

Синтез производных частично гидрированных изохинолинов конденсацией 3-арил(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексанонов с малононитрилом и его димером и исследование их алкилирования

Владимир Д. Дяченко¹*, Светлана М. Сукач¹, Александр Д. Дяченко¹

¹ Луганский национальный университет им. Тараса Шевченко, ул. Оборонная, 2, Луганск 91011, Украина; e-mail: dyachvd@mail.ru

Поступило 25.07.2014 Принято после доработки 16.12.2014

Конденсацией 3-арил(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексанонов с малононитрилом и его димером – 2-амино-1,1,3-трициано-1-пропеном, получены новые производные частично гидрированных изохинолинов и изучено их алкилирование.

Ключевые слова: 2-амино-1,1,3-трициано-1-пропен, 3-арил(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексаноны, малононитрил, частично гидрированные изохинолины, алкилирование, конденсация.

β-Циклокетолы 1 проявляют антимикробную активность¹ и являются доступными реагентами в синтезе биологически активных гетероциклических соединений.² Преимущественно исследовались их реакции с гидразином и гидроксиламином,³ известно также несколько работ о конденсации их с СН-кислотами – цианоацетамидом,⁴ цианотиоацетамидом,^{4,5} цианоселеноацетамидом⁶ и 1-фенил-1*H*-пиразол-5*H*-оном.⁷

Продолжая исследования в области химии 3-арил-(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексанонов **1a**–g,^{5–7} в данной работе изучена их конденсация с малононитрилом (**2**) и его димером – 2-амино-1,1,3трициано-1-пропеном (**3**) (схема 1). Показано, что продуктами данных взаимодействий, протекающих при 60 °C в абсолютном этаноле в присутствии морфолина, стали соответственно 8-арил(гетарил)-7-ацетил-6-гидрокси-1,6-диметил-3-оксо-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрилы **4а–е** (метод I) и 2-[8-арил-(гетарил)-7-ацетил-6-гидрокси-1,6-диметил-4-циано-5,6,7,8-тетрагидроизохинолин-3(2*H*)-илиден]малононитрилы **5а–с,f,g**.

Вероятный механизм образования указанных частично гидрированных изохинолинов **4a**-е заключается в следующем. Первоначально реализуется конденсация Кнёвенагеля, продуктом которой является алкен **A**. В основной среде он способен к енолизации, образуя интермедиат **B**, внутримолекулярно циклизующийся в иминопиран **C**. Последний в результате рециклизации Димрота⁸ трансформируется в конечный

продукт 4. Соединения 4а–е получены также встречным синтезом при конденсации циклокетолов 1а–е с цианоацетамидом (6) в присутствии морфолина (метод II).⁴ Отметим, что соединения 4а,b были получены ранее при конденсации замещеных циклогексанонов 1a,b с цианоацетамидом (6) при нагревании в этаноле в присутствии метилата натрия.⁴

Механизм образования соединений 5a-c,f,g, повидимому, подобен приведённой схеме для замещенных изохинолинонов 4a-e: алкен Кнёвенагеля **D** внутримолекулярно замыкается в пиридиновый цикл, в результате чего образуются 3-дицианометилензамещенные производные частично гидрированных изохинолинов 5a-c,f,g.

Строение синтезированных соединений **4а–е**, **5а–с, f,g** подтверждено спектральными исследованиями. Для ИК спектров полученных соединений характерным является наличие характеристических полос поглощения валентных колебаний сопряженной цианогруппы и карбонильной группы при 2157–2236 и 1687–1715 см⁻¹ соответственно. В спектрах ЯМР ¹³С наблюдаются сигналы всех атомов углерода их молекул в соответствующих областях. Спектры ЯМР ¹Н содержат сигналы всех протонов заместителей и циклогексанового фрагмента молекул с характерным расщеплением.^{4,5}

Наличие нескольких реакционных центров в молекулах частично гидрированных изохинолиновых систем 4, 5 – групп NH, OH, C=O – позволяет вводить их в реакции с алкилирующими реагентами 7а-с. Схема 1

1, **4**, **5 a** R = Ph, **b** R = 4-MeC₆H₄, **c** R = 2-Fur, **d** R = 5-methylfuran-2-yl, **e** R = 3-Py, **f** R = 4-(*i*-Pr)C₆H₄, **g** R = 3-MeOC₆H₄; **7 a** Hal = Cl, **b** Hal = I, **c** Hal = Br; **7**, **8 a** R¹ = Ph, **b** R¹ = H, **c** R¹ = -CH=CH₂

Обычно алкилирование замещенных 3-циано-1,2-дигидропиридин-2-онов приводит к смеси N- и О-алкилпроизводных.^{9,10} В настоящем исследовании показано, что продуктами взаимодействия изохинолинона 4с с алкилгалогенидами 7а-с в ДМФА при 50 °С в присутствии 10% водного раствора КОН являются соответствующие *N*-алкилпроизводные 8а-с. Для подтверждения строения синтезированных соединений 8а-с и, соответственно, определения региоселективности рассматриваемой реакции алкилирования информативными оказались данные их ИК спектров. Так, помимо характеристических полос поглощения других имеющихся в молекуле функциональных групп, ИК спектры соединений 8а-с содержат характерные полосы поглощения валентных колебаний амидного фрагмента изохинолинового цикла в области 1621-1634 см⁻¹.11

Алкилирование частично гидрированного изохинолина **5b** бензилхлоридом (**7a**) в аналогичных описанным выше условиях также протекает региоспецифично, но по атому С-2 малононитрильного фрагмента молекулы. По-видимому, реакция протекает через стадии образования прототропного таутомера **E** и соответствующего карбаниона **F**. При этом получен соответствующий 2-[7-ацетил-6-гидрокси-1,6-диметил8-(4-метилфенил)-4-циано-5,6,7,8-тетрагидроизохинолин-3-ил]-2-бензилмалононитрил (9). Отметим, что изоструктурные аналоги соединений 5 – 1-алкил-(арил)-3-дицианометилен-4-цианозамещенные карбо[c]аннелированные пиридины сохраняют такую же региоселективность в реакциях алкилирования,¹² что, вероятно, связано с высокой подвижностью атома водорода группы NH изохинолинового цикла. Данные рентгеноструктурного анализа родственного соединения – 5,6-диметил-2-дицианометилен-3-циано-1,2-дигидропиридина – свидетельствуют о его плоском строении и ароматическом характере,¹³ что может быть одной из причин легкости отрыва протона от атома азота.

Спектральные характеристики подтверждают строение соединения 9. Информативным оказался спектр ЯМР ¹³С, в котором наблюдаются сигналы 10 алифатических атомов углерода в соответствующих облястях. В спектре продукта *N*-алкилирования в алифатической области следовало бы ожидать девять сигналов. Отметим также невозможность, повидимому, из-за стерических препятствий свободного вращения бензильного фрагмена молекулы, о чем свидетельствует неэквивалентность протонов метиленовой группы и, как следствие, расщепление их сигналов на 2 дублета с КССВ ²J = 14.0 Гц. Особенностью ИК спектра изохинолина **9** является наличие характеристических полос поглощения всех имеющихся в молекуле функциональных групп, за исключением способных не проявляться несопряжённых нитрильных групп, что согласуется с литературными данными.¹⁴

Масс-спектры большинства синтезированных соединений характеризуются наличием пиков молекулярных ионов, численное значение которых соответствует "азотному правилу".¹⁵

Таким образом, конденсацией 3-арил(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексанонов с малононитрилом или его димером – 2-амино-1,1,3-трициано-1-пропеном синтезированы 8-арил(гетарил)-7-ацетил-6-гидрокси-1,6-диметил-3-оксо-2,3,5,6,7,8гексагидроизохинолин-4-карбонитрилы и 2-(8-арил-(гетарил)-7-ацетил-6-гидрокси-1,6-диметил-4-циано-5,6,7,8-тетрагидроизохинолин-3(2*H*)-илиден)малононитрилы соответственно. Алкилирование замещённых 3-оксоизохинолинов протекает по атому азота, а (изохинолин-3(2*H*)-илиден)малононитрилов – по атому C-2 малононитрильного фрагмента.

Экспериментальная часть

ИК спектры зарегистрированы на FIR-спектрометре Perkin Elmer Spectrum One в таблетках КВг. Спектры ЯМР ¹H и ¹³C зарегистрированы на спектрометре Bruker Avance 400 (400 и 100 МГц соответственно) в ДМСО- d_6 , внутренний стандарт – ТМС. Масс-спектры зарегистрированы на спектрометре МХ-1321 (70 эВ) с прямым вводом образца в ионный источник. Элементный анализ проведён на приборе Eurovector EA-3000. Температуры плавления определены на блоке Кофлера. Контроль за ходом реакций и чистотой полученных соединений осуществлен методом TCX на пластинах Silufol UV-254, элюент ацетон–гексан, 3:5, проявители: пары иода и УФ облучение.

3-Арил(гетарил)-2,4-диацетил-5-гидрокси-5-метилциклогексаноны 1а-д получают по литературной методике.³

Получение соединений 4а-е (общая методика).

Метод I. К суспензии 6 ммоль замещенного циклогексанона **1а–е** в 20 мл абс. ЕtOH добавляют 0.40 г (6 ммоль) малононитрила (**2**). Реакционную смесь перемешивают при комнатной температуре в течение 15 мин, затем добавляют 0.52 мл (6 ммоль) морфолина, при перемешивании повышают температуру до 60 °C, после чего нагревание сразу прекращают и охлаждают смесь до 15 °C в течение 1 ч. Через 24 ч образовавшийся осадок отфильтровывают, промывают EtOH, гексаном и перекристаллизовывают из EtOH.

Метод II. Процедура аналогична методу I, вместо малононитрила (2) используют 0.50 г (6 ммоль) цианоацетамида (6).

7-Ацетил-6-гидрокси-1,6-диметил-3-оксо-8-фенил-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (4а). Выход 1.80 г (89%, метод I), 1.85 г (91%, метод II), белый порошок, т. пл. 235–237 °С (т. пл. 247–264 °С⁴). Масс-спектр, *m/z* (*I*_{отн}, %): 336 [М]⁺ (1), 318 [М–H₂O]⁺ (2), 275 $[M-H_2O-CH_3CO]^+$ (100), 261 (11), 199 (19), 77 $[C_6H_5]^+$ (12), 43 $[CH_3CO]^+$ (89).

7-Ацетил-6-гидрокси-1,6-диметил-8-(4-метилфенил)-3-оксо-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (4b). Выход 1.70 г (81%, метод I), 1.95 г (93%, метод II), белый порошок, т. пл. 255–257 °С (т. пл. 267–268 °С⁴). Масс-спектр, *m/z* (*I*_{отн}, %): 349 [М–Н]⁺ (1), 332 [М–Н₂O]⁺ (1), 312 (10), 289 [М–Н₂O–СН₃CO]⁺ (100), 276 (15), 199 (9), 105 (6), 91 [С₆Н₅CH₂]⁺ (6), 44 [СН₃COH]⁺ (31), 30 (28).

7-Ацетил-6-гидрокси-1,6-диметил-3-оксо-8-(фуран-2-ил)-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (4c). Выход 1.70 г (87%, метод I), 1.85 г (94%, метод II), белый порошок, флуоресцирующий при УФ облучении, т. пл. 235-237 °С. ИК спектр, v, см⁻¹: 3364 (OH), 3005 (NH), 2221 (CN), 1715 (C=O), 1655 (NHCO). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.25 (3Н, с, СН₃); 1.96 (3H, c, CH₃); 2.18 (3H, c, CH₃); 2.80 (1H, μ , J = 16.5, 5-СН_А); 2.93-3.02 (2Н, м, 5-СН_В, 7-СН); 4.50 (1Н, д, J = 4.6, 8-CH); 5.01 (1H, ym. c, OH); 6.08 (1H, c, H-3) Fur); 6.33 (1H, c, H-4 Fur); 7.52 (1H, c, H-5 Fur); 12.41 (1H, уш. с, NH). Спектр ЯМР ¹³С, б, м. д.: 17.1; 28.0; 30.7; 34.9; 43.4; 61.8; 67.9; 98.8; 106.4; 110.4; 112.5; 115.9; 141.9; 150.4; 155.2; 158.6; 159.8; 208.4. Maccспектр, m/z ($I_{\text{отн}}$, %): 326 [M]⁺ (1), 308 [M–H₂O]⁺ (2), 283 $[M-CH_{3}CO]^{+}$ (3), 265 $[M-H_{2}O-CH_{3}CO]^{+}$ (100), 251 (11), 237 (8), 223 (53), 43 [СН₃СО]⁺ (72). Найдено, %: С 66.16; Н 5.41; N 8.49. С₁₈Н₁₈N₂O₄. Вычислено, %: C 66.25; H 5.56; N 8.58.

7-Ацетил-6-гидрокси-1,6-диметил-8-(5-метилфуран-2-ил)-3-оксо-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (4d). Выход 1.73 г (85%, метод I), 1.80 г (88%, метод II), белый порошок, т. пл. 237-240 °С. ИК спектр, v, см⁻¹: 3426 (ОН), 3248 (NH), 2236 (СN), 1695 (C=O), 1671 (NHCO). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.26 (3H, c, CH₃); 2.00 (3H, c, CH₃); 2.16 (3H, c, CH₃); 2.18 (3H, c, CH₃); 2.79 (1H, д, J = 15.0, 5-CH_A); 2.84–3.02 (2Н, м, 5-СН_в, 7-СН); 4.41 (1Н, д, J = 4.5, 8-СН); 4.98 (1Н, уш. с, ОН); 5.91 (2Н, д, J = 2.1, Н-3,4 Fur). Сигнал протона NH не проявляется, по-видимому, вследствие быстрого дейтерообмена. Спектр ЯМР ¹³С, δ, м. д.: 11.9; 16.1; 26.9; 29.5; 33.7; 42.1; 60.4; 66.8; 97.6; 105.0; 105.8; 111.4; 114.7; 149.2 (2C); 152.0; 157.4; 158.6; 207.3. Масс-спектр, m/z ($I_{\text{отн}}$, %): $[M]^+$ отсутствует, 322 $[M-H_2O]^+$ (3), 279 $[M-H_2O-CH_3CO]^+$ (91), 265 (10), 237 (14), 198 (4), 169 (4), 77 (5), 44 [CH₃COH]⁺ (100). Найдено, %: С 66.93; Н 5.85; N 8.15. С₁₉Н₂₀N₂O₄. Вычислено, %: С 67.05; Н 5.92; N 8.23.

7-Ацетил-6-гидрокси-1,6-диметил-3-оксо-8-(пиридин-3-ил)-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (4e). Выход 1.72 г (85%, метод I), 1.82 г (90%, метод II), белый порошок, т. пл. 257–259 °С. ИК спектр, v, см⁻¹: 3429 (ОН), 3270 (NH), 2220 (СN), 1695 (С=О), 1665 (NHCO). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.27 (3H, с, CH₃); 1.76 (3H, с, CH₃); 2.07 (3H, с, CH₃); 2.87 (1H, д, *J* = 10.1) и 4.35 (1H, д, *J* = 10.1, 5-CH₂); 3.01 (1H, с, 7-CH); 3.75 (1H, с, 8-CH); 4.74 (1H, уш. с, OH); 7.21 (1H, т, *J* = 7.7, H-5 Ру); 7.43 (1H, д, *J* = 7.6, H-4 Ру); 8.27 (1H, с, H-2 Ру); 8.35 (1H, д, *J* = 7.4, H-6 Ру); 12.31 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 19.2; 28.5; 31.9; 44.9; 66.4; 68.5; 99.9; 115.4; 116.7; 116.8; 124.3; 136.0; 140.7; 148.4; 150.1; 151.0; 151.1; 160.6; 209.5. Масс-спектр, *m/z* ($I_{\text{отн}}$, %): [M]⁺ отсутствует, 319 [M–H₂O]⁺ (4), 294 [M–CH₃CO]⁺ (8), 276 [M–H₂O–CH₃CO]⁺ (100), 236 (4), 199 (14), 104 (3), 79 [C₆H₅+2H]⁺ (9), 43 [CH₃CO]⁺ (48), 44 [CH₃COH]⁺ (48), 30 (31). Найдено, %: С 67.48; H 5.52; N 12.32. С₁9H₁₉N₃O₃. Вычислено, %: С 67.64; H 5.68; N 12.45.

Получение соединений 5а–с, f, g (общая методика). К суспензии 6 ммоль циклогексанона 1a–с, f, g в 30 мл абс. ЕtOH добавляют 0.80 г (6 ммоль) димера малононитрила 3 и раствор 0.14 г (6 ммоль) Na в 5 мл абс. ЕtOH. Реакционную смесь кипятят в течение 1 ч в колбе с обратным холодильником и оставляют при комнатной температуре. Через 48 ч реакционную смесь разбавляют 10% HCl до pH 7, образовавшийся осадок отфильтровывают, последовательно промывают водой, EtOH, гексаном и перекристаллизовывают из *n*-BuOH.

2-[7-Ацетил-6-гидрокси-1,6-диметил-8-фенил-4-циано-5,6,7,8-тетрагидроизохинолин-3(2H)-илиден]малононитрил (5а). Выход 1.57 г (68%), жёлтые кристаллы, флуоресцирующие при УФ облучении, т. пл. 285-288 °С. ИК спектр, v, см⁻¹: 3411 (ОН), 2922 (NH), 2210, 2191, 2157 (CN), 1704 (С=О). Спектр ЯМР ¹Н, δ, м. д. (J, Гц): 1.22 (3H, с, CH₃); 1.74 (3H, с, CH₃); 2.01 (3H, с, CH₃); 2.72–2.84 (2H, м, 5-CH_A, 7-CH); сигнал второго протона группы 5-CH₂ маскируется сигналом протонов воды; 4.30 (1Н, д, J = 10.9, 8-СН); 4.47 (1Н, уш. с, ОН); 6.96 (2Н, д, J = 7.4, Н Рh); 7.13 (1Н, т, J = 7.3, H Ph); 7.21 (2H, т, J = 7.3, H Ph). Сигнал протона NH не проявляется, по-видимому, вследствие быстрого дейтерообмена. Масс-спектр, m/z (I_{0TH} , %): 384 [M]⁺ (3), 367 [M+H-H₂O]⁺ (63), 366 [M-H₂O]⁺ (13), 352 [M+H-H₂O-CH₃]⁺ (95), 289 [M-H₂O-C₆H₅]⁺ (100), 274 [M- $H_2O-C_6H_5-CH_3$ ⁺ (6), 183 (10), 176 (13), 168 (11), 77 $[C_6H_5]^+$ (3), 60 (30), 44 $[CH_3COH]^+$ (47), 43 $[CH_3CO]^+$ (7). Найдено, %: С 71.66; Н 5.11; N 14.45. С₂₃H₂₀N₄O₂. Вычислено, %: С 71.86; Н 5.24; N 14.57.

2-[7-Ацетил-6-гидрокси-1,6-диметил-8-(4-метилфенил)-4-циано-5,6,7,8-тетрагидроизохинолин-3(2H)-илиден]малононитрил (5b). Выход 1.86 г (78%), оранжевый порошок, т. пл. 246-247 °С. ИК спектр, v, см⁻¹: 3437 (ОН), 2923 (NH), 2222, 2203, 2182 (CN), 1697 (C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.28 (3H, c, CH₃); 2.03 (3H, c, CH₃); 2.04 (3H, c, CH₃); 2.29 (3H, с, CH₃); 2.81–2.98 (2H, м, 5-CH_A, 7-CH); 3.15 $(1H, A, J = 19.4, 5-CH_B); 4.36 (1H, A, J = 10.2, 8-CH);$ 6.93 (2H, д, J = 7.8, H Ar); 7.04 (2H, д, J = 7.8, H Ar). Сигналы протонов NH и OH не проявляются, по-видимому, вследствие быстрого дейтерообмена. Массспектр, m/z (I_{0TH} , %): 398 [M]⁺ (2), 380 [M–H₂O]⁺ (2), 337 $[M-H_2O-CH_3CO]^+$ (84), 323 $[M+H-H_2O-CH_3CO]^+$ (20), 247 $[M+H-H_2O-CH_3CO-C_6H_4CH_3]^+$ (21), 161 (8), 91 [C₆H₄CH₃]⁺ (10), 44 [CH₃COH]⁺ (100), 30 (25). Найдено, %: С 72.20; Н 5.43; N 13.92. С₂₄Н₂₂N₄O₂. Вычислено, %: C 72.34; H 5.57; N 14.06.

2-[7-Ацетил-6-гидрокси-1,6-диметил-8-(фуран-2-ил)-4-циано-5,6,7,8-тетрагидроизохинолин-3(2*H*)- илиден]малононитрил (5с). Выход 1.80 г (80%), жёлтый порошок, флуоресцирующий при УФ облучении, т. пл. 228–230 °С. ИК спектр, v, см⁻¹: 3382 (OH), 2924 (NH), 2224, 2202, 2176 (CN), 1693 (C=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.33 (3H, с, CH₃); 2.19 (3H, с, CH₃); 2.27 (3H, с, CH₃); 2.86 (1H, д, *J* = 14.0) и 2.99 (1H, д, *J* = 14.0, 5-CH₂); 3.14 (1H, д, *J* = 7.8, 7-CH); 4.60 (1H, д, *J* = 7.8, 8-CH); 6.09 (1H, с, H-3 Fur); 6.30 (1H, с, H-4 Fur); 7.41 (1H, д, *J* = 1.2, H-5 Fur). Сигналы протонов NH и OH не проявляются, по-видимому, вследствие быстрого дейтерообмена. Масс-спектр, *m/z* (*I*_{0TH}, %): 375 [M+H]⁺ (100). Найдено, %: С 67.23; H 4.76; N 14.80. C₂₁H₁₈N₄O₃. Вычислено, %: С 67.37; H 4.85; N 14.96.

2-[7-Ацетил-6-гидрокси-8-(4-изопропилфенил)-1,6-диметил-4-циано-5,6,7,8-тетрагидроизохинолин-**3(2***H***)-илиден]малононитрил (5f)**. Выход 1.94 г (76%), оранжевый порошок, т. пл. 232-234 °С. ИК спектр, v, cm⁻¹: 3473 (OH), 2924 (NH), 2218, 2201, 2177 (CN), 1693 (C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.19 (6Н. д. J = 6.9, CH(CH₃)₂); 1.28 (3H, c, CH₃); 2.03 (3H, c, CH₃); 2.04 (3H, с, CH₃); 2.79–2.85 (1H, м, CHMe₂); 2.86–2.99 (2H, м, 5-CH_A, 7-CH); 3.11 (1H, д, *J* = 17.4, 5-CH_B); 4.36 (1H, д, J = 10.0, 8-CH); 6.94 (2H, д, J = 7.8, H Ar); 7.08 (2H, J, J = 7.8, H Ar). Сигналы протонов NH и OH не проявляются, по-видимому, вследствие быстрого дейтерообмена. Масс-спектр, m/z ($I_{\text{отн}}$, %): [M]⁺ отсутствует, 408 $[M-H_2O]^+$ (2), 365 $[M-CH_3CO]^+$ (57), 351 [M+H–H₂O–CH₃CO–CH₃]⁺ (14), 247 (16), 44 [CH₃COH]⁺ (100). Найдено, %: С 73.12; Н 6.00; N 13.04. С₂₆Н₂₆N₄O₂. Вычислено, %: С 73.22; Н 6.14; N 13.14.

2-[7-Ацетил-6-гидрокси-1,6-диметил-8-(3-метоксифенил)-4-циано-5,6,7,8-тетрагидроизохинолин-**3(2***H***)-илиден]малононитрил (5g)**. Выход 2.01 г (81%), жёлтый порошок, т. пл. 235–237 °С. ИК спектр, v, см⁻¹: 3448 (OH), 2920 (NH), 2225, 2199, 2173 (CN), 1692 (C=O). Спектр ЯМР ¹Н, б, м. д. (J, Гц): 1.28 (3Н, с, CH₃); 2.04 (3H, c, CH₃); 2.06 (3H, c, CH₃); 2.83-2.98 (2H, м, 5-CH_A, 7-CH); 3.13 (1H, д, J = 17.6, 5-CH_B); 3.73 (3H, с, ОСН₃); 4.37 (1H, д, J = 10.3, 8-CH); 5.55-6.61 (2H, м, H Ar); 6.70 (1H, д, J = 9.4, H Ar); 7.15 (1H, т, J = 8.1, H Ar). Сигналы протонов NH и OH не проявляются, по-видимому, вследствие быстрого дейтерообмена. Масс-спектр, m/z (I_{0TH} , %): 414 [M]⁺ (3), 396 [M–H₂O]⁺ (3), 339 [M+H– $H_2O-CH_3CO-CH_3]^+$ (9), 247 (24), 161 (45), 44 $[CH_3COH]^+$ (100), 30 (70). Найдено, %: С 69.41; Н 5.20; N 13.43. С₂₄H₂₂N₄O₃. Вычислено, %: С 69.55; Н 5.35; N 13.52.

Получение соединений 8а-с, 9 (общая методика). К перемешиваемому раствору 2 ммоль замещенного изохинолина 4с, 5b в 10 мл ДМФА последовательно добавляют 1.12 мл (2 ммоль) 10% водного раствора КОН и 2 ммоль алкилирующего реагента 7а-с, перемешиваемую реакционную смесь медленно нагревают в течение 30 мин, пока температура достигнет 50 °C, после чего разбавляют равным объемом H_2O и оставляют при комнатной температуре. Через 48 ч образовавшийся осадок отфильтровывают, последовательно промывают водой, EtOH, гексаном и перекристаллизовывают из EtOH (соединения 8а-с) и *n*-ВuOH (соединение 9).

7-Ацетил-2-бензил-6-гидрокси-1,6-диметил-3-оксо-8-(фуран-2-ил)-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (8а). Выход 0.76 г (91%), белый порошок, т. пл. 118–119 °С. ИК спектр, v, см⁻¹: 3350 (OH), 2221 (CN), 1703 (C=O), 1634 (N-C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.32 (3H, с, CH₃); 2.13 (3H, с, СН₃); 2.21 (3H, с, CH₃); 2.81–2.95 (2H, м, 5-CH_A, 7-CH); сигнал второго протона группы 5-CH₂ маскируется сигналом протонов воды; 4.54 (1H, д, J = 6.8, 8-CH); 4.93 (1H, ym. c, OH); 5.40 (2H, c, NCH₂); 5.90 (1H, c, H-3 Fur); 6.24 (1H, c, H-4 Fur); 7.10 (2H, J = 7.5, H Ph); 7.24 (1H, т, J = 7.2, H Ph); 7.26–7.41 (3H, м, H-5 Fur, H Ph). Macc-спектр, m/z ($I_{\text{отн}}$, %): $[M]^+$ отсутствует, 214 (41), 213 (47), 186 (22), 185 (10), 137 (26), 105 (100), 77 (70), 70 (21), 68 (11), 51 (19), 44 $[CH_3COH]^+$ (8). Найдено, %: С 71.88; Н 5.67; N 6.59. С₂₅H₂₄N₂O₄. Вычислено, %: С 72.10; Н 5.81; N 6.73.

7-Ацетил-6-гидрокси-1,2,6-триметил-3-оксо-8-(фуран-2-ил)-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (8b). Выход 0.48 г (71%), белый порошок, т. пл. 168-170 °С. ИК спектр, v, см⁻¹: 3354 (OH). 2204 (CN). 1700 (C=O). 1626 (N-C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.30 (3H, с, CH₃); 2.22 (3H, с, CH₃); 2.24 (3H, c, CH₃); 2.84 (3H, c, CH₃); 3.01-3.28 (2H, м, 5-СН_А, 7-СН); 4.44 (1Н, д, J = 4.4, 8-СН); 4.90 (2Н, уш. с, 5-CH_B, OH); 5.99 (1H, с, H-3 Fur); 6.28 (1H, с, H-4 Fur); 7.41 (1H, с, H-5 Fur). Масс-спектр, *m/z* (*I*_{отн}, %): 340 $[M]^+$ (1), 322 $[M-H_2O]^+$ (3), 297 $[M-CH_3CO]^+$ (6), 280 [M+H-H₂O-CH₃CO]⁺ (21), 279 [M-H₂O-CH₃CO]⁺ (100), 265 $[M+H-H_2O-CH_3CO-CH_3]^+$ (20), 264 $[M-H_2O-CH_3CO]^+$ (12), 56 (16), 44 [СН₃СОН]⁺ (33), 30 (53). Найдено, %: С 66.89; Н 5.77; N 8.10. С₁₉Н₂₀N₂O₄. Вычислено, %: C 67.05; H 5.92; N 8.23.

2-Аллил-7-ацетил-6-гидрокси-1,6-диметил-3-оксо-8-(фуран-2-ил)-2,3,5,6,7,8-гексагидроизохинолин-4-карбонитрил (8с). Выход 0.55 г (82%), белый порошок, т. пл. 133-135 °С. ИК спектр, v, см⁻¹: 3324 (OH), 2208 (CN), 1695 (C=O), 1621 (N-C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.29 (3H, с, CH₃); 2.13 (3H, с, СН₃); 2.22 (3H, с, CH₃); 2.86–2.99 (2H, м, 5-CH_A, 7-CH); 4.55 (1Н, д, *J* = 17.0, 5-СН_В); 4.80 (1Н, д, *J* = 4.8, 8-СН); 4.82–5.11 (3H, уш. с, ОН и NCH₂); 5.25 (1H, д, J_{иис} = 5.2) и 5.43 (1Н, д, J_{транс} = 17.0, CH=CH₂); 5.95 (1Н, с, Н-3 Fur); 6.01–6.18 (1H, м, CH=CH₂); 6.28 (1H, с, H-4 Fur); 7.38 (1H, c, H-5 Fur). Macc-спектр, m/z (I_{0TH} , %): 366 [M]⁺ (3), 348 $[M-H_2O]^+$ (3), 323 $[M-CH_3CO]^+$ (9), 306 $[M+H-H_2O-CH_3CO]^+$ (23), 305 $[M-H_2O-CH_3CO]^+$ (100), 265 (13), 44 [СН₃СО]⁺ (38), 42 (28). Найдено, %: С 68.70; Н 5.88; N 7.59. С₂₁Н₂₂N₂O₄. Вычислено, %: C 68.84; H 6.05; N 7.65.

2-[7-Ацетил-6-гидрокси-1,6-диметил-8-(4-метилфенил)-4-циано-5,6,7,8-тетрагидроизохинолин-3-ил]-2-бензилмалононитрил (9). Выход 0.60 г (60%), белые иглы, т. пл. 208–210 °С ИК спектр, v, см⁻¹: 3455 (OH), 2213 (CN), 1687 (C=O). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.33 (3H, c, CH₃); 2.06 (3H, c, CH₃); 2.10 (3H, c, CH₃); 2.29 (3H, с, CH₃); 2.99 (1H, д, J = 10.1, 7-CH); 3.07 (1H, д, J = 17.4) и 3.33 (1Н, д, J = 17.4, 5-СН₂); 3.76 (1Н, д, J = 14.0) и 3.82 (1H, д, J = 14.0, CH₂Ph); 4.55 (1H, д, J = 10.1, 8-CH); 4.77 (1H, уш. с, OH); 6.86 (2H, д, J=7.5, Н Ar); 7.05 (2Н, д, J = 7.5, Н Ar); 7.32–7.41 (5Н, м, Н Ph). Спектр ЯМР ¹³С, б, м. д.: 21.1; 25.0; 28.1; 31.7; 42.8; 43.3; 44.2; 47.0; 66.5; 68.0; 105.8; 113.5; 113.7; 114.5; 128.6 (2C); 129.1 (2C); 129.2; 129.8 (2C); 130.9 (2C); 132.6; 136.2; 136.3; 140.4; 148.1; 152.2; 161.7; 209.6. Масс-спектр, *m/z* (*I*_{опн}, %): 489 $[M+H]^+$ (2), 488 $[M]^+$ (3), 470 $[M-H_2O]^+$ (6), 427 $[M-CH_3CO-H_2O]^+$ (64), 337 (12), 92 $[C_6H_5CH_3]^+$ (12), 91 $[C_6H_5CH_2]^+$ (100), 90 $[C_6H_5CH]^+$ (27), 65 (12), 43 $[CH_3CO]^+$ (48), 32 (7). Найдено, %: С 76.05; Н 5.59; N 11.30. С₃₁Н₂₈N₄O₂. Вычислено, %: С 76.21; Н 5.78; N 11.47.

Список литературы

- 1. Gein, V. L.; Gein, N. V.; Voronina, É. V.; Kriven'ko, A. P. *Pharm. Chem. J.* **2002**, *36*, 131. [Хим.-фарм. журн. **2002**, *36*(3), 23.]
- Van Linden, O. P. J.; Farenc, C.; Zoutman, W. H.; Hameetman, L.; Wijtmans, M.; Leurs, R.; Tensen, C. P.; Siegal, G.; de Esch, I. J. P. *Eur. J. Med. Chem.* **2012**, *47*, 493.
- Кривенько, А. П.; Сорокин, В. В. Замещенные циклогексанолоны: Учеб. пособие; Изд-во Сарат. ун-та: Саратов, 1999, с. 38.
- Ozols, A. I.; Pelcher, Yu. Ê.; Kalme, Z. A.; Popelis, Yu. Yu.; Turovskis, I. V.; Duburs, G. Ya. Chem. Heterocycl. Compd. 1996, 32, 52. [Химия гетероцикл. соединений 1996, 59.]
- 5. Dyachenko, V. D.; Sukach, S. M.; Dyachenko, A. D.; Zubatyuk, R. I.; Shishkin, O. V. *Russ. J. Gen. Chem.* **2010**, *80*, 2037. [Журн. общ. химии **2010**, *80*, 1728.]
- 6. Dyachenko, V. D.; Sukach, S. M. Chem. Heterocycl. Compd. 2011, 46, 1467. [Химия гетероцикл. соединений 2010, 1795.]
- 7. Dyachenko, V. D.; Sukach, S. M. Russ. J. Gen. Chem. 2012, 82, 305. [Журн. общ. химии 2012, 82, 310.]
- Subbotina, J. O.; Fabian, W. M. F.; Tarasov, E. V.; Volkova, N. N.; Bakulev, V. A. *Eur. J. Org. Chem.* 2005, 2914.
- Collins, I.; Moyes, C.; Davey, W. B.; Rowley, M.; Bromidge, F. A.; Quirk, K.; Atack, J. R.; McKernan, R. M.; Thompson, S.-A.; Wafford, K.; Dawson, G. R.; Pike, A.; Sohal, B.; Tsou, N. N.; Ball, R. G.; Castro, J. L. J. Med. Chem. 2002, 45, 1887.
- 10. Dyachenko, I. V.; Vovk, M. V. Ukr. Chem. J. 2013, 79, 114. [Укр. хим. журн. 2013, 79, 114.]
- Dyachenko, I. V.; Vovk, M. V. Russ. J. Org. Chem. 2013, 49, 259. [Журн. орган. химии 2013, 49, 268.]
- Dyachenko, I. V.; Rusanov, E. B.; Gutov, A. V.; Vovk, M. V. Russ. J. Gen. Chem. 2013, 83, 1383. [Журн. общ. химии 2013, 83, 1132.]
- 13. Elgemeie, E. H.; Hanfy, N.; Hopf, H.; Jones, P. G. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, C54, 820.
- Преч, Э.; Бюльманн, Ф.; Аффольтер, К. Определение строения органических соединений; Мир: Москва, 2006, с. 281.
- 15. Заикин, В. Г.; Варламов, А. В.; Микая, А. М.; Простаков, Н. С. Основы масс-спектрометрии органических соединений; МАИК "Наука/Интерпериодика": Москва, 2001, с. 117.