов 8.68-7.84-8.04-8.06 м. д. соответствует резонансу протонов кольца **E** – H-7–H-10. Другая система ABCD (7.87–7.27–7.29–7.72 м. д.) принадлежит протонам кольца **F** – соответственно H-12–H-15. Как видно, сигналы протонов H-10 и H-12 располагаются в достаточно слабых для такого типа атомов полях. Очевидно, парамагнитное смещение сигналов этих протонов обусловлено неплоским строением скелета молекулы в целом: в результате атом H-10 попадает в дезэкранирующую область кольца **F**, а атом H-12 – в дезэкранирующую область кольца **E**, что и приводит к дополнительному смещению сигналов этих атомов в слабые поля.

Проведённое исследование монокристаллов соединения **3b** показало (рис. 1), что его молекула действительно имеет неплоскую "двускладчатую" структуру гетероциклического кора – имеются две линии перегиба: по оси, проходящей через атомы азота N(3) и N(4) дигидропиримидинового кольца, и по общей связи пиримидинового и изоиндольного фрагментов N(4)–C(9). Более детально характер "складок" хорошо виден на рисунке центрального фрагмента молекулы (рис. 2).

Т	а	б	Л	И	Ц	а	1
---	---	---	---	---	---	---	---

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход. %	
нение	формула	C H N			, -	сылод, 70	
2a	$C_{23}H_{16}N_4O_2S$	<u>66.94</u> 66.98	<u>3.99</u> 3.91	<u>13.63</u> 13.58	>350*	70	
2b	$C_{25}H_{20}N_4O_3S$	<u>65.86</u> 65.77	<u>4.64</u> 4.42	<u>12.21</u> 12.27	278–279*	90	
2c	$C_{25}H_{19}IN_4O_3S$	<u>51.50</u> 51.56	<u>3.33</u> 3.29	<u>9.57</u> 9.62	298–299	82	
2d	$C_{32}H_{20}N_4O_3S$	<u>71.16</u> 71.10	<u>3.68</u> 3.73	<u>10.60</u> 10.36	>285*	64	
2e	$C_{35}H_{24}N_4O_2S$	<u>74.50</u> 74.45	<u>4.22</u> 4.28	<u>9.99</u> 9.92	338–339	65	
3 a	$\mathrm{C}_{23}\mathrm{H}_{14}\mathrm{N}_4\mathrm{OS}$	<u>70.09</u> 70.03	<u>3.64</u> 3.58	<u>14.26</u> 14.20	311–312	40	
3b	$C_{25}H_{18}N_4O_2S$	<u>68.53</u> 68.48	$\frac{4.09}{4.14}$	$\frac{12.84}{12.78}$	>255*	50	
3c	$C_{25}H_{17}IN_4O_2S$	<u>53.15</u> 53.20	<u>3.08</u> 3.04	<u>10.00</u> 9.93	298–299	70	
3d	$C_{32}H_{18}N_4O_2S$	<u>73.65</u> 73.55	<u>3.38</u> 3.47	<u>10.66</u> 10.72	>250*	65	
3e	$C_{35}H_{22}N_4OS$	<u>76.82</u> 76.90	<u>3.98</u> 4.06	<u>10.18</u> 10.25	>260*	72	
4 a	$C_{23}H_{14}N_4O_2S$	<u>67.21</u> 67.30	<u>3.52</u> 3.44	<u>13.78</u> 13.65	>220*	60	
4b	$C_{25}H_{18}N_4O_3S$	<u>66.00</u> 66.07	<u>4.10</u> 3.99	<u>12.24</u> 12.33	>250*	70	
4d	$C_{32}H_{18}N_4O_3S$	<u>71.27</u> 71.36	<u>3.48</u> 3.37	<u>10.49</u> 10.40	338–339	40	

Физико-химические характеристики синтезированных соединений

* Вещество плавится с разложением.

Рис. 1. Молекулярная структура соединения **3b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Дигидропиримидиновый цикл имеет конформацию слегка искаженная "софа" ("полукресло"), у которой пять атомов кольца N(4)–C(6)–C(7)–C(8)–N(3) располагаются в одной плоскости – плоскости 1, среднее отклонение атомов от плоскости составляет 0.0350 Å. Метиновый атом углерода C(9) выходит из плоскости 1 на 0.5396 Å и вместе с атомами N(3) и N(4) образует плоскость 2. Угол между плоскостями 1 и 2 равен 141.9° (первая складка).

Плоский изоиндольный фрагмент (плоскость 3, среднее отклонение атомов составляет 0.0544 Å) располагается под углом 116.7° к плоскости 2 (вторая складка). В результате метиновый *sp*³-гибридизованный атом углерода C(9) практически не имеет каких-либо напряжений по валентным углам.

Рис. 2. Фрагмент центральной части скелета молекулы 3b

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Спектральные характеристики синтезированных соединений							
Соеди- нение	ИК спектр, v, см ⁻¹	Химические сдвиги, δ, м. д. (Ј, Гц)	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)				
2a	3394 (NH),	2.47 (3H, c, CH ₃); 6.13 (1H, д, <i>J</i> = 6.8, 6-CH); 6.89 (1H, д, <i>J</i> = 8.3, H-3); 7.25 (1H, д. д, <i>J</i> = 8.0,	412 [M] ⁺ (0.8), 410 (69), 367 (14), 366 (37),				
	3078 (CH Ar),	<i>J</i> = 8.3, H-10); 7.38 (1H, д. д, <i>J</i> = 8.3, <i>J</i> = 8.1, H-9); 7.48 (1H, д. д, <i>J</i> = 8.0, <i>J</i> = 8.2, H-5'); 7.51	365 (100), 334 (11), 333 (44), 146 (14), 130				
	1710 (C=O),	(1H, д, J = 8.1, H-11); 7.62–7.67 (2H, м, H-4', NH); 7.76 (1H, д, J = 8.2, H-3');7.98 (1H, д,	(11), 101 (42), 98 (17), 82 (15), 76 (15), 73 (14),				
	1633 (C=O)	$J = 8.1, H-8$); 8.12 (1H, π , $J = 8.0, H-6$ '); 8.18 (1H, π , $J = 8.3, H-4$); 11.27 (1H, ym. c, COOH)	69 (11), 59 (59), 55 (30), 51 (28), 45 (29), 43 (70), 42 (53)				
2b	3260 (NH),	2.47 (3H, c, 2-CH ₃); 3.25 (3H, c, OCH ₃); 4.65 (1H, д, <i>J</i> = 15.0) и 4.70 (1H, д, <i>J</i> = 15.0, C <u>H</u> ₂ OMe);	456 [M] ⁺ (0.3), 454 (17), 440 (21), 439 (87),				
	3052 (CH Ar),	6.03 (1H, д, <i>J</i> = 7.9, 6-CH); 7.10 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.3, H-10); 7.17 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.3,	425 (13), 423 (18), 422 (13), 421 (100), 396				
	1684 (C=O)	Н-9); 7.18 (1Н, с, Н-3); 7.24 (1Н, д. д, <i>J</i> = 7.9, <i>J</i> = 7.3, Н-4'); 7.26 (1Н, д, <i>J</i> = 7.9, Н-3'); 7.34 (1Н,	(16), 395 (20), 392 (12), 381 (12), 380 (28), 366				
		д. д, <i>J</i> = 7.3, <i>J</i> = 7.9, H-5'); 7.59 (1H, д, <i>J</i> = 7.9, NH); 7.64 (1H, д, <i>J</i> = 7.9, H-11); 7.94 (1H, д,	(18), 364 (18), 323 (10), 197 (11), 190 (14), 182				
		<i>J</i> = 7.3, H-8); 7.99 (1H, д, <i>J</i> = 7.9, H-6'); 10.17 (1H, уш. с, СООН)	(20), 176 (12), 69 (11), 63 (13), 45 (13), 44 (17),				
			43 (40), 41 (13)				
2c	3310 (NH),	2.55 (3H, c, 2-CH ₃); 2.89 (3H, c, OCH ₃); 4.69 (1H, μ , $J = 13.2$) μ 4.76 (1H, μ , $J = 13.2$, CH ₂ OMe);	582 [M] ⁺ (7), 550 (9), 335 (83), 303 (34), 279				
	3061 (CH Ar),	5.88 (1Н, д, <i>J</i> = 8.0, 6-СН); 7.10–7.20 (2Н, м, Н-9,10); 7.20 (1Н, с, Н-3); 7.23 (1Н, д, <i>J</i> = 8.1,	(46), 259 (15), 73 (32), 63 (13), 44 (100)				
	1674 (C=O)	H-3'); 7.59 (1H, д, <i>J</i> = 8.0, NH); 7.65 (1H, д, <i>J</i> = 8.1, H-11); 7.68 (1H, д, <i>J</i> = 8.1, H-4'); 7.93 (1H,					
		д, J = 7.3, H-8); 7.96 (1H, c, H-6'); 14.40–14.60 (1H, уш. с, СООН)					
2d	3387 (NH),	6.13 (1H, д, <i>J</i> = 8.1, 6-CH); 6.85 (1H, д. д, <i>J</i> = 2.9, <i>J</i> = 1.5, H-4 Fur); 7.12 (1H, т, <i>J</i> = 7.3, <i>J</i> = 7.3,	540 $[M]^+$ (0.3), 538 (12), 522 (12), 494 (32),				
	3130 (CH Ar),	H-10); 7.23 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.1, H-9); 7.32 (1H, д, <i>J</i> = 2.9, H-3 Fur); 7.35 (1H, д. д, <i>J</i> = 7.3,	493 (36), 105 (16), 104 (19), 101 (64), 98 (15),				
	1667 (C=O)	<i>J</i> = 8.1, H-4'); 7.39–7.45 (3H, м, H Ph); 7.47 (1H, д, <i>J</i> = 2.9, H-5 Fur); 7.49 (1H, с, H-3); 7.51 (1H,	84 (17), 83 (50), 79 (10), 77 (11), 73 (92), 71				
		д, <i>J</i> = 7.3, H-3'); 7.69 (1H, д, <i>J</i> = 8.1, NH); 7.93 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 7.3, H-5'); 7.97 (1H, д,	(15), 66 (14), 60 (21), 59 (67), 57 (29), 56 (34),				
		J = 7.3, H-11); 8.09 (1H, d , $J = 8.1$, H-8); 8.12 (2H, d , $J = 8.2$, H Ph); 8.22 (1H, d , $J = 7.3$, H-6');	55 (32), 53 (37), 43 (100), 42 (85), 41 (58), 39				
		13.53–13.91 (1Н, уш. с, СООН)	(37)				
2e	3394 (NH),	2.50 (3H, c, CH ₃); 5.91 (1H, μ , $J = 8.1$, 6-CH); 6.30 (1H, μ . μ , $J = 8.8$, $J = 7.6$, H-10); 7.09–7.12	564 [M] ⁺ (14), 562 (11), 443 (51), 416 (52), 384				
	3035 (CH Ar),	(3H, м, H-9, H Tol); 7.14 (1H, д. д, <i>J</i> = 7.8, <i>J</i> = 8.1, H-4'); 7.17 (1H, д, <i>J</i> = 8.1, H-3'); 7.25 (1H,	(45), 313 (15), 273 (30), 251 (14), 227 (12), 201				
	1650 (C=O)	д. д, <i>J</i> = 8.1, <i>J</i> = 7.8, H-5'); 7.49 (1H, c, H-3); 7.55 (2H, д, <i>J</i> = 7.7, H Tol); 7.57–7.62 (3H, м, H	(18), 133 (20), 118 (13), 105 (33), 91 (17), 77				
		Ph); 7.68 (1H, μ , $J = 8.1$, NH); 7.71 (1H, μ , $J = 7.6$, H-11); 8.09 (1H, μ , $J = 7.3$, H-8); 8.18–8.21	(65), 65 (44), 51 (33), 44 (100)				
		(3H, м, H-6', H Ph); 12.40–13.50 (1H, уш. с, СООН)					
3 a	3105 (CH Ar),	2.68 (3H, с, CH ₃); 7.28–7.32 (2H, м, H-13,14); 7.43 (1H, с, 10b-CH); 7.48 (1H, д, <i>J</i> = 7.3, H-3);	395 (27), 394 [M]' (100), 367 (23), 366 (89)				
	1728 (C=O)	7.73 (1Н, д. д, <i>J</i> = 8.1, <i>J</i> = 8.3, Н-9); 7.80 (1Н, д, <i>J</i> = 8.1, Н-15); 7.89 (1Н, д, <i>J</i> = 7.3, Н-12); 8.05					
		(1H, д. д, <i>J</i> = 7.6, <i>J</i> = 8.1, H-8); 8.06 (1H, д, <i>J</i> = 8.3, H-10); 8.43 (1H, д, <i>J</i> = 8.1, H-4); 8.59 (1H, д,					
		J = 7.6, H-7)					

21	2055 (CIL A.)	2(8(2)) = 2(2) + 2(2)(2) = 0(2) + 4(2)(1) = 1 = 14(7) = 4(2)(1) = 1 = 14(7)(1)(0)(1)	(20) (20) (22) (101^{+}) (02) (22) (100) (10)
30	3055 (CH AI),	$[2.08 (3H, C, 2-CH_3); 5.20 (3H, C, 0CH_3); 4.85 (1H, J, J = 14.7) H 4.92 (1H, J, J = 14.7, CH_2 OMe); 12.08 (3H, C, 2-CH_3); 5.20 (3H, C, 0CH_3); 4.85 (1H, J, J = 14.7) H 4.92 (1H, J, J = 14.7)$	(29), 438 [M] (93), 423 (100), 408 (10), 407 (12) 270 (22) 278 (10) 277 (11) 140 (15)
	1728 (C=O)	7.27 (11, A , A , $J = 7.3$, $J = 7.9$, $H = 15$), 7.29 (11, A , A , $J = 7.5$, $J = 7.9$, $H = 14$), 7.47 (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5$), $I = 7.0$ H (11, C , $H = 5.0$), $I = 7.0$ H (11, C , $H = 7.0$ H (11, C , $H = 5.0$), $I = 7.0$ H (11, C , $H = 5.0$), $I = 7.0$ H (11, C , $H = 7.0$	(12), 579 (22), 576 (10), 577 (11), 149 (15), 101 (18), 83 (28), 81 (14), 71 (16), 60 (23), 65
		$T = 7.9 \text{ H}_{-12}$ (11, $Z = 7.6 \text{ J}_{-12}$	(13) 57 (43) 56 (25) 55 (40) 53 (22) 45 (23)
		I = 7.9 H-7)	13), 37 (43), 30 (23), 33 (40), 33 (22), 43 (23), 13 (37) 42 (26)
30	3074 (CH Ar)	$2 67 (3H + 2 - CH_2)$; $3 27 (3H + C + CH_2)$; $4 80 (1H + I = 147) + 4 92 (1H + I = 147) + 2 CH_2 CH_2 CH_2$	564 [M]^+ (8) 266 (7) 248 (7) 217 (19) 203
50	1736 (C=0)	72.07(31, 0, 2-013), 5.27(31, 0, 0013), 4.00(111, 4, 5 - 14.7) $14.72(111, 4, 5 - 14.7)$ $14.72(111, 4, 5 - 14.7)$	(35) 182 (82) 146 (24) 127 (30) 102 (52) 91
	1750 (0 0)	$7.78 (1H \ \pi \ J = 8.1 \ H-12) \cdot 8.32 (1H \ \pi \ J = 8.1 \ H-10) \cdot 8.38 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ \pi \ J = 8.1 \ J = 3.1 \ H-9) \cdot 8.48 (1H \ \pi \ J = 8.1 \ H-9) \cdot 8.48 (1H \ \pi \ J = 8.1 \ H-9) \cdot 8.48 ($	(47) 75 (100) 63 (66) 39 (84)
		$(111, \pm J = 3.1, \text{H-7})$	
3d	3085 (CH Ar),	6.72 (1Н, д. д. $J = 3.0$, $J = 1.2$, H-4 Fur); 7.24–7.29 (3Н, м, H-3 Fur, H-13,14); 7.41 (1Н, с, H-3); 5	$523 (22), 522 [M]^+ (67), 494 (35), 493 (100),$
	1744 (C=O)	[7.49 (1H, с, 10b-CH); 7.50–7.54 (4H, м, H-5 Fur, H Ph); 7.68 (1H, д, J = 8.1, H-15); 7.78 (1H, 4	466 (10), 456 (42), 389 (8), 388 (23), 314 (10),
		д. д. J = 7.6, J = 7.9, H-8); 7.90 (1H, д, J = 7.9, H-12); 8.00–8.07 (2H, м, H-9,10); 8.21 (2H, д, 3)	313 (37), 287 (11), 286 (43), 248 (240, 132 (13),
		J = 8.1, H Ph; 8.59 (1H, $d, J = 7.9, H-7$)	116 (44), 93 (23), 77 (56), 52(18), 43 (24)
3e	3106 (CH Ar),	2.55 (3H, с, CH ₃); 6.68 (1H, д. д, J = 8.0, J = 8.3, H-14); 7.15 (2H, д, J = 7.8, H Tol); 7.32–7.38 5	546 [M] ⁺ (100), 545 (38), 519 (35), 518 (96)
	1742 (C=O)	(2H, м, H-8,12); 7.44 (1H, д. д, <i>J</i> = 7.8, <i>J</i> = 8.0, H-13); 7.48 (1H, с, 10b-CH); 7.50 (1H, с, H-3);	
		7.53 (2H, <i>J</i> = 7.8, H Tol); 7.58–7.65 (3H, м, H Ph); 7.80 (1H, д, <i>J</i> = 8.0, H-15); 7.92 (1H, д. д.	
		J = 7.8, J = 8.0, H-9); 8.08 (1H, д, J = 8.0, H-10); 8.20–8.30 (3H, м, H-7, H Ph)	
4 a	3096 (CH Ar),	2.68 (3H, c, CH ₃); 6.22 (1H, д. д, <i>J</i> = 8.1, <i>J</i> = 7.3, H-10); 7.13 (1H, д. д, <i>J</i> = 7.3, <i>J</i> = 8.1, H-9); 7.48	410 $[M]^+$ (12), 367 (25), 366 (100), 290 (10),
	1712 (C=O)	(1H, д, <i>J</i> = 8.1, H-3); 7.50 (1H, д. д, <i>J</i> = 8.1, <i>J</i> = 7.6, H-4'); 7.90 (1H, д, <i>J</i> = 8.1, H-3'); 7.98 (1H, 2	289 (56), 265 (10), 264 (52)
		$[\pi, \pi, J = 8.1, J = 7.6, H-5'); 8.01 (1H, \pi, J = 8.1, H-11); 8.03 (1H, \pi, J = 8.1, H-8); 8.31 (1H, \pi, J) = 8.1, H-8); 8.31 (1H, \pi,$	
		J = 8.1, H-4); 8.53 (1H, $J, J = 8.1, H-6$); 12.70–13.40 (1H, ym. c, COOH)	
4b	3064 (CH Ar),	$[2.6/(3H, c, 2-CH_3); 3.3/(3H, c, OCH_3); 5.13(1H, d, J = 15.4) \times 5.1/(1H, d, J = 15.4, CH_2OMe);$	$454 [M]^{+}(17), 439 (90), 424 (16), 423 (11), 422 (22) (12), 421 (100) (12) (12) (10) (22) (25)$
	1/23 (C=0)	[0.22 (1H, D, D, Z) = 8.1, J = 8.8, H-10]; /.13 (1H, D, D, Z) = 7.3, J = 8.1, H-9]; /.48 (1H, D, D, Z) = 8.3, [(J = 7.2, H 4)); 7.52 (1H, D, H 2); 7.00 (1H, T, J = 8.1, 2'H); 7.02 (1H, T, T = 8.1, 1 = 7.2, 5'H); 1 = 7.2, 1 = 7	(23), 421 (100), 410 (13), 408 (10), 393 (35), 270 (24), 266 (14), 265 (26), 264 (16), 263 (17)
		J = 7.5, n-4), 7.55 (1n, c, n-5), 7.90 (1n, d, $J = 6.1, 5 = n$), 7.95 (1n, d, $J = 6.1, J = 7.5, 5 = n$), 2 7.05 (1H π $J = 8.9$ H 11), 7.07 (1H π $J = 7.3$ H 8), 8.26 (1H π $J = 8.1$ H 6), 12.30 13.30	(14), 300 (14), 303 (30), 304 (10), 303 (17), 323 (14), 321 (10), 323 (11), 107 (38), 183 (30)
		(11, 4, 5 - 0.0, 11-11), (1.5, (111, 4, 5 - 7.5, 11-0), 0.20 (111, 4, 5 - 0.1, 11-0), 12.30-13.50 (111, 4, 5 - 0.1, 11-0), 13.50 (111, 4, 5), 13.50 (111, 4, 5), 13.50 (111, 4, 5), 13.	137 (10), 123 (11), 127 (30), 105 (30), 182 (11), 127 (30), 105 (30), 182 (10), 178 (13), 169 (11), 149 (11), 98 (15).
			54 (47) 59 (31) 57 (15) 55 (55) 53 (19) 51
			(17), 48 (45), 45 (16), 44 (14), 43 (50), 42 (22)
			41 (15)
4d	3045 (CH Ar).	6.28 (1Н. д. д. J = 8.8, J = 7.3, H-10); 6.64 (1Н. д. д. J = 3.6, J = 1.3, H-4 Fur); 7.18 (1Н. д. д.	538 [M]^+ (1.4), 495 (33), 494 (96), 101 (22), 83
	1700 (C=O)	J = 8.8, J = 7.3, H-9; 7.48–7.64 (3H, M, H-3 Fur, H Ar); 7.57 (1H, c, H-3); 7.91–8.06 (5H, M, H-5)	(15), 60 (20), 59 (36), 58 (12), 57 (35), 56 (15).
	l `´´	Fur, H Ar); 8.21–8.35 (4H, м, H Ar); 8.43 (1H, д, J = 7.3, H-6'); 13.10–13.40 (1H, уш. с, СООН)	55 (31), 45 (28), 43 (100), 42 (33), 41 (32)

Плоские тиенопиридиновый (плоскость 4, среднее отклонение 0.0152 Å) и бензимидазольный (плоскость 5, среднее отклонение 0.0057 Å) фрагменты практически расположены в плоскости 1: углы между плоскостью 1 и плоскостями 4 и 5 равны соответственно 177.8 и 174.1°. В результате возникает небольшое скручивание по связи C(7)–C(8): угол между плоскостями 4 и 5 равен 2.2°, что не мешает сопряжению между этими гетероароматическими фрагментами молекулы. В свою очередь "двускладчатость" скелета молекулы приводит к заметному скручиванию по связи C(6)–N(4) между тиофеновым и изоиндольным фрагментами: угол между плоскостями этих циклических фрагментов составляет 46.6°, что должно препятствовать эффективному сопряжению между ними.

Следует отметить специфику упаковки молекул в кристалле. Как видно по рис. 3, молекулы образуют димерные пары, связанные двумя одинаковыми межмолекулярными контактами (водородными связями?) между атомами водорода метинового звена H(9) одной молекулы и атомом азота пиридинового типа N(2) другой молекулы. Параметры этой необычной водородной связи следующие: расстояние H(9a)…N'(2) составляет 2.260 Å, валентный угол C(9)–H(9a)…N'(2) равен 136°.

Отметим также внутримолекулярный контакт, который тоже можно трактовать как водородную связь между одним из атомов водорода метиленового звена H(23a) и кислородом амидной группы O(1). Параметры этого контакта: межатомные расстояния O(1)…H(23a) и O(1)…C(23) равны соответственно 2.500 и 3.117 Å, валентные углы C(12)–O(1)…H(23a) и O(1)…H(23a)–C(23) составляют соответственно 98.5 и 121.4°.

Ещё одной особенностью неплоской структуры остова молекулы является то, что два внутримолекулярных перегиба приводят к сближению атома водорода H(21a) бензимидазольного фрагмента с изоиндольным фрагментом: межатомное расстояние H(21a)–C(13) составляет всего 2.510 Å, что и сказывается на положении сигнала этого протона в спектре ЯМР ¹H.

Соединения **За,е**, не имеющие лабильных метоксиметильных групп или фуранового цикла, устойчивы к электронному удару: в их масс-спектрах имеются два интенсивных пика $[M]^+$ и $[M-CO]^+$, интенсивность остальных пиков менее 10%. Напротив, в масс-спектрах кислот **2а,b,d** интенсивность пиков молекулярных ионов крайне низкая (0.2–0.8%), более интенсивны пики фрагментных катион-радикалов $[M-H_2]^+$, что свидетельствуют о лёгкости отщепления молекулы водорода от группы СН–NH.

Рис. 3. Упаковка молекул 3b в кристалле (пунктиром показаны межмолекулярные контакты)

Puc. 4. Молекулярная структура молекулы 4b

Действительно, оказалось, что для дегидрирования (окисления) соединений **2a,b,d** достаточно их кратковременного кипячения в ДМФА или ДМСО. Ароматические кислоты **4b,d** также получены и другими методами: a) при пропускании воздуха через кипящий раствор соединений **2b,d** в ДМФА; б) в результате их кратковременного нагревания в смеси муравьиной кислоты и 30% H₂O₂. Очевидно, легкость дегидрирования (окисления) звена CH–NH соединений **2** обусловлена образованием ароматического 22 π -электронного контура, охватывающего гетероциклический кор молекул соединений **4b,d**. В спектрах ЯМР ¹Н кислот **4b,d** сигналы протонов пиридинового и бензимидазольного фрагмента смещены в слабое поле на 0.3–0.5 м. д. по сравнению со спектрами соответствующих дигидроаналогов **2b,d** (табл. 2). Это свидетельствует об усилении кольцевого тока в молекулах с полностью ароматическим π -электронным контуром и, как следствие, увеличении степени их ароматичности.

В отличие от окрашенных в жёлтый цвет дигидропроизводных 2 соединения **4a,b,d** бесцветны, у них более высокие температуры плавления и они лучше растворяются в органических растворителях (табл. 1).

Как и следовало ожидать, рентгеноструктурный анализ монокристалла 2-гетарилбензойной кислоты **4b** показал, что гетероароматическое ядро молекулы практически плоское (рис. 4). Фенильный заместитель повёрнут к гетероароматическому остову на 86.5° , что практически исключает взаимодействие его π -электронов с 22π -электронной ароматической системой гетероцикла.

Кислоты **4a,b,d** малоустойчивы к электронному удару, основным направлением фрагментации молекулярного иона является экструзия молекулы CO₂.

Таким образом, в результате проведённых исследований синтезированы новые 2-(5,6-дигидропиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6-ил)бензойные кислоты, а также продукты их окислительной ароматизации и новые гептациклические системы – (±)-изоиндоло[1',2':2,3]пиридо-[3",2":4',5']тиено[3',2':4,5]пиримидо[1,6-*a*]бензимидазол-6(10b*H*)-оны. Выявлены особенности "двускладчатого" строения их гетероциклических остовов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на фурье-спектрометре Spectrum Two в области 700– 4000 см⁻¹ с использованием насадки НПВО (РІКЕ Мігасle). Спектры ЯМР ¹Н записаны на приборах Bruker AM300 (300 МГц, соединение **4a**) и DRX500 (500 МГц, соединения **2a,b**, **3a,b**, **4b**), JEOL-JNM-EIA (400 МГц, соединения **2c,d**, **3c,d**, **4d**) и Agilent 400/54 (400 МГц, соединения **2e**, **3e**) в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Varian MAT CH-6 (ионизация ЭУ, 70 эВ). Температуры плавления определены на приборе Stuart SPM и не исправлены. Элементный анализ выполнен на CHN-анализаторе Carlo-Erba 1102. Контроль за ходом реакций и чистотой полученных соединений осуществлён методом TCX на пластинах Silufol UV-254 (элюент Me₂CO–диоксан–NH₃, 9:9:2, проявитель – УФ облучение и/или пары иода).

Синтез исходных соединений 1а-d описан в наших работах [15, 16].

2-(1*Н***-Бензимидазол-2-ил)-4-(4-метилфенил)-6-фенилтиено[2,3-***b***]пиридин-3-амин (1е) получают аналогично взаимодействием эквимолярных количеств 4-(4-метилфенил)-2-тиоксо-6-фенил-1,2-дигидропиридин-3-карбонитрила и 2-(хлорметил)бензимидазола в присутствии двухкратного избытка щёлочи. Выход 70%, ярко-жёлтые кристаллы, т. пл. 94–95 °С. ИК спектр, v, см⁻¹: 3466 (ас NH), 3381 (с NH), 3287 (NH), 3057 (СН Аг). Спектр ЯМР ¹Н, \delta, м. д. (***J***, Гц): 2.46 (3H, с, СН₃); 6.18 (2H, с, NH₂); 7.08–7.16 (2H, м, H Ar); 7.42 (2H, д,** *J* **= 8.1, H Ar); 7.45–7.56 (7H, м, H Ar); 7.75 (1H, с, H-5); 8.22 (2H, д,** *J* **= 6.6, H Ar). Масс-спектр,** *m/z* **(***I***_{отн}, %): 433 (23), 432 [M]⁺ (100), 313 (27), 208 (18), 118 (10), 77 (10), 65 (11), 39 (10). Найдено, %: С 75.01; H 4.60; N 13.02. С₂₇H₂₀N₄S. Вычислено, %: С 74.97; H 4.66; N 12.95.**

2-[2-Метил-5,6-дигидропиридо[3'',2'':4',5']тиено[3',2':4,5]пиримидо[1,6-а]бензимидазол-6-ил]бензойная кислота (2а). Смесь 1.21 г (4.3 ммоль) 3-аминотиенопиридина **1а**, 0.77 г (5.0 ммоль) *орто*-формилбензойной кислоты и 20 мг *p*-TsOH кипятят в 30 мл PhMe в течение 6–7 ч. После охлаждения реакционной смеси до комнатной температуры образуется осадок, который отфильтровывают и перекристаллизовывают из EtOH. Выход 1.24 г (70%), жёлтые кристаллы.

Соединения 2b-е получают аналогично.

2-Метилизоиндоло[1',2':2,3]пиридо[3'',2'':4',5']тиено[3',2':4,5]пиримидо[1,6-а]бензимидазол-6(10bH)-он (3а). Растворяют 0.95 г (2.3 ммоль) соединение **2а** в 10 г ПФК и выдерживают при 100–120 °С в течение 4 ч. По завершении реакции смесь выливают в 100 мл H₂O и нейтрализуют сухим NaHCO₃ до pH ~ 8. Образовавшийся осадок отфильтровывают и перекристаллизовывают из ДМФА с активированным углём. Выход 0.36 г (40%), бесцветные кристаллы.

Соединения 3b-е получают аналогично.

2-[2-Метилпиридо[3'',2'':4',5']тиено[3',2':4,5]пиримидо[1,6-*а***]бензимидазол-6-ил]бензойная кислота (4а). Раствор 0.41 г (1 ммоль) соединения 2**а в 10 мл ДМФА кипятят в течение 2 ч, пропуская через реакционную смесь ток воздуха. В процессе синтеза цвет раствора меняется от ярко-жёлтого до бледно-жёлтого. После завершения реакции смесь выливают в 150 мл H₂O, выпавшие бесцветные кристаллы отфильтровывают и перекристаллизовывают из ДМФА с активированным углём. Выход 0.25 г (60%).

Соединения 4b, d получают аналогично.

Рентгеноструктурное исследование соединений 3b, 4b. Моноклинные кристаллы соединения 3b выращены из EtOH (размеры кристалла $0.40 \times 0.35 \times 0.20$ мм). Параметры элементарной ячейки: *а* 8.2487(9), *b* 16.2206(17), *c* 15.5700(16) Å; β 101.360(2)°; *V* 2042.4(4) Å³; пространственная группа *P*2₁/*n*; *Z* 4; *d*_{выч} 1.478 г/см³. Параметры элементарной ячейки и интенсивности 3988 независимых отражений с *I* > 3 σ (*I*) получены на автоматическом дифрактометре Enraf-Nonius CAD4 (Мо*К* α излучение, β -фильтр, θ /2 θ -сканирование до 2 θ_{max} 26°). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [17] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости $R_1 0.0633, wR_2 0.1355.$

Моноклинные кристаллы соединения **4b** выращены из EtOH (размеры кристалла 0.25 × 0.10 × 0.04 мм). Параметры элементарной ячейки: *a* 13.8322(8), *b* 18.9915(10), *c* 7.5011(4) Å; β 94.5250(10)°; *V* 1964.35(19) Å³; пространственная группа *P*2₁/*c*; *Z* 4; рассчитанная плотность 1.483 г/см³. Параметры элементарной ячейки и интенсивности 5712 независимых отражений с $I > 3\sigma(I)$ получены на автоматическом дифрактометре Enraf-Nonius CAD4 (Мо*К*α-излучение, β-фильтр, θ/2θ-сканирование до 2θ_{max} 30°). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [17] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости *R*₁ 0.0711, *wR*₂ 0.1148.

Полная кристаллографическая информация по соединениям **3b** и **4b** депонированы в Кембриджском банке структурных данных (депоненты CCDC953988 и CCDC 953989 соответственно).

Авторы благодарят Министерство образования и науки РФ за финансовую поддержку данного исследования (код проекта 25.15).

СПИСОК ЛИТЕРАТУРЫ

- 1. J. Honzl, Chem. Listy, 49, 1671 (1955).
- 2. J. Honzl, Collect. Czech. Chem. Commun., 21, 725 (1956).
- 3. M. Lamchen, J. Chem. Soc. C, 573 (1966).
- 4. I. Butula, W. Otting. *Monatsh. Chem.*, **99**, 1320 (1968).
- 5. M. Ghelardoni, V. Pestellini, Ann. Chim., 64, 421 (1974).
- V. Pestellini, M. Ghelardoni, C. Bianchini, A. Liquori, *Boll. Chim. Farm.*, 117, 54 (1978).
- 7. V. Balasubramaniyan, N. P. Argade, Tetrahedron, 45, 835 (1989).
- 8. P. Pigeon, J. Sikoraiova, S. Marchalin, B. Decroix, *Heterocycles*, 56, 129 (2002).
- 9. P. Aeberli, W. J. Houlihan, J. Org. Chem., 33, 2402 (1968).
- K. S. Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar, D. Rambabu, G. R. Krishna, C. M. Reddy, R. Kapavarapu, K. Shivakumar, K. K. Priya, K. V. L. Parsa, M. Pal, *Chem. Commun.*, 47, 5010 (2011).
- 11. R. A. Bunce, B. Nammalwar, J. Heterocycl. Chem., 48, 991 (2011).
- 12. E. V. Gromachevskaya, A. V. Fin'ko, A. V. Butin, K. S. Pushkareva, V. D. Strelkov, L. I. Isakova, G. D. Krapivin, *Chem. Heterocycl. Compd.*, **49**, 1331 (2013). [Химия гетероцикл. соединений, 1428 (2013).]
- 13. V. K. Vasilin, D. Yu. Lukina, T. A. Stroganova, G. D. Krapivin, Chem. Heterocycl. Compd., 49, 1530 (2014). [Химия гетероцикл. соединений, 1650 (2013).]
- 14. М. А.-М. Makhmud, V. K. Vasilin, G. D. Krapivin, Chem. Heterocycl. Compd., 42, 1501 (2006). [Химия гетероцикл. соединений, 1742 (2006).]
- 15. Е. Yu. Kambulov, V. K. Vasilin, E. A. Kaigorodova, L. D. Konyushkin, G. D. Krapivin, *Chem. Heterocycl. Compd.*, **39**, 255 (2003). [Химия гетероцикл. соединений, 287 (2003).]
- 16. Е. А. Кайгородова, А. А. Осипова, М. М. Липунов, Г. Д. Крапивин, *Изв. вузов. Химия и хим. технология*, **47**, 107 (2004).
- 17. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

¹ Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия e-mail: krapivingd@mail.ru Поступило 3.07.2014

1623