В. К. Василин¹, Д. Ю. Лукина¹, Т. А. Строганова¹, П. Г. Морозов², Г. Д. Крапивин^{1*}

ВТОРИЧНЫЕ 3-АМИНОТИЕНО[2,3-*b*]-ПИРИДИН-2-КАРБОКСАМИДЫ В РЕАКЦИИ С *орто*-ФОРМИЛБЕНЗОЙНОЙ КИСЛОТОЙ

Взаимодействием вторичных 3-аминотиено[2,3-*b*]пиридин-2-карбоксамидов с *орто*формилбензойными кислотами получены ангулярные (±)-7,7а-дигидропиридо-[3",2":4',5']тиено[2',3':5,6]пиримидо[2,1-*a*]изоиндол-6,12-дионы. В отдельных случаях выделены промежуточные продукты реакции – (±)-(1,2,3,4-тетрагидропиридо-[3',2':4,5]тиено[3,2-*d*]пиримидин-2-ил)бензойные кислоты. Показано, что вторичные *N*-[(5-метилфуран-2-ил)метил]карбоксамиды в ходе реакции образуют изоиндол-6,8-дионы линеарного строения. Методом РСА исследована структура одного из ангулярных производных изоиндол-6,12-дионов. Методом динамического ЯМР изучен вырожденный внутримолекулярный процесс вращения в молекулах ряда изоиндол-6,12-дионов.

Ключевые слова: 3-аминотиено[2,3-*b*]пиридин-2-карбоксамиды, (±)-12b,13-дигидропиридо[3",2":4',5']тиено[3',2':4,5]пиримидо[2,1-*a*]изоиндол-6,8-дионы, (±)-7,7а-дигидропиридо[3",2":4',5']тиено[2',3':5,6]пиримидо[2,1-*a*]изоиндол-6,12-дионы, (±)-(1,2,3,4-тетрагидропиридо[3',2':4,5]тиено[3,2-*d*]пиримидин-2-ил)бензойные кислоты, *орто*-формилбензойная кислота, внутримолекулярная динамика, рентгеноструктурный анализ.

В нашем предыдущем сообщении [1] мы показали, что первичные 3-аминотиено[2,3-*b*]пиридин-2-карбоксамиды при взаимодействии с *орто*формилбензойной кислотой (ФБК, FBA) образуют *O*,*O*-цис-продукты линеарной циклизации **A**, в отличие от первичных и вторичных амидов антраниловой кислоты, для которых единственными продуктами являются *O*,*O*-*транс*-изомеры ангулярной циклизации **B** (R = H, Alk, Ar) [2–5].

По аналогии с вторичными антраниламидами для вторичных аминоамидов тиенопиридинового ряда, на первый взгляд, существует одно возможное направление внутримолекулярной циклизации – образование *O,O-mpaнс*-ангулярных продуктов C. Однако, как оказалось, направление циклизации в данном случае зависит от типа заместителя у амидного атома азота, чему и посвящено данное сообщение. Более того, учитывая неплоскую конфигурацию гетероциклического скелета ангулярных соединений **B** (доказанную рентгеноструктурным анализом [2, 5, 6]) и C, *а priori* можно предполагать затруднённость свободного вращения объёмных заместителей R вокруг экзоциклической связи N–R в молекулах с *O,O-mpaнc*-конфигурацией

расположения карбонильных групп. Поэтому цели настоящей работы: 1) синтез соединений типа C, содержащих объёмные заместители у амидного атома азота, в том числе *пара*-фенилзамещённые как наиболее удобные для исследования методом динамического ЯМР, 2) изучение стереостроения полученных веществ с использованием метода РСА и 3) исследование кинетики и термодинамики вырожденного процесса инверсии (свободного вращения арильного заместителя R) методом динамического ЯМР.

Нами установлено, что взаимодействие как первичных аминоамидов [1], так и вторичных аминоамидов **1а**-е с ФБК в толуоле при катализе *пара*толуолсульфокислотой в большинстве случаев сразу приводит к продуктам "двойной" домино-циклизации – бесцветным соединениям **2а**-е – без выделения в свободном состоянии промежуточных кислот **3а**-е (схема 1, табл. 1 и 2). В случае аминоамида **1с** нам удалось хроматографически выделить аминокислоту **3с** на промежуточном этапе синтеза.

Схема 1

* Для соединений 1, 2 а-е, 3с, f, g.

В случае аминоамидов **1f**,**g** кислоты **3f**,**g** выделены как основные продукты реакции, возможно, из-за их плохой растворимости в толуоле.

Нагревание аминокислоты 3c в толуоле в присутствии каталитических количеств *p*-TsOH приводит к практически количественному превращению её в ангулярный продукт циклизации 2c. Кислоты 3f,g при нагревании в тех же условиях дают сложную смесь продуктов с сильным осмолением реакционной

смеси. При проведении циклизации кислот **3f**,**g** в полифосфорной кислоте неожиданно получены бесцветные продукты ангулярной циклизации **4f**,**g**, лишённые заместителя у атома азота N-7 (схема 1, табл. 1 и 2). Ангулярная структура соединений **4f**,**g** позволяет предполагать, что удаление заместителя у атома азота N-7 происходит после замыкания пятичленного лактамного цикла.

N-Фурфурилзамещённые аминоамиды **1h**,**i** при нагревании в толуоле в присутствии каталитических количеств *p*-TsOH взаимодействуют с ФБК иначе (схема 2), давая окрашенные в жёлтый цвет продукты линеарной циклизации **5h**,**i**. Продукт **5i** является изомером соединения **4f**, а соединение **5h** идентично 1-(5-метилфуран-2-ил)-3-фенил-12b,13-дигидропиридо[3",2":4',5']тиено-[3',2':4,5]пиримидо[2,1-*a*]изоиндол-6,8-диону, полученному нами при взаимодействии соответствующего первичного 3-аминотиено[2,3-*b*]пиридин-2-карбоксамида с ФБК [1]. Линеарная *O*,*O*-цис-структура соединения **5h** в работе [1] однозначно доказана не только спектральными методами, но и PCA.

Схема 2

Известно [7], что фурфурильный катион является хорошим электрофугом, и, очевидно, он легко удаляется до начала домино-процесса превращения фурфуриламидов **1h**,**i** в условиях кислого катализа (схема 2). Возникающие первичные аминоамиды тиенопиридинового ряда, как и описано ранее [1], в реакции с ФБК образуют линеарные продукты циклизации **5h**,**i**.

Кислоты **3с**,**f**,**g** представляют собой жёлтые кристаллические вещества (табл. 1 и 2). В их ИК спектрах имеются характеристичные полосы поглощения валентных колебаний карбоксильной и лактамной групп C=O. В спектрах ЯМР ¹Н наблюдаются характеристичные сигналы протона СООН при 10.13–13.50 м. д. и пара однопротонных дублетов фрагмента NH–CH, связанных общей КССВ 3.7–6.0 Гц. Так как замыкание пиримидинового цикла приводит к возникновению асимметрического центра – атома C-2 – прохиральные метиленовые группы соединений **3с**,**f** становятся диастереотопными, и их протоны резонируют в виде пары дублетов с геминальной константой 13.2–15.4 Гц.

Таблица 1

Соели	Брутто-формула	Найдено, %			Т. пл., °С	Выход,
нение		Вычислено,%				
nenne		С	Н	N		70
2a	$C_{24}H_{16}IN_3O_2S$	53.69	2.94	7.87	238-239	53
		53.64	3.00	7.82		
2b	C ₂₅ H ₁₈ IN ₃ O ₃ S	<u>53.01</u>	3.18	7.34	142-143	73
		52.92	3.20	7.41		
2c	C ₂₅ H ₁₉ N ₃ O ₃ S	<u>67.92</u>	4.39	9.45	197-198	75
		68.01	4.34	9.52		
2d	C ₂₇ H ₂₃ N ₃ O ₃ S	68.76	5.37	<u>8.93</u>	145-146	65
		69.06	4.94	8.95		
2e	C24H15BrClN3O2S	<u>54.99</u>	2.94	7.92	324-325	76
		54.93	2.88	8.01		
3c	C ₂₅ H ₂₁ N ₃ O ₄ S	65.40	4.66	9.20	248-249	5
		65.35	4.61	9.14		
3f	C ₂₆ H ₂₂ BrN ₃ O ₄ S	56.60	<u>3.97</u>	7.65	268-269	56
		56.53	4.01	7.61		
3g	C ₃₅ H ₂₇ N ₃ O ₄ S	71.70	4.60	7.10	244-245	59
		71.78	4.65	7.17		
4f	C ₁₉ H ₁₄ BrN ₃ O ₃ S	<u>51.42</u>	3.24	9.51	138-139	25
		51.36	3.18	9.46		
4g	C ₂₇ H ₁₇ N ₃ O ₃ S	70.01	3.75	<u>9.01</u>	>180 (с разл.)	15
-		69.97	3.70	9.07		
5h	C ₂₇ H ₁₇ N ₃ O ₃ S	70.08	3.63	<u>9.18</u>	306-307	72
		69.97	3.70	9.07	(306–307 [6])	
5 i	C19H14BrN3O3S	51.41	3.27	<u>9.56</u>	243-244	40
		51.36	3.18	9.46		

Физико-химические характеристики синтезированных соединений

Соединения **2а**–е представляют собой бесцветные кристаллические вещества (табл. 1). В их ИК спектрах (табл. 2) присутствуют характеристичные сигналы валентных колебаний двух лактамных групп C=O в интервалах 1724–1728 и 1660–1666 см⁻¹. В спектрах ЯМР ¹Н соединений **2а**–**d** присутствует сигнал протона 7а-CH в виде однопротонного синглета в области 7.20–7.52 м. д. Сигналы протонов метиленового звена прохиральной метоксиметильной группы соединений **2b**–**d** представляют собой пару дублетов с геминальной константой 14.7–15.5 Гц.

Стереостроение изоиндола **2а** исследовано методом РСА (рис. 1). Пентациклический кор молекулы имеет ангулярную двускладчатую *О,О-транс*структуру, подобную описанной ранее линеарной *О,О-цис*-структуре [1]. Дигидропиримидиноновый цикл, содержащий асимметрический sp^3 -гибридизованный атом углерода С(8), как и в ранее описанном случае, имеет конформацию слегка искажённая "софа": атомы N(1)–C(11)–C(10)–C(9)–N(2) образуют основание "софы" (плоскость 1, среднее отклонение от плоскости 0.0486 Å), а атомы N(1)–C(8)–N(2) – плоскость 2 спинки "софы" (рис. 2). Угол между плоскостями 1 и 2 равен 138.7°, что на 20° больше соответствующего угла в линеарной молекуле [1].

Аннелированный по связи N(1)–C(8) плоский изоиндольный фрагмент (плоскость 3, среднее отклонение от плоскости составляет 0.0655 Å) располагается под углом 109.6° к плоскости 2. В результате изоиндольный фрагмент оказывается повёрнутым относительно тиенопиридинового фрагмента на 56.3°, что должно исключать сопряжение между их π -системами.

Таблица 2

Спектральные характеристики синтезированных соединений

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)	Масс-спектр, <i>m/z</i> (<i>I</i> _{отн} , %)
2a	1724 (C=O), 1666 (C=O)	2.46 (3H, c, CH ₃); 2.58 (3H, c, CH ₃); 6.39 (1H, yu. π , $J = 7.3$, H-2'); 6.40 (1H, π , $J = 8.1$, H-8); 7.17 (1H, c, H-2); 7.27 (1H, c, 7a-CH); 7.45 (1H, π , $J = 8.1$, H-10); 7.58 (1H, π , $J = 8.1$, H-9); 7.60 (1H, yu. π , $J = 7.3$, H-3'); 7.63 (1H, yu. π , $J = 7.3$, H-5'); 7.88 (1H, π , $J = 8.1$, H-11); 7.93 (1H, yu. π , $J = 7.3$, H-6')	537 [M] ⁺ (100), 508 (64), 334 (27), 319 (52), 291 (78), 264 (48), 204 (37), 191 (62), 133 (32), 102 (20), 90 (68), 76 (84), 63 (73), 50 (44), 39 (73)
2b	1728 (C=O), 1660 (C=O)	2.67 (3H, c, 3-CH ₃); 3.24 (3H, c, OCH ₃); 4.85 (1H, π , $J = 14.7$) μ 4.92 (1H, π , $J = 14.7$, CH ₂ OMe); 6.47 (1H, π , $J = 8.3$, H-8); 6.48 (1H, yui. π , $J = 7.3$, H-2'); 7.20 (1H, c, H-2); 7.48 (1H, π , $J = 8.8$, H-10); 7.51 (1H, c, 7a-CH); 7.61 (1H, yui. π , $J = 7.3$, H-3'); 7.65 (1H, yui. π , $J = 7.3$, H-5'); 7.70 (1H, π . π , $J = 8.3$, $J = 8.8$, H-9); 7.94 (1H, yui. π , $J = 7.3$, H-6'); 8.01 (1H, π , $J = 8.8$, H-11)	567 [M] ⁺ (35), 507 (15), 334 (33), 223 (20), 204 (17), 133 (35), 106 (26), 105 (100), 90 (10), 77 (15), 59 (21), 58 (15), 57 (18), 51 (13), 45 (19), 43 (57), 42 (39), 41 (20)
2c	1726 (C=O), 1662 (C=O)	2.68 (3H, c, 3-CH ₃); 3.32 (3H, c, OCH ₃); 4.87 (1H, π , $J = 15.5$) μ 4.91 (1H, π , $J = 15.5$, CH ₂ OMe); 6.31 (1H, π , $J = 8.1$, H-8); 6.84 (1H, yui. π , $J = 7.3$, H-2'); 7.22 (1H, c, H-2); 7.25–7.33 (1H, yui. π , H-3'); 7.41–7.46 (2H, π , H-10, H-4'); 7.52 (1H, c, 7a-CH); 7.60 (1H, yui. π , $J = 7.5$, H-5'); 7.64 (1H, π . π , $J = 8.1$, $J = 8.3$, H-9); 7.84 (1H, yui. π , $J = 7.5$, H-6'); 7.94 (1H, π , $J = 7.6$, H-11)	441 [M] ⁺ (19), 410 (12), 208 (25), 76 (18), 59 (18), 58 (84), 57 (10), 44 (31), 43 (100), 42 (20), 41 (14), 40 (30), 39 (16)
2d	1728 (C=O), 1665 (C=O)	1.21 (3H, τ , $J = 7.6$, CH_2CH_3); 2.67 (3H, c, 3-CH ₃); 2.68 (2H, κ , $J = 7.6$, CH_2CH_3); 3.31 (3H, c, OCH ₃); 4.87 (1H, π , $J = 14.9$) μ 4.91 (1H, π , $J = 14.9$, CH_2OMe); 6.32 (1H, π , $J = 8.3$, H-8); 6.47 (1H, μ , μ , $J = 8.2$, H-2'); 7.05 (1H, μ , μ , $J = 8.2$, H-3'); 7.19 (1H, c, H-2); 7.42 (1H, π , π , $J = 7.5$, $J = 7.3$, H-10); 7.43 (1H, μ , μ , $J = 7.3$, H-5'); 7.51 (1H, c, 7a-CH); 7.60 (1H, π , π , $J = 8.3$, $J = 7.3$, H-9); 7.65 (1H, π , π , $J = 7.3$, H-6'); 7.93 (1H, π , $J = 7.5$, H-11)	470 [M+H] ⁺ (29), 469 [M] ⁺ (100), 454 (11), 441 (43), 426 (30), 409 (33), 408 (22), 350 (10), 349 (16), 319 (12), 307 (27), 290 (12), 236 (57), 235 (15), 130 (14), 78 (15), 76 (13), 58 (13), 43 (27)
2e	1725 (C=O), 1664 (C–O)	2.75 (3H, c, CH ₃); 2.81 (3H, c, CH ₃); 6.45 (1H, π , $J = 8.1$, H-8); 6.66 (1H, ym. π , $J = 8.3$, H-2'); 7.20 (1H, c, 7a-CH); 7.30 (1H, ym. π , $J = 8.3$, H-3'); 7.45 (1H, π , $J = 8.1$, H-10); 7.53 (1H, π , $J = 8.1$, H-9); 7.70 (1H, ym. π , $J = 8.5$, H-5'); 7.78 (1H, ym. π , $J = 8.5$, H-6'); 7.88 (1H, π , $J = 8.1$, H-11)	527 [M(³⁷ Cl ⁸¹ Br)] ⁺ (12), 525 [M(³⁵ Cl ⁸¹ Br, ³⁷ Cl ⁷⁹ Br)] ⁺ (65), 523 [M(³⁵ Cl ⁷⁹ Br)] ⁺ (40), 489 (43), 487 (45), 445 (23), 443 (70), 372 (89), 370 (100), 269 (34), 267 (35), 105 (23), 104 (56), 81 (68), 79 (71), 42 (35)

3c	3427 (NH),	2.53 (3H, c, 7-CH ₃); 3.36 (3H, c, OCH ₃); 4.70 (1H, π , $J = 14.0$) μ 459 [M] ⁺ (12), 444 (11), 443 (13), 442 (100), 441 (45), 426 (50), 425 (18), 424 (12), 412 (20), 4
	1705 (C=O)	$\begin{array}{c} 4.83 (1H, \pi, J = 14.0, C\underline{H}_{2}OMe); 7.16 (1H, \pi, J = 5.8, 2-CH); 7.21-(22), 415 (10), 412 (24), 398 (27), 383 (12), 382 (14), 381 (12), 350 (15), 349 \\ 7.26 (2H, M, H Ar); 7.36-7.45 (4H, M, H Ar); 7.54-7.58 (2H, M, (18), 339 (14), 338 (35), 335 (16), 334 (12), 323 (26), 317 (19), 307 (33), 306 \\ H Ar); 7.66 (1H, \pi, J = 5.8, NH); 7.85 (1H, \pi, J = 7.3, H-6 Ar); (13), 291 (11), 290 (13), 289 (12), 235 (30), 224 (17), 219 (13), 208 (49), 204 \\ 13.50 (1H, c, COOH) \\ \end{array}$
3f	3290 (NH), 1709 (C=O)	2.68 (3H, c, 7-CH ₃); 3.22 (3H, c, OC <u>H₃</u>); 3.90 (1H, π , $J = 15.4$) μ 432 [M(⁸¹ Br) – H ₂ – C ₇ H ₇ – CO] ⁺ (20), 430 [M(⁷⁹ Br) – H ₂ – C ₇ H ₇ – CO] ⁺ (18), 5.36 (1H, π , $J = 15.4$, NC <u>H₂</u> Ph); 4.78 (1H, π , $J = 13.2$) μ 4.92 (1H, 133 (19), 101 (18), 92 (13), 91 (100), 81 (10), 65 (17), 63 (10), 60 (11), 59 (52), π , $J = 13.2$, C <u>H₂</u> OMe); 6.78 (1H, π , $J = 3.7$, 2-CH); 7.23–7.39 (6H, N, H, H Ph); 7.42–7.45 (2H, M, H Ar); 7.56 (1H, π , $J = 8.1$, H-3 Ar); 8.01 (1H, π , $J = 8.1$, H-6 Ar); 13.39 (1H, c, COOH)
3g	3421 (NH), 1705 (C=O)	1.12 (3H, T , $J = 7.3$, CH_2CH_3); 2.39 (3H, c, $FurCH_3$); 2.57 (2H, κ , [585 [M] ⁺ (1), 567 (19), 540 (11), 539 (14), 447 (61), 420 (14), 333 (26), 133 $J = 7.3$, CH_2CH_3); 6.39 (1H, π , $J = 4.3$, H Fur); 6.50 (1H, π , $J = 6.0$, (14), 132 (45), 130 (15), 125 (19), 113 (12), 112 (11), 110 (16), 107 (31), 105 (2-CH); 7.07 (2H, π , $J = 7.9$, H ArEt); 7.15 (1H, π , $J = 4.3$, H Fur); (58), 104 (14), 102 (21), 98 (36), 95 (33), 94 (25), 91 (55), 89 (25), 85 (49), 84 (7.17-7.22 (2H, m , H ArCOOH); 7.30 (2H, π , $J = 7.9$, H ArEt); 7.37– (98), 83 (44), 79 (60), 77 (100), 71 (54), 69 (92), 58 (96), 55 (93), 43 (92), 42 (7.63 (4H, m , NH, H Ph); 7.91 (1H, π , $J = 7.8$, H-3 ArCOOH); 8.00 (1H, c, H-8); 8.16 (1H, π , $J = 7.9$, H-6 ArCOOH); 8.22 (2H, π , $J = 8.6$, H Ph); 10.13 (1H, c, COOH)
4f	3213 (NH), 1722 (C=O), 1666 (C=O)	2.80 (3H, c, 3-CH ₃); 3.06 (3H, c, OCH ₃); 4.78 (1H, π , $J = 12.5$) μ [445 [M(⁸¹ Br)] ⁺ (97), 443 [M(⁷⁹ Br)] ⁺ (100), 430 (12), 428 (15), 414 (70), 412 (4.98 (1H), π , $J = 12.5$, CH ₂ OMe); 6.78 (1H, π , $J = 2.9$, 7a-CH); (73), 386 (17), 384 (18), 371 (11), 369 (11) (7.62–7.77 (2H, M, H Ar); 7.78–8.00 (2H, M, H Ar); 9.45 (1H, π , $J = 2.9$, NH)
4g	3296 (NH), 1713 (C=O), 1655 (C=O)	2.42 (3H, c, FurCH ₃); 6.48 (1H, μ , $J = 7.3$, 7a-CH); 7.15 (1H, μ , 463 [M] ⁺ (0.5), 435 (11), 421 (18), 420 (100), 405 (11), 377 (29), 350 (14), 297 $J = 3.6$, H-3 Fur); 7.35 (1H, μ , $J = 3.6$, H-4 Fur); 7.45–7.64 (2H, M, (22), 295 (26), 45 (11), 44 (19), 43 (36), 42 (13), 41 (17) H-2, H Ar); 7.65–8.29 (8H, M, H Ar); 9.58 (1H, μ , $J = 7.3$, NH)
5h	3420 (NH), 1732 (C=O), 1659 (C=O)	2.36 (3H, c, FurC <u>H</u> ₃); 6.43 (2H, π , J = 3.6, H Fur); 6.47 (1H, π , J = 5.9, 463 [M] ⁺ (14), 447 (16), 59 (60), 58 (72), 44 (57), 43 (100), 42 (38), 41 (13), 40 (12b-CH); 7.51 (1H, c, H-2); 7.61-7.77 (3H, M, H Ar); 7.83-8.03 (4H, M, (24), 39 (43), 38 (11), 37 (19) (14), 47 (16), 59 (60), 58 (72), 44 (57), 43 (100), 42 (38), 41 (13), 40 (12b-CH); 7.51 (1H, c, H-2); 7.61-7.77 (3H, M, H Ar); 7.83-8.03 (4H, M, (24), 39 (43), 38 (11), 37 (19) (14), 47 (16), 59 (60), 58 (72), 44 (57), 43 (100), 42 (38), 41 (13), 40 (12b-CH); 7.51 (1H, c, H-2); 7.61-7.77 (3H, M, H Ar); 7.83-8.03 (4H, M, (24), 39 (43), 38 (11), 37 (19) (14), 47 (16), 59 (16), 58 (17), 43 (100), 42 (18), 41 (13), 40 (12b-CH); 7.51 (1H, c, H-2); 7.61-7.77 (3H, M, H Ar); 7.83-8.03 (4H, M, (24), 39 (43), 38 (11), 37 (19) (14), 44 (15),
5i 1913	3222 (NH), 1756 (C=O), 1672 (C=O)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Рис. 1. Молекулярная структура соединения 2а

Рис. 2. Эволюция сигналов в спектрах ЯМР ¹Н соединения **2d** при изменении температуры от 24 до 150 °C (приведена слабопольная часть спектров; k – константа скорости вырожденного процесса вращения арильного заместителя вокруг экзоциклической связи C–N)

Рис. 3. Необычные межмолекулярные водородные связи в кристалле соединения **2a** с участием атома водорода связи $C(sp^3)$ –H

Фенильный заместитель у атома азота N(2) развёрнут практически перпендикулярно плоскости 1 (угол между плоскостями 1 и фенильного заместителя равен 84.6°), что вообще исключает сопряжение *n*-электронов атома азота N(2) с ароматической π-системой заместителя.

Такая молекулярная структура со специфическим расположением фенильного заместителя и изоиндольного фрагмента Е приводит к попаданию атома водорода H(24) (H-2' согласно нумерации IUPAC на рис. 2) и в меньшей степени атома H(23) (H-3') в область экранирования цикла Е. Атом водорода H(25) (H-6', рис. 2), напротив, попадает в области дезэкранирования карбонильной группы и неподелённой пары атома азота, что должно чётко проявляться в спектрах ЯМР ¹Н (табл. 2 и рис. 2) в смещении сигналов атомов водорода H-2' и H-6' соответственно в сильное и слабое поля. Действительно, в области ароматических протонов (табл. 2 и рис. 2, спектр соединения 2d при 24 °C), наряду с узкими синглетами сигналов протонов H-2 и 7а-CH и четырьмя типичными сигналами (два дублета и два триплета) АВСД-системы протонов цикла Е, наблюдаются четыре уширенных дублетных сигнала атомов водорода *пара*-дизамещённого бензольного цикла F. Уширение этих сигналов, возможно, связано не столько с низкой скоростью проворачивания цикла F по эндоциклической связи C-N, сколько с осцилляцией цикла F относительно этой связи. Обращает на себя внимание положение сигналов атомов водорода H-8 и H-2': они находятся в более сильном поле спектра 6.3–6.6 м. д., то есть эти атомы действительно находятся в областях (конусах) экранирования прилежащих ароматических циклов E и F. C ростом температуры происходит эволюция сигналов орто- и мета-атомов водорода цикла F (типичный пример температурной эволюции сигналов в спектрах ЯМР ¹Н соединения 2d представлен на рис. 2): *мета*-протоны при температурах выше 130 °C формируют двупротонный дублет в области 7.2–7.3 м. д., пара дублетных сигналов орто-протонов коалесцирует в плохо разрешённый даже при 150 °C двупротонный сигнал в области 7.0–7.1 м. д. Достигнуть полной эволюции сигналов орто-протонов в двупротонный дублет, к сожалению, не удалось, что связано с ограничениями нагревательной системы спектрометра ЯМР и близостью этой температуры к температуре кипения растворителя (ДМСО-d₆), в котором проводились эксперименты. Варьированием значений констант скоростей обмена индикаторных сигналов протонов цикла F симулировались теоретические спектры, которые сопоставлялись с температурно-зависимыми экспериментальными спектрами. Рассчитанные значения свободной энергии активации внутримолекулярного вращения $\Delta G^{\#}$ в молекулах соединений **2a**,**d**,**e** равны соответственно 66.4 \pm 5.2, 65.8±5.1 и 63.4±4.8 кДж/моль.

Отметим также образование необычной межмолекулярной водородной связи в упаковке молекул **2a** в кристалле (рис. 3). В кристаллической решётке молекулы располагаются двумя чередующимися последовательными слоями, в которых молекулы, назовём их так, четных слоёв строго параллельны друг другу, а параллельные друг другу молекулы нечётных слоёв слегка повёрнуты по отношению к молекулам чётных слоёв, что обеспечивает одина-ковые водородные связи между молекулами соседних слоёв. В межмолекулярной водородной связи участвуют атом водорода sp^3 -гибридизованного асимметрического центра H(8) одной молекулы и атом кислорода амидной группы пятичленного лактамного цикла O(1) другой молекулы (рис. 1). Параметры водородной связи: межатомные расстояния O(1B)…H(8B) и

O(1B)…C(8) равны соответственно 2.290 и 3.144 Å, угол O(1B)…H(8B)–C(8) равен 124°.

Таким образом, нами изучено взаимодействие вторичных 3-аминотиено-[2,3-*b*]пиридинкарбоксамидов с формилбензойной кислотой, установлено влияние заместителя у амидного атома азота на направление вторичной циклизации. Исследованная реакция представляет собой удобный метод синтеза конденсированных производных изоиндолдиона, содержащих тиено[2,3-*b*]пиридиновый фрагмент.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Perkin Elmer Spectrum Two с использованием насадки НПВО. Спектры ЯМР ¹Н зарегистрированы на приборе Agilent 400/54 (400 МГц), эксперименты по динамическому ЯМР выполнены на спектрометре JEOL JNM-ECS (400 МГц). Растворитель для всех спектров ЯМР – ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записаны на спектрометре Kratos MS-30 с применением прямого ввода образца в ионный источник (ионизация ЭУ, 70 эВ, 60–180 °С). Элементный анализ выполнен на CHN-анализаторе Hewlett-Packard 185В. Температуры плавления определены на приборе Stuart SPM 30 и не исправлены. Ход реакций и чистоту полученных соединений контролировали методом TCX на пластинах Silufol UV-254, элюент ацетон–диоксан–аммиак, 9:9:2, проявитель пары иода и/или УФ свет.

Для изучения динамики внутреннего вращения в молекулах **2a,d,e** проведена запись спектров ЯМР ¹Н при различных температурах, характеристики индикаторных сигналов протонов *пара*-дизамещённого бензольного цикла извлекали из экспериментальных спектров и аппроксимированы набором синглетов по методу наименьших квадратов (МНК) в программе Specmanager из пакета ACDLabs 12. Затем по полученным данным в программе gNMR v4.1 моделировали только область индикаторных сигналов и конвертировали в спектр, который далее использовали как эталон экспериментального спектра.

Для моделирования теоретического спектра в отсутствие обмена были использованы спектры, полученные при 24 °C, в которых линии индикаторных сигналов несколько уширены (~7 Гц) из-за наличия обмена. Предполагая отсутствие обмена, ширина линий была установлена равной 3 Гц. Далее варьированием констант скоростей обмена при фиксированных химических сдвигах и ширине линии на полувысоте спектра в отсутствие обмена получены теоретические спектры, которые сопоставлены по МНК с температурно-зависимыми эталонными спектрами.

Полученное соответствие вычисленных и эталонных спектров дало набор констант скоростей и температур, который посредством уравнения Аррениуса преобразован в набор зависимости $\Delta G^{\#}$ от температуры по уравнению Эйринга [8].

Исходные вторичные амиды **1***a*–*i* получены по стандартной методике, описанной в нашей работе [9], взаимодействием эквимолярных количеств соответствующих 2-тиоксо-1,2-дигидропиридин-3-карбонитрилов и амидов хлоруксусной кислоты в присутствии двукратного избытка щёлочи.

3-Амино-*N***-(4-иодфенил)-4,6-диметилтиено[2,3-***b***]пиридин-2-карбоксамид (1а).** Ярко-жёлтые кристаллы, т. пл. 248–249 °С. ИК спектр, v, см⁻¹: 3489 (NH₂), 3331 (NH), 3025 (СН_{аром.}), 1603 (С=О), 806 (С–І). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.52 (3H, с, 4-СН₃); 2.74 (3H, с, 6-СН₃); 6.96 (2H, с, NH₂); 7.05 (1H, с, H-5); 7.54 (2H, д, *J* = 8.8, H Ar); 7.65 (2H, д, *J* = 8.8, H Ar); 9.43 (1H, с, CONH). Масс-спектр, *m/z* (*I*_{отн}, %): 423 [M]⁺ (10), 219 (26), 205 (100), 177 (32), 150 (19), 133 (20), 91 (23), 77 (10), 64 (18), 38 (15). Найдено, %: С 45.47; Н 3.29; N 9.96. С₁₆Н₁₄IN₃OS. Вычислено, %: С 45.40; H 3.33; N 9.93.

3-Амино-*N***-(4-иодфенил)-6-метил-4-(метоксиметил)тиено**[**2,3-***b*]пиридин-2-карбоксамид (**1b**). Светло-жёлтые кристаллы, т. пл. 222–223 °C. ИК спектр, v, см⁻¹: 3427

(NH₂), 3327 (NH), 3030 (CH_{аром}), 1602 (C=O), 804 (C–I). Спектр ЯМР ¹Н, δ , м. д. (*J*, Ги): 2.58 (3H, с, 6-CH₃); 3.29 (3H, с, OCH₃); 4.85 (2H, с, CH₂OMe); 7.11 (2H, с, NH₂); 7.27 (1H, с, H-5); 7.55 (2H, д, *J* = 8.8, H Ar); 7.65 (2H, д, *J* = 8.8, H Ar); 9.53 (1H, с, CONH). Масс-спектр, *m*/*z* (*I*_{отн}, %): 453 [M]⁺ (13), 235 (100), 219 (39), 203 (47), 192 (12), 175 (52), 164 (16), 147 (25), 131 (22), 104 (12), 91 (29), 76 (11), 64 (23), 58 (33), 38 (16). Найдено, %: С 45.08; Н 3.61; N 9.36. C₁₇H₁₆IN₃O₂S. Вычислено, %: С 45.04; H 3.56; N 9.27.

3-Амино-6-метил-4-метоксиметил-*N***-фенилтиено**[**2**,**3**-*b*]пиридин-2-карбоксамид (1c). Светло-жёлтые кристаллы, т. пл. 148–149 °С. ИК спектр v, см⁻¹: 3438 (NH₂), 3325 (NH), 3015 (СН_{аром.}), 1612 (С=О). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.87 (3H, с, 4-СН₃); 3.27 (3H, с, ОСН₃); 4.78 (1H, с, С<u>Н</u>₂ОМе); 6.55 (2H, с, NH₂); 7.23 (1H, с, H-5); 7.28–7.35 (2H, м, H Ar); 7.39–7.44 (1H, м, H Ar); 7.49–7.55 (2H, м, H Ar); 9.48 (1H, с, CONH). Масс-спектр, *m*/*z* (*I*_{отн}, %): 327 [М]⁺ (35), 312 (11), 235 (100), 234 (42), 206 (18), 203 (35), 175 (431), 136 (34), 95 (19), 45 (41), 43 (37), 42 (48), 41 (17). Найдено, %: С 62.43; H 5.17; N 12.97. С₁₇Н₁₇N₃O₂S. Вычислено, %: С 62.37; H 5.23; N 12.83.

3-Амино-6-метил-4-метоксиметил-*N***-(4-этилфенил)тиено[2,3-***b***]пиридин-2-карбоксамид (1d)**. Светло-жёлтые кристаллы, т. пл. 148–149 °С. ИК спектр v, см⁻¹: 3430 (NH₂), 3320 (NH), 3025 (CH_{аром.}), 1600 (C=O). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.18 (3H, т, *J* = 7.6, CH₂C<u>H</u>₃); 2.50 (3H, с, 6-CH₃); 2.58 (2H, к, *J* = 7.6, C<u>H</u>₂CH₃); 3.31 (3H, с, OCH₃); 4.80 (1H, с, C<u>H</u>₂OMe); 7.01 (2H, с, NH₂); 7.16 (2H, д, *J* = 8.5, H Ar); 7.32 (1H, с, H-5); 7.58 (2H, д, *J* = 8.5, H Ar); 9.40 (1H, с, CONH). Масс-спектр, *m*/*z* (*I*_{отн}, %): 355 [M]⁺ (50), 237 (11), 235 (100), 203 (25), 175 (21), 121 (29), 106 (13), 59 (32), 58 (13), 57 (17), 43 (31), 42 (18). Найдено, %: C 64.25; H 5.90; N 11.89. C₁₉H₂₁N₃O₂S. Вычислено, %: C 64.20; H 5.95; N 11.82.

3-Амино-5-бромо-4,6-диметил-*N***-(4-хлорофенил)тиено[2,3-***b***]пиридин-2-карбоксамид (1е). Светло-жёлтые кристаллы, т. пл. 178–179 °С. ИК спектр v, см⁻¹: 3432 (NH₂), 3318 (NH), 3015 (СН_{аром.}), 1612 (С=О). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 2.60 (3H, с, 6-СН₃); 2.74 (3H, с, 4-СН₃); 6.98 (2H, с, NH₂); 7.34 (2H, д,** *J* **= 8.2, H Ar); 7.52 (2H, д,** *J* **= 8.5, H Ar); 9.52 (1H, с, CONH). Масс-спектр,** *m/z* **(***I***_{отн}, %): 413 [M(³⁷Cl⁸¹Br)]⁺ (6), 411 [M(³⁵Cl⁸¹Br, ³⁷Cl⁷⁹Br)]⁺ (51), 408 [M(³⁵Cl⁷⁹Br)]⁺ (30), 331 (7), 329 (20), 284 (97), 284 (11), 283 (100), 282 (13), 256 (24), 254 (25), 213 (21), 211 (15), 175 (31), 128 (17), 126 (49), 81 (17), 79 (15), 45 (51), 41 (38). Найдено, %: С 46.47; Н 3.07; N 10.29. С₁₆H₁₃BrClN₃OS. Вычислено, %: С 46.79; Н 3.19; N 10.23.**

3-Амино-*N***-бензил-5-бромо-6-метил-4-(метоксиметил)тиено**[**2,3***-b*]пиримидин-**2-карбоксамид (1f)**. Ярко-жёлтые кристаллы, т. пл. 174–175 °С. ИК спектр, v, см⁻¹: 3400 (NH), 3297 (асимм. NH), 3227 (симм. NH), 1603 (С=О). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 2.74 (3H, с, 6-CH₃); 3.40 (3H, с, OCH₃); 4.43 (2H, д, *J* = 5.9, NHC<u>H</u>₂Ph); 5.06 (2H, с, C<u>H</u>₂OMe); 6.93 (2H, с, NH₂); 7.18–7.28 (3H, м, H Ph); 7.82 (2H, д, *J* = 7.4, H Ph); 8.40 (1H, д, *J* = 5.9, CONH). Масс-спектр, *m/z* (*I*_{отн}, %): 421 [M(⁸¹Br)]⁺ (82), 419 [M(⁷⁹Br)]⁺ (83), 340 (23), 330 (65), 328 (67), 313 (38), 299 (74), 286 (56), 255 (24), 203 (18), 174 (22), 106 (57), 91 (100), 76 (20), 65 (28), 51 (18), 39 (18). Найдено, %: C 51.40; H 4.27; N 9.92. C₁₈H₁₈BrN₃O₂S. Вычислено, %: C 51.44; H 4.32; N 10.00.

3-Амино-4-(5-метилфуран-2-ил)-6-фенил-*N***-(4-этилфенил)тиено[2,3-***b***]пиридин-2-карбоксамид (1g). Красные кристаллы, т. пл. 179–180 °С. ИК спектр, v, см⁻¹: 3450 (асимм. NH), 3292 (симм. NH), 3325 (симм. NH), 3036 (СН_{аром.}), 1633 (С=О). Спектр ЯМР ¹H, δ, м. д. (***J***, Гп): 1.18 (3H, т,** *J* **= 7.3, CH₂CH₃); 2.47 (3H, с, FurC<u>H</u>₃); 2.57 (2H, к,** *J* **= 7.3, C<u>H</u>₂CH₃); 6.45 (1H, д,** *J* **= 2.9, H-4 Fur); 6.99 (2H, с, NH₂); 7.17 (2H, д,** *J* **= 8.8, H Ar); 7.24 (1H, д,** *J* **= 2.9, H-3 Fur); 7.47–7.63 (5H, м, H Ar); 8.01 (1H, с, H-5); 8.23 (2H, д,** *J* **= 8.1, H Ar); 9.48 (1H, с, CONH). Масс-спектр,** *m***/***z* **(I_{OTH}, %): 453 [M]⁺ (3), 333 (100), 261 (7), 121 (5), 106 (6), 77 (7), 43 (10). Найдено, %: С 71.44; H 5.05; N 9.20. С₂₇H₂₃N₃O₂S. Вычислено, %: С 71.50; H 5.11; N 9.26.**

3-Амино-4-(5-метилфуран-2-ил)-*N***-[(5-метилфуран-2-ил)метил]-6-фенилтиено-**[**2,3-***b*]пиридин-**2-карбоксамид (1h)**. Ярко-жёлтые кристаллы, т. пл. 132–133 °С. ИК спектр, v, см⁻¹: 3412, 3306, 3227, 3036, 1645, 1598, 1465, 1383, 1247, 1198, 1154, 1080, 987, 946. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.25 (3H, с, CH₂FurC<u>H</u>₃); 2.38 (3H, с, FurC<u>H</u>₃); 4.52 (2H, д, J = 5.3, NHC<u>H</u>₂Fur); 5.98 (1H, д, J = 3.0, H FurMe); 6.13 (1H, д, J = 3.0, H FurMe); 6.34 (1H, д, J = 3.3, H Fur); 6.98 (2H, уш. с, NH₂); 7.10 (1H, д, J = 3.3, H Fur); 7.18 (1H, с, H-5); 7.56–7.63 (3H, м, H Ph); 8.12 (2H, д, J = 8.1, H Ph); 8.36 (1H, т, J = 5.3, CONH). Macc-спектр, m/z (I_{OTH} , %): 443 [M]⁺ (2), 440 (11), 333 (100), 290 (67), 95 (83). Найдено, %: С 67.81; H 4.67; N 9.59. C₂₅H₂₁N₃O₃S. Вычислено, %: С 67.70; H 4.77; N 9.47

3-Амино-5-бромо-6-метил-*N*-**[(5-метилфуран-2-ил)метил]-4-метоксиметилтиено-**[**2,3-***b*]**пиридин-2-карбоксамид (1і)**. Жёлтые кристаллы, т. пл. 135–136 °С. ИК спектр, v, см⁻¹: 3407, 3303, 3230, 3035, 1641, 1603, 1543, 1463, 1379, 1292, 1259, 1193, 1161, 1084, 999, 947. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.23 (3H, c, FurC<u>H</u>₃); 2.73 (3H, c, 6-CH₃); 3.40 (3H, c, OCH₃); 4.35 (2H, д, *J* = 5.1, NHC<u>H</u>₂Fur); 5.05 (2H, c, C<u>H</u>₂OMe); 5.96 (1H, д, *J* = 3.0, H Fur); 6.11 (1H, д, *J* = 3.0, H Fur); 6.93 (2H, уш. с, NH₂); 8.26 (1H, т, *J* = 5.1, CONH). Масс-спектр, *m*/*z* (*I*_{0тн}, %): 425 [M (⁸¹Br)]⁺ (23), 423 [M (⁷⁹Br)]⁺ (23), 330 (89), 328 (90), 315 (10), 313 (10), 110 (54), 95 (100), 43 (20), 41 (12). Найдено, %: C 48.21; H 4.37; N 9.79. C₁₇H₁₈BrN₃O₃S. Вычислено, %: C 48.12; H 4.28; N 9.90.

7-(4-Иодфенил)-1,3-диметил-7,7а-дигидропиридо[3'',2'':4',5']тиено[2',3':5,6]пиримидо[2,1-*a*]изоиндол-6,12-дион (2а). Смесь 1.20 г (2.8 ммоль) аминоамида 1а, 0.46 г (3.1 ммоль) *орто*-формилбензойной кислоты и 20 мг *p*-TsOH в 20 мл PhMe кипятят в течение 30–35 ч. Раствор упаривают в вакууме досуха, полученный остаток перекристаллизовывают из ДМФА с активированным углём. Выход 0.80 г (53%), бесцветные кристаллы.

Соединения 2b-е получают аналогично.

2-(7-Метил-9-метоксиметил-4-оксо-3-фенил-1,2,3,4-тетрагидропиридо[3',2':4,5]тиено[3,2-d]пиримидин-2-ил)бензойная кислота (3с). Смесь 0.98 г (3.0 ммоль) аминоамида **1с**, 0.46 г (3.1 ммоль) *орто*-формилбензойной кислоты и 20 мг *p*-TsOH в 20 мл PhMe кипятят в течение 10 ч. Реакционную смесь охлаждают, промывают 1 н. раствором NaOH (2×10 мл) и упаривают в вакууме. Сухой остаток растворяют в 5 мл ацетона и хроматографируют на колонке (внутренний диаметр 1 см, высота слоя силикагеля 28 см, элюент ацетон–диоксан, 1:1), собирают фракцию, содержащую соединение **3с** (R_f 0.32, ацетон–диоксан, 1:1, проявитель – раствор бромфенолового синего). Растворитель упаривают в вакууме. Выход 70 мг (5%).

2-(3-Бензил-8-бром-7-метил-9-метоксиметил-4-оксо-1,2,3,4-тетрагидропиридо-[3',2':4,5]тиено[3,2-*d*]пиримидин-2-ил)бензойная кислота (3f). Смесь 1.0 г (2.6 ммоль) аминоамида 1f, 0.4 г (2.8 ммоль) *орто*-формилбензойной кислоты и 20 мг *p*-TsOH в 20 мл PhMe кипятят в течение 14 ч. Реакционную смесь охлаждают до комнатной температуры, осадок отфильтровывают и перекристаллизовывают из ДМФА с углём. Выход 0.86 г (59%), светло-жёлтые кристаллы.

Соединение 3g получают аналогично.

2-Бром-3-метил-1-метоксиметил-7,7а-дигидропиридо[3",2":4',5']тиено[2',3':5,6]пиримидино[2,1-*а***]изоиндол-6,12-дион (4f). Смесь 0.5 г (0.9 ммоль) кислоты 3f и 10 мл ПФК нагревают при 100–120 °С в течение 3 ч. Затем реакционную смесь выливают в 100 мл H₂O и нейтрализуют сухим NaHCO₃ до pH ~7. Образовавшийся осадок отфильтровывают и перекристаллизовывают из ДМФА с углём. Выход 0.24 г (60%), бесцветные кристаллы.**

Соединение 4g получают аналогично.

1-(5-Метилфуран-2-ил)-3-фенил-12b,13-дигидропиридо[3'',2'':4',5']тиено-[3',2':4,5]пиримидо[2,1-а]изоиндол-6,8-дион (5h). К раствору 2.4 г (5.4 ммоль) аминоамида **1h** в 40 мл PhMe добавляют 1.0 г (6.4 ммоль) *орто*-формилбензойной кислоты и 20 мг *p*-TsOH. Реакционную смесь кипятят в течение 30 ч, охлаждают до комнатной температуры, образовавшийся осадок отфильтровывают и перекристаллизовывают из EtOH с углем. Выход 1.6 г (72%), светло-жёлтые кристаллы.

Соединение 5і получают аналогично.

Рентгеноструктурное исследование соединения 2а. Моноклинные кристаллы соединения 2а ($C_{24}H_{16}IN_3O_2S$, *M* 537.38) выращены из этанола (размеры кристалла 0.45 × 0.35 × 0.20 мм). Параметры элементарной ячейки: *a* 10.1787(4), *b* 17.2338(6),

с 12.6632(5) Å; β 110.345(1)°; V 2082.77(14) Å³; пространственная группа $P2_{1/c}$; Z 4; $d_{\text{выч}}$ 1.714 г/см³. Параметры элементарной ячейки и интенсивности 6054 независимых отражений с $I > 3\sigma(I)$ определены на автоматическом дифрактометре Enraf-Nonius CAD4 (МоКа-излучение, β -фильтр, $\theta/2\theta$ -сканирование до $2\theta_{\text{max}}$ 30°). Структура расшифрована прямым методом с помощью комплекса программ SHELXTL [10] и уточнена в анизотропном (изотропном для атомов водорода) приближении до факторов расходимости R_1 0.0249, ωR_2 0.0580. Полная кристаллографическая информация депонирована в Кембриджском банке структурных данных (депонент ССDC 1031335).

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (код проекта 25.15).

СПИСОК ЛИТЕРАТУРЫ

- 1. V. K. Vasilin, D. Yu. Lukina, T. A. Stroganova, G. D. Krapivin, *Chem. Heterocycl. Compd.*, **50**, 1486 (2014). [Химия гетероцикл. соединений, 1614 (2014).]
- S. K. Meegalla, G. J. Stevens, C. A. McQueen, A. Y. Chen, C. Yu, L. F. Liu, L. R. Barrows, E. J. LaVoie, *J. Med. Chem.*, 37, 3434 (1994).
- 3. S. N. Khattab, S. Y. Hassan, A. El-Faham, A. M. M. El Massry, A. Amer, J. *Heterocycl. Chem.*, 44, 617 (2007).
- V. V. Lyaskovskyy, Z. V. Voitenko, V. A. Kovtunenko, Chem. Heterocycl. Compd., 43, 253 (2007). [Химия гетероцикл. соединений, 323 (2007).]
- K. S. Kumar, P. M. Kumar, K. A. Kumar, M. Sreenivasulu, A. A. Jafar, D. Rambabu, G. R. Krishna, C. M. Reddy, R. Kapavarapu, K. Shivakumar, K. Krishna Priya, K. V. L. Parsa, M. Pal, *Chem. Commun.*, 5010 (2011).
- 6. V. K. Vasilin, D. Yu. Lukina, T. A. Stroganova, G. D. Krapivin, Chem. Heterocycl. Compd., 49, 1530 (2014). [Химия гетероцикл. соединений, 1650 (2013).]
- T. A. Stroganova, V. K. Vasilin, E. A. Zelenskaya, V. M. Red'kin, G. D. Krapivin, Synthesis, 19, 3088 (2008).
- М. Ногради, Стереохимия. Основные понятия и приложения, Мир, Москва, 1984, с. 175.
- 9. Е. А. Кайгородова, А. А. Осипова, М. М. Липунов, Г. Д. Крапивин, Изв. вузов. Химия и хим. технология, 47, 107 (2004).
- 10. G. M. Sheldrick, *SHELXL-97: Program for the Solution of Crystal Structures*. University of Göttingen, 1997.

¹ Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия e-mail: krapivingd@mail.ru Поступило 31.10.2014

² Южный федеральный университет, ул. Зорге, 7, Ростов-на-Дону 344090, Россия e-mail: pgmorozov@sfedul.ru