## Ю. П. Семенюк<sup>1</sup>, А. С. Кочубей<sup>1</sup>, П. Г. Морозов<sup>1\*</sup>, О. Н. Буров<sup>1</sup>, М. Е. Клецкий<sup>1</sup>, С. В. Курбатов<sup>1</sup>

## РЕАКЦИИ [3+2] ЦИКЛОПРИСОЕДИНЕНИЯ К ИНДОЛИЛ-И ПИРРОЛИЛПРОИЗВОДНЫМ ДИНИТРОБЕНЗОФУРАЗАНА

Реакция 5,7-динитро-4-хлорбензофуразана с производными индола и пиррола, протекающая по механизму  $S_NAr-S_EAr$ , приводит к образованию дигетарилов с внутримолекулярным переносом заряда. Разработан метод аннелирования пиррольного и дигидропиррольного цикла к нитробензофуразановому фрагменту путём присоединения нестабилизированного азометин-илида к связи C=C динитробензофуразана. Структура производных нитробензофуразана исследована методами PCA, спектроскопии ЯМР и квантово-химических расчётов *ab initio* и методом DFT.

Ключевые слова: азометин-илид, динитробензофуразан, индол, пиррол, [3+2] циклоприсоединение, РСА, суперэлектрофил, *ab initio*, DFT, B3LYP/6-31G\*\*.

4,6-Динитробензофуроксан (1а) и 4,6-динитробензофуразан (2а) являются суперэлектрофильными [1, 2] гетероароматическими структурами, образующими с N-, О- и S-нуклеофилами высокостабильные анионные [3–5] и биполярные спироциклические  $\sigma$ -комплексы [6–9] мейзенгеймеровского типа, а также внутримолекулярные  $\pi$ -комплексы с контактным переносом заряда [10]. Ранее нами было установлено, что хлорпроизводные 1b и 2b в мягких условиях реагируют с  $\pi$ -избыточными азотистыми гетероциклами (пирролами, индолизинами) с образованием дигетарилов типа 3 (для реакции с индолизинами) [11–13].



Строение и характерные реакции нейтральных ароматических суперэлектрофилов – нуклеофильное замещение и присоединение, реакции Дильса– Альдера с прямыми и обращёнными электронными требованиями, присоединение по Михаэлю и рециклизации с участием *N*-оксидного атома кислорода, а также экспериментальные методы количественной оценки электрофильности – обсуждаются в монографии [14], обзорах [15–18] и цитированной там литературе. Анализ этих литературных данных показывает, что реакционная способность производных динитробензофуразана остаётся существенно недооценённой и малоизученной по сравнению с производными динитробензофуроксана. На наш взгляд, это связано лишь с трудностями препаративного синтеза как 4,6-динитробензофуразана (**2a**), так и его хлорпроизводного **2b**. При этом следует отметить, что отсутствие *N*-оксидного атома кислорода позволяет избежать оксидной таутомерии  $N_1 \rightleftharpoons N_3$  и перегруппировок типа Боултона–Катрицкого [1], что делает суперэлектрофил **2** более удобным объектом для изучения реакций нуклеофильного замещения и циклоприсоединения.

В данной работе мы сообщаем о синтезе и строении новых производных индола и пиррола, содержащих динитробензофуразановый фрагмент, а также о реакциях [3+2] циклоприсоединения к ним нестабилизированных азометинилидов.

Выбор именно индолил- и пирролилпроизводных в качестве диполярофилов мотивируется двумя основными причинами. Во-первых, известно, что обе связи C=C шестичленного цикла нитробензоксадиазолов типа **1a** и **2a** активно вступают в реакции циклоприсоединения [15, 16]. Введение в положение 7 объёмного электронодонорного заместителя резко увеличивает региоселективность циклоприсоединения и направляет атаку азометин-илида исключительно по связи C(6)=C(7). Во-вторых, нитробензоксадиазолы часто находят применение в качестве потенциальных лекарственных веществ – экзогенных источников оксида азота (NO). Наличие в молекулах нитробензоксадиазолов дополнительных фармакофорных индольных или пиррольных фрагментов увеличивает, таким образом, их потенциал для решения задач медицинской химии.

При взаимодействии эквивалентных количеств 5,7-динитро-4-хлорбензофуразана (**2b**) и 1,2-диметилиндола (**4**) в хлороформе при комнатной температуре с высоким выходом образуется окрашенный в интенсивный синий цвет дигетарил **6**.



Формирование новой углерод–углеродной связи происходит в результате реакции  $S_{\rm N}Ar$ – $S_{\rm E}Ar$ , интермедиатом которой является биполярный  $\sigma$ -комплекс Мейзенгеймера–Уэланда **5**. Механизм аналогичной реакции электрофила **1b** с *N*-метилиндолом ранее был установлен нами с помощью кинетических исследований, в том числе с участием дейтерированных производных индола [11]. Дополнительным аргументом может служить препаративное выделение  $\sigma$ -комплекса, соответствующего структуре **5**, который получен при взаимодействии электрофила **1a** и 1,3,5-трис(пиперидин-1-ил)бензола [19].

Мы ввели дигетарил 6 во взаимодействие с образующимся *in situ* из саркозина (7) и формальдегида (8) нестабилизированным азометин-илидом 9.

Результаты реакции зависят от применяемого растворителя. При нагревании в бензоле смеси дигетарила 6, саркозина (7) и параформа с выходом 94% образуется продукт циклоприсоединения 10. При замене бензола на MeCN, вероятно, также образующийся сначала циклоаддукт 10 претерпевает в ходе реакции элиминирование HNO<sub>2</sub> с образованием дигидропиррола 11, а затем окислительную ароматизацию, приводящую к пирролу 12. Реакционная смесь была разделена методом колоночной хроматографии, выход продуктов 11 и 12 составил 29 и 5% соответственно. Важно отметить, что в спектре ЯМР <sup>1</sup>Н циклоаддукта 10 наблюдаются две группы сигналов, близких по химическим сдвигам и практически идентичных по параметрам спинспинового взаимодействия, в соотношении 3:2.



Для выявления вероятных причин образования двух стереоизомеров мы провели РСА дигетарила 6, а также квантово-химические расчёты его геометрических параметров в рамках теории функционала плотности (DFT). Общий вид соединения 6 представлен на рис. 1, а его основные геометрические характеристики в табл. 1.

Вследствие стерических затруднений молекула соединения **6** не может принять планарную форму – диэдральный угол между плоскостями индольного и фуразанового фрагментов по данным расчётов методом DFT составляет 46° (по данным РСА также 46°), что может привести к возникновению атропо-



Рис. 1. Общий вид соединения 6 а) по данным РСА в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью и b) по данным квантово-химических расчётов методом DFT в базисе B3LYP/6-31G\*\* с учётом эффектов сольватации MeCN

Таблица 1

Основные межатомные расстояния (Å) в молекуле соединения 6 по данным PCA и квантово-химических расчётов в MeCN

| Связь       | PCA   | B3LYP/6-31G** | Связь     | PCA   | B3LYP/6-31G** |
|-------------|-------|---------------|-----------|-------|---------------|
| C(7)–N(6)   | 1.457 | 1.445         | C(4)–C(9) | 1.444 | 1.440         |
| C(5) - N(5) | 1.465 | 1.468         | O(3)–C(6) | 2.738 | 2.697         |
| C(6) - C(7) | 1.355 | 1.370         | N(1)–O(2) | 1.392 | 1.379         |
| C(4)–C(5)   | 1.382 | 1.404         | O(2)–N(3) | 1.371 | 1.355         |

изомерии. Нитрогруппа в положении 5 вынужденно развёрнута, по данным расчётов в ацетонитриле, на угол в 32° относительно плоскости фуразанового цикла (43° по данным PCA). Таким образом, расстояние между атомом кислорода нитрогруппы O(3) и атомом углерода C(6) составляет 2.70 Å (2.74 Å по данным PCA), а расстояние между другим атомом кислорода нитрогруппы – O(4) – и атомом C(6) составляет 3.48 Å (3.43 Å по данным PCA).

Реакции полярного циклоприсоединения к асимметричной кратной связи являются процессами концертными, но асинхронными и начинаются с атаки нуклеофильным атомом углерода наиболее электрофильного атома углерода C(6) [17, 18]. Это означает, что различная стерическая доступность атома углерода C(6) для его атаки азометин-илидом с разных сторон плоскости бензофуразанового цикла может влиять как на скорость циклоприсоединения, так и на стабильность образующихся изомерных циклоаддуктов. Канал реакции, в котором атом кислорода расположен дальше от атома C(6) и, следовательно, меньше препятствует приближению азометин-илида, предпочтительнее, чем альтернативная атака с другой стороны плоскости бензофуразана. Иными словами, сближение азометин-илида с диастереофасной плоскостью бензофуразанового цикла (сверху или снизу) перестаёт быть равновероятным и приводит, таким образом, к наблюдаемому соотношению стереоизомеров **10a** и **10b**.

В пользу этого предположения свидетельствуют также данные газофазных квантово-химических расчетов *ab initio* стереоизомерных циклоаддуктов **10a,b** в базисе  $6-31G^{**}$ . Так, при атаке со стороны ближе расположенного атома кислорода O(3) образуется продукт **10b**, на 2.0 ккал/моль менее стабильный, чем продукт **10a**, образующийся при атаке со стороны дальше расположенного атома кислорода O(4). На рис. 2 приведено рассчитанное строение стереоизомерных продуктов циклоприсоединения.

О некопланарном расположении плоскостей бензофуразанового и индольного фрагментов свидетельствует также магнитная неэквивалентность геминальных протонов дигидропиррольного цикла соединения **11**. В спектре ЯМР <sup>1</sup>Н каждая пара метиленовых протонов проявляет себя как диастереотопная метка,



*Рис. 2.* Структуры стереоизомерных циклоаддуктов *a*) **10a** и *b*) **10b**, по данным газофазных *ab initio* расчётов в базисе 6-31G\*\*. Межатомные расстояния указаны в ангстремах, валентные углы в градусах

являющаяся индикатором хиральности молекулы. Поскольку в результате элиминирования HNO<sub>2</sub> молекула циклоаддукта лишилась стереогенного углеродного центра, хиральность может быть обусловлена торсионным разворотом двух фрагментов молекулы **11** по связи C(4)–C(9).

В реакции динитрохлорбензофуразана **2b** с *N*-бензилпирролом (**13**) в MeCN при комнатной температуре образуются α- и β-пирролилпроизводные **14** и **15**.



Методом колоночной хроматографии был препаративно выделен и охарактеризован каждый из региоизомеров: фиолетовые ромбические кристаллы соединения 14 (выход 67%) и оранжевые игольчатые кристаллы соединения 15 (выход 11%). Известно, что все протоны пиррольного цикла являются спиново-связанными, при этом константы спин-спинового взаимодействия лежат в весьма узком интервале абсолютных значений (1.3–3.5 Гц) [20], что затрудняет надёжное отнесение сигналов изомеров 14 и 15 в спектрах ЯМР <sup>1</sup>Н. Отнесение региоизомеров было сделано на основании экспериментов NOESY по наличию/отсутствию соответствующих корреляций метиленовых протонов бензильного заместителя с α-протонами пиррольного цикла. На рис. 3 показано строение минорного продукта реакции, окончательно доказанное методом PCA.

Молекула соединения **15** является практически плоской, диэдральный угол между плоскостями пиррольного и бензофуразанового фрагмента составляет 3.6°. Длины основных связей представлены в табл. 2. На наш взгляд, они демонстрируют определенный вклад резонансной структуры с внутримолекулярным переносом заряда, изображённой на рис. 3, в распределение электронной плотности. В динитробензофуразановом фрагменте связь N(6)–C(7) короче связи N(5)–C(5). В пиррольном цикле так же закономерно укорочены связи C(10)–C(11) и N(4)–C(8) по сравнению со связями C(8)–C(9) и N(4)–C(11). Связь C(4)–C(9), соединяющая два гетарильных фрагмента, короче,



Рис. 3. а) Общий вид соединения 15 по данным РСА в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью и b) схема переноса заряда по данным расчётов методом DFT в базисе B3LYP/6-31G\*\*

Таблица 2

| Связь       | Длина, Å | Связь      | Длина, Å |
|-------------|----------|------------|----------|
| N(6)–C(7)   | 1.4509   | N(5)–C(5)  | 1.4779   |
| C(10)–C(11) | 1.3638   | C(8)–C(9)  | 1.3980   |
| N(4)–C(8)   | 1.3477   | N(4)–C(11) | 1.3721   |
| C(4)–C(9)   | 1.4431   | C(5)–C(6)  | 1.4155   |

Длины связей в молекуле соединения 15 по данным РСА

чем стандартная (1.50 Å) [21] связь C(Ar)–C(Ar). Связь C(5)–C(6) несколько укорочена, так же, как и в биполярном спироциклическом  $\sigma$ -комплексе на основе динитробензофуразана (1.390 Å) [9], по сравнению с аналогичной связью в динитробензофуроксане **1a** (1.44 Å) [22].

В соответствии с квантово-химическими расчётами методом DFT, перенос заряда между донорным и акцепторным фрагментом молекулы 15 составляет 0.26 *ē*.

Мы ввели мажорный изомер 14 в реакцию циклоприсоединения с азометинилидом 9. Так же, как и для производного индола 6, в реакции образуются два продукта циклоприсоединения 16 и 17 с выходами 30 и 3% соответственно. Циклоаддукт, сохраняющий нитрогруппу (аналогично производному индола 10), не удалось выделить даже при проведении реакции в бензоле.



Строение дигидропиррола 16 по данным РСА приведено на рис. 4. В отличие от производного 15, пиррольный и бензофуразановый фрагмент дигидропиррола 16 не лежат в одной плоскости, диэдральный угол между ними составляет 46°. Нитрогруппа также развёрнута относительно плоскости шестичленного цикла на угол 65°.



Рис. 4. Общий вид соединения 16 по данным РСА в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

В то же время, продукт полной ароматизации 17 содержит два  $\pi$ -избыточных пиррольных цикла и один  $\pi$ -дефицитный нитробензофуразановый фрагмент и может рассматриваться как триада донор–акцептор–донор (D–A–D). С помощью квантово-химических расчётов методом DFT мы изучили степень переноса заряда от аннелированного и  $\sigma$ -связанного пиррольного цикла на нитробензофуразановый фрагмент молекулы 17. Оказалось, что *N*-бензилпиррольный фрагмент в меньшей степени является донором электронной плотности (0.08  $\bar{e}$ ), по сравнению с аннелированным *N*-метилпиррольным фрагментом (0.21  $\bar{e}$ ).

Таким образом, разработанный нами метод синтеза С-замещённых производных динитробензофуразана в сочетании с реакциями [3+2] циклоприсоединения позволяет получать новые гетероциклические системы, содержащие  $\pi$ -избыточные и  $\pi$ -дефицитные фрагменты, представляющие интерес для медицинской химии [23] в качестве экзогенных доноров оксида азота (NO) – уникального регулятора множества физиологических и патологических процессов в организме человека. Наиболее вероятным источником NO, на наш взгляд, может являться полученный нами 4-(1,2-диметил-1*H*-индол-3-ил)-7-метил-5,8а-динитро-6,7,8,8а-тетрагидро-5аН-[1,2,5]оксадиазоло[3,4-е]изоиндол, обладающий низкой стабильностью в растворах и склонный к самопроизвольному элиминированию молекулы HNO2, являющейся прекурсором оксида азота. Варьируя  $\pi$ -избыточные фрагменты молекул аналогов этого соединения, можно направленно менять её пространственное строение, тем самым делая её более или менее комплементарной сайтам связывания важнейших биомишеней (ферменты, мембранные рецепторы, ионные каналы).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>Н зарегистрированы на спектрометре Bruker DPX-250 (250 МГц) в ацетоне- $d_6$  (соединение 6) и в CDCl<sub>3</sub> (остальные соединения), внутренний стандарт ТМС. Масс-спектры высокого разрешения зарегистрированы на приборе Bruker micrOTOF II, ионизация электрораспылением. Измерения выполнены на положительных ионах (напряжение на капилляре 4500 В). Диапазон сканирования масс 50–3000 Да. Температуры плавления определены в стеклянных капиллярах на приборе ПТП. Для колоночной хроматографии использован силикагель Merck Silicagel 60 (70–230 мкм). 5,7-Динитро-4-хлорбензофуразан (**2b**) синтезирован по методу [24].

**4-(1,2-Диметил-1***H***-индол-3-ил)-5,7-динитро-2,1,3-бензоксадиазол (6)**. К раствору 100 мг (0.41 ммоль) 5,7-динитро-4-хлорбензофуразана (**2b**) в 4 мл CHCl<sub>3</sub> добавляют 60 мг (0.41 ммоль) 1,2-диметилиндола (**4**), после чего реакционную смесь выдерживают в тёмном месте при комнатной температуре в течение 1 сут. Продукт очищают колоночной хроматографией (элюент CHCl<sub>3</sub>). Выход 101 мг (70%), темно-синие кристаллы, т. пл. 244–246 °C. Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.53 (3H, с, 2'-CH<sub>3</sub>); 3.93 (3H, с, 1'-CH<sub>3</sub>); 7.12 (1H, д. д, *J* = 7.0, *J* = 7.7, H-5'); 7.22–7.32 (2H, м, H-4',6'); 7.56 (1H, д, *J* = 8.0, H-7'); 9.16 (1H, с, H-6). Найдено, *m/z*: 354.0832 [M+H]<sup>+</sup>. C<sub>16</sub>H<sub>12</sub>N<sub>5</sub>O<sub>5</sub>. Вычислено, *m/z*: 354.0833.

Синтез 4-(1,2-диметил-1*H*-индол-3-ил)-7-метил-5,8а-динитро-6,7,8,8а-тетрагидро-5а*H*-[1,2,5]оксадиазоло[3,4-е]изоиндола (10), 4-(1,2-диметил-1*H*-индол-3-ил)-7-метил-5-нитро-7,8-дигидро-6*H*-[1,2,5]оксадиазоло[3,4-е]изоиндола (11) и 4-(1,2-диметил-1*H*-индол-3-ил)-7-метил-5-нитро-7*H*-[1,2,5]оксадиазоло[3,4-е]изоиндола (12) (общая методика). К суспензии 126 мг (1.42 ммоль) тонкоизмельчённого саркозина (7) и 51 мг (1.70 ммоль) параформа в 4 мл абс. PhH (для соединения 10) или абс. MeCN (для соединений 11 и 12) добавляют 100 мг (0.28 ммоль) соединения 6. Реакционную смесь кипятят до полного обесцвечивания в течение 2 ч, затем раствор охлаждают, отфильтровывают, фильтрат упаривают и остаток очищают колоночной хроматографией (элюент CHCl<sub>3</sub>).

**Соединение 10**. Смесь диастереомеров **10а** и **10b** в соотношении 3:2. Выход 108 мг (94%), коричневые кристаллы, т. пл. 164–166 °С. Найдено, *m/z*: 411.1406 [M+H]<sup>+</sup>. С<sub>19</sub>H<sub>19</sub>N<sub>6</sub>O<sub>5</sub>. Вычислено, *m/z*: 411.1411.

Диастереомер 10а. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 2.32 (3H, с, 2'-CH<sub>3</sub>); 2.44 (3H, с, 7-CH<sub>3</sub>); 2.93 (1H, д. д, *J* = 7.6, *J* = 9.7) и 3.65 (1H, д. д, *J* = 8.5, *J* = 9.7, 6-CH<sub>2</sub>); 3.51 (1H, д, *J* = 10.7) и 4.06 (1H, д, *J* = 10.7, 8-CH<sub>2</sub>); 3.71 (3H, с, 1'-CH<sub>3</sub>); 4.60 (1H, д. д, *J* = 7.6, *J* = 8.5, 5a-CH); 7.05–7.25 (3H, м, H-4',5',6'); 7.30 (1H, д, *J* = 3.7, H-7').

Диастереомер 10b. Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гп): 2.33 (3H, с, 2'-CH<sub>3</sub>); 2.42 (3H, с, 7-CH<sub>3</sub>); 2.80 (1H, д. д, *J* = 7.5, *J* = 9.6) и 3.55 (1H, д. д, *J* = 8.4, *J* = 9.6, 6-CH<sub>2</sub>); 3.43 (1H, д, *J* = 10.8) и 4.07 (1H, д, *J* = 10.8, 8-CH<sub>2</sub>); 3.70 (3H, с, 1'-CH<sub>3</sub>); 4.75 (1H, д. д, *J* = 7.5, *J* = 8.4, 5a-CH); 7.05–7.25 (3H, м, H-4',5',6'); 7.33 (1H, д, *J* = 3.8, H-7').

Соединение 11. Выход 29 мг (29%), фиолетовые кристаллы, т. пл. 208–210 °С. Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*, Гц): 2.35 (3H, c, 2'-CH<sub>3</sub>); 2.69 (3H, c, 7-CH<sub>3</sub>); 3.76 (3H, c, 1'-CH<sub>3</sub>); 4.15 (1H, д. д. д, *J* = 3.8, *J* = 3.8, *J* = 15.2) и 4.22 (1H, д. д. д, *J* = 3.8, *J* = 3.8, *J* = 3.8, *J* = 15.2, 8-CH<sub>2</sub>); 4.36 (1H, д. д. д, *J* = 3.8, *J* = 3.8, *J* = 14.9) и 4.47 (1H, д. д. д, *J* = 3.8, *J* = 3.8, *J* = 3.8, *J* = 14.9, 6-CH<sub>2</sub>); 7.08 (1H, д. д. *J* = 6.8, *J* = 8.0, H-5'); 7.13–7.25 (2H, м, H-4',6'); 7.33 (1H, д, *J* = 8.2, H-7'). Найдено, *m*/*z*: 364.1404 [M+H]<sup>+</sup>. C<sub>19</sub>H<sub>18</sub>N<sub>5</sub>O<sub>3</sub>. Вычислено, *m*/*z*: 364.1404.

**Соединение 12**. Выход 5 мг (5%), коричневые кристаллы, т. пл. 242–244 °С. Спектр ЯМР <sup>1</sup>H, δ, м. д. (*J*, Гц): 2.35 (3H, с, 2'-CH<sub>3</sub>); 3.74 (3H, с, 1'-CH<sub>3</sub>); 3.97 (3H, с, 7-CH<sub>3</sub>); 7.06 (1H, д. д, *J* = 8.0, *J* = 7.9, H-5'); 7.12–7.27 (3H, м, H-8,4',6'); 7.31 (1H, д, *J* = 8.1, H-7'); 7.64 (1H, д, *J* = 2.0, H-6). Найдено, *m/z*: 400.0811 [M+K]<sup>+</sup>. C<sub>19</sub>H<sub>15</sub>KN<sub>5</sub>O<sub>3</sub>. Вычислено, *m/z*: 400.0806.

Синтез 4-(1-бензил-1*H*-пиррол-2-ил)-5,7-динитро-2,1,3-бензоксадиазола (14) и 4-(1-бензил-1*H*-пиррол-3-ил)-5,7-динитро-2,1,3-бензоксадиазола (15) (общая методика). К раствору 100 мг (0.41 ммоль) 5,7-динитро-4-хлорбензофуразана (2b) в 4 мл абс. МеСN добавляют 128 мг (0.82 ммоль) *N*-бензилпиррола (13). Реакционную смесь выдерживают в тёмном месте в течение 1 сут, раствор упаривают, остаток очищают колоночной хроматографией (элюент петролейный эфир – EtOAc, 5:1).

**Соединение 14**. Выход 100 мг (67%), фиолетовые кристаллы, т. пл. 120–122 °С. Спектр ЯМР <sup>1</sup>H, δ, м. д. (*J*, Гц): 5.08 (2H, с, CH<sub>2</sub>); 6.45 (1H, д. д, *J* = 2.7, *J* = 4.0, H-4'); 6.73–6.83 (2H, м, H-2,6 Ph); 6.85 (1H, д. д, *J* = 1.6, *J* = 4.0, H-3'); 7.08–7.15 (3H, м, H-3,4,5 Ph); 7.16 (1H, д. д, *J* = 1.6, *J* = 2.7, H-5'); 8.78 (1H, с, H-6). Найдено, *m/z*: 366.0830 [M+H]<sup>+</sup>. С<sub>17</sub>H<sub>12</sub>N<sub>5</sub>O<sub>5</sub>. Вычислено, *m/z*: 366.0833.

**Соединение 15**. Выход 16 мг (11%), оранжевые кристаллы, т. пл. 148–150 °С. Спектр ЯМР <sup>1</sup>H, δ, м. д. (*J*, Гц): 5.16 (2H, с, CH<sub>2</sub>); 6.62 (1H, д. д, *J* = 1.9, *J* = 3.2, H-4'); 6.79 (1H, д. д, *J* = 2.2, *J* = 3.2, H-5'); 7.16–7.24 (2H, м, H-2,6 Ph); 7.32–7.43 (3H, м, H-3,4,5 Ph); 7.98 (1H, д. д, *J* = 1.9, *J* = 2.2, H-2'); 8.58 (1H, с, H-6). Найдено, *m/z*: 366.0832 [M+H]<sup>+</sup>. С<sub>17</sub>H<sub>12</sub>N<sub>5</sub>O<sub>5</sub>. Вычислено, *m/z*: 366.0833.

Синтез 4-(1-бензил-1*H*-пиррол-2-ил)-7-метил-5-нитро-7,8-дигидро-6*H*-[1,2,5]оксадиазоло[3,4-е]изоиндола (16) и 4-(1-бензил-1*H*-пиррол-2-ил)-7-метил-5-нитро-7*H*-[1,2,5]оксадиазоло[3,4-е]изоиндола (17) (общая методика). К суспензии 126 мг (1.42 ммоль) тонкоизмельчённого саркозина (7) и 51 мг (1.70 ммоль) параформа в 7 мл абс. МеСN добавляют 102 мг (0.28 ммоль) соединения 14. Реакционную смесь кипятят до полного обесцвечивания в течение 1 ч, затем раствор охлаждают, осадок отфильтровывают, фильтрат упаривают, остаток очищают колоночной хроматографией (элюент CHCl<sub>3</sub>-EtOAc, 5:1), собирая фракции с  $R_f = 0.9$  (соединение 17) и с  $R_f = 0.2$  (соединение 16).

Соединение 16. Выход 30 мг (30%), оранжевые кристаллы, т. пл. 150–152 °С. Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*, Гц): 2.65 (3H, c, 7-CH<sub>3</sub>); 4.06 (2H, т, *J* = 3.7, 8-CH<sub>2</sub>); 4.36 (2H, т, *J* = 3.7, 6-CH<sub>2</sub>); 5.08 (2H, c, CH<sub>2</sub>Ph); 6.32 (1H, д. д, *J* = 2.8, *J* = 3.8, H-4'); 6.46

(1H, д. д, *J* = 1.7, *J* = 3.8, H-3'); 6.83–6.96 (3H, м, H-5', H-2,6 Ph); 7.12–7.24 (3H, м, H-3,4,5 Ph). Найдено, *m/z*: 398.1217 [M+Na]<sup>+</sup>. С<sub>20</sub>H<sub>17</sub>N<sub>5</sub>NaO<sub>3</sub>. Вычислено, *m/z*: 398.1224.

Соединение 17. Выход 3 мг (3%), коричневые кристаллы, т. пл. 240–244 °С. Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*,  $\Gamma$ ц): 3.94 (3H, c, 7-CH<sub>3</sub>); 5.02 (2H, c, CH<sub>2</sub>); 6.26 (1H, д. д, J = 2.7, J = 3.6, H-4'); 6.36 (1H, д. д, J = 1.8, J = 3.6, H-3'); 6.80 (1H, д. д, J = 1.8, J = 2.7, H-5'); 6.95–7.04 (2H, м, H-2,6 Ph); 7.12–7.19 (4H, м, H-8, H-3,4,5 Ph); 7.58 (1H, д. J = 2.0, H-6). Найдено, *m/z*: 412.0803 [M+K]<sup>+</sup>. C<sub>20</sub>H<sub>15</sub>KN<sub>5</sub>O<sub>3</sub>. Вычислено, *m/z*: 412.0806.

Рентгеноструктурное исследование соединений 6, 15, 16. Монокристаллы соединения 6, полученные кристаллизацией из хлороформа ( $C_{16}H_{11}N_5O_5$ , M 353.30), моноклинные, пространственная группа  $P_{21}/c$ , при 120 К: а 9.8327(8), b 7.0505(6), c 22.2720(18) Å;  $\beta$  101.3423(14)°; V 1513.9(2) Å<sup>3</sup>; Z 4;  $d_{выч}$  1.550  $\Gamma \cdot cm^{-3}$ ;  $\mu$ (Мо $K\alpha$ ) 1.19 см<sup>-1</sup>; F(000) 728. Интенсивности 17059 отражений определены на дифрактометре Bruker SMART APEX2 (Мо $K\alpha$ -излучение,  $\lambda$  0.71073 Å,  $\omega$ -сканирование,  $2\theta < 58^{\circ}$ ), 4037 независимых отражений ( $R_{int}$  0.0211) использованы в дальнейшем уточнении. Структура расшифрована прямым методом и уточнена МНК в анизотропном полноматричном приближении по  $F_{hkl}^2$ . Положения атомов водорода рассчитаны геометрически и уточнены в изотропном приближении по модели "наездник". Окончательные значения факторов расходимости для соединения 6:  $wR_2$  0.1152 и *GOF* 1.084 для всех независимых отражений ( $R_1$  0.0445 рассчитаны по *F* для 3508 наблюдаемых отражений с  $I > 2\sigma(I)$ ). Все расчёты проведены по комплексу программ SHELXTL PLUS [25].

Монокристаллы соединения **15**, полученные кристаллизацией из смеси EtOAc – петролейный эфир (т. кип. 40–70 °C), 1:5 ( $C_{17}H_{11}N_5O_5$ , *M* 365.31), моноклинные, пространственная группа *C*2/*c*, при 120 К: *а* 30.905(2), *b* 4.7648(3), *c* 24.6937(16) Å; β 122.0190(10)°; *V* 3083.1(3) Å<sup>3</sup>; *Z* 8;  $d_{выч}$  1.574 г·см<sup>-3</sup>;  $\mu$ (Мо*K* $\alpha$ ) 1.20 см<sup>-1</sup>; *F*(000) 1504. Интенсивности 15007 отражений определены на дифрактометре Bruker SMART АРЕХ2 (Мо*К* $\alpha$ -излучение,  $\lambda$  0.71073 Å,  $\omega$ -сканирование, 2 $\theta$  < 58°), 4104 независимых отражений ( $R_{int}$  0.0283) использованы в дальнейшем уточнении. Структура расшифрована прямым методом и уточнена МНК в анизотропном полноматричном приближении по  $F_{hkl}^2$ . Положения атомов водорода рассчитаны геометрически и уточнены в изотропном приближении по модели "наездник". Окончательные значения факторов расходимости для соединения **15**: *wR*<sub>2</sub> 0.1018 и *GOF* 1.029 для всех независимых отражений ( $R_1$  0.0383 рассчитаны по *F* для 3402 наблюдаемых отражений с  $I > 2\sigma(I)$ ). Все расчёты проведены по комплексу программ SHELXTL PLUS [25].

Монокристаллы соединения **16**, полученные кристаллизацией из смеси EtOAc – петролейный эфир (т. кип. 40–70 °C), 1:5 ( $C_{20}H_{17}N_5O_3$ , *M* 375.39), моноклинные, пространственная группа *P*2<sub>1</sub>/*c*, при 120 К: *a* 16.2477(10), *b* 8.9979(5), *c* 12.8559(8) Å; β 109.4650(10)°; *V* 1772.05(18) Å<sup>3</sup>; *Z* 4; *d*<sub>выч</sub> 1.407 г·см<sup>-3</sup>; µ(МоКа) 0.908 см<sup>-1</sup>; *F*(000) 784. Интенсивности 20471 отражений определены на дифрактометре Bruker SMART APEX2 (МоКа-излучение,  $\lambda$  0.71073 Å, ω-сканирование, 2θ < 58°), 4716 независимых отражений ( $R_{int}$  0.0324) использованы в дальнейшем уточнении. Структура расшифрована прямым методом и уточнена МНК в анизотропном полноматричном приближении по  $F^2_{hkl}$ . Положения атомов водорода рассчитаны геометрически и уточнены в изотропном приближении по модели "наездник". Окончательные значения факторов расходимости для соединения **16**: *wR*<sub>2</sub> 0.1156 и *GOF* 1.054 для всех независимых отражений ( $R_1 = 2\sigma(I)$ ). Все расчёты проведены по комплексу программ SHELXTL PLUS [25].

Данные РСА соединений 6, 15 и 16 депонированы в Кембриджском банке структурных данных (депоненты CCDC 1029100, CCDC 1022755 и CCDC 1022778 соответственно).

**Квантово-химические расчёты** *ab initio* и методом DFT проведены в базисе 6-31G\*\* (программный комплекс Gaussian 03 [26]) по методике, описанной в работе [27].

Исследование строения и свойств производных нитробензофуразана методами квантовой химии и резонансной спектроскопии выполнено при поддержке Российского научного фонда (проект № 14-13-00103).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Л. И. Хмельницкий, С. С. Новиков, Т. И. Годовикова, *Химия фуроксанов. Реакции* и применение, Наука, Москва, 1996, с. 430.
- 2. F. Terrier, *in Organic Reactivity: Physical and Biological Aspects*, Royal Society of Chemistry, Cambridge, 1995, p. 399.
- 3. F. Terrier, A. P. Chatrousse, Y. Soudais, M. Hlaibi, J. Org. Chem., 49, 4176 (1984).
- F. Terrier, M. J. Pouet, J. C. Halle, E. Kizilian, E. Buncel, J. Phys. Org. Chem., 11, 707 (1998).
- 5. R. Goumont, E. Kizilian, E. Buncel, F. Terrier, Org. Biomol. Chem., 1, 1741 (2003).
- S. V. Kurbatov, Z. N. Budarina, G. S. Vaslyaeva, N. I. Borisenko, A. P. Knyazev, V. I. Minkin, Yu. A. Zhdanov, L. P. Olekhnovich, *Russ. Chem. Bull.*, *Int. Ed.*, 46, 1445 (1997). [*Изв. AH, Cep. xum.*, 1509 (1997).]
- V. A. Voronina, A. E. Frumkin, S. V. Kurbatov, A. M. Churakov, O. Yu. Smirnov, L. P. Olekhnovich, *Russ. Chem. Bull.*, *Int. Ed.*, **51**, 668 (2002). [*Изв. AH, Cep. хим.*, 617 (2002).]
- P. G. Morozov, S. V. Kurbatov, F. M. Dolgushin, M. Yu. Antipin, L. P. Olekhnovich, Russ. Chem. Bull., Int. Ed., 53, 2075 (2004). [*Изв. АН, Сер. хим.*, 1990 (2004).]
- A. V. Tkachuk, S. V. Kurbatov, O. N. Burov, M. E. Kletskii, Yu. P. Tavunova, P. G. Morozov, V. A. Voronina, V. I. Minkin, *Russ. J. Org. Chem.*, 49, 1373 (2013). [*Журн. орган. химии*, 49, 1388 (2013).]
- V. I. Minkin, A. V. Tkachuk, M. E. Kletskii, D. V. Steglenko, V. A. Voronina, S. V. Kurbatov, *Russ. Chem. Bull.*, *Int. Ed.*, **62**, 464 (2013). [*Изв. АН, Сер. хим.*, 464 (2013).]
- 11. S. Kurbatov, P. Rodriguez-Dafonte, R. Goumont, F. Terrier, Chem. Commun., 2150 (2003).
- 12. S. Kurbatov, A. Tatarov, V. Minkin, R. Goumont, F. Terrier, *Chem. Commun.*, 4279 (2006).
- 13. A. Tatarov, S. Kurbatov, G. Borodkin, R. Goumont, F. Terrier, *Tetrahedron*, **66**, 995 (2010).
- 14 F. Terrier, Modern Nucleophilic Aromatic Substitution, Wiley-VCH, 2013, 488 p.
- 15. E. Buncel, F. Terrier, Org. Biomol. Chem., 8, 2285 (2010).
- 16. F. Terrier, J. M. Dust, E. Buncel, Tetrahedron, 68, 1829 (2012).
- 17. S. Kurbatov, S. Lakhdar, R. Goumont, F. Terrier, Org. Prep. Proced. Int., 44, 289 (2012).
- 18. S. A. Shevelev, A. M. Starosotnikov, *Chem. Heterocycl. Compd.*, **49**, 92 (2013). [Химия гетероцикл. соединений, 102 (2013).]
- 19. C. Boga, E. Del Vecchio, L. Forlani, A. Mazzanti, P. E. Todesco, Angew. Chem., Int. Ed., 44, 3285 (2005).
- Э. Преч, Ф. Бюльманн, К. Аффольтер, Определение строения органических соединений, Мир, Москва, 2006, 438 с.
- Справочник химика, под ред. Б. П. Никольского, Химия, Москва–Ленинград, 1982, т. 1, с. 352.
- 22. C. K. Prout, O. J. R. Hodder, D. Viterbo, Acta Crystallogr., Sect. B.: Struct. Crystallogr. Cryst. Chem., B28, 1523 (1972).
- 23. H. Cerecetto, W. Porcal, Mini Rev. Med. Chem., 5, 57 (2005).
- Г. П. Шарнин, Ф. С. Левинсон, С. А. Акимова, Р. Х. Хасанов, А. с. СССР 627129; Бюл. изобрет., № 37 (1978).
- 25. G. M. Sheldrick, SHELXTL, v. 5.10, Structure Determination Software Suit, Bruker AXS, Madison, 1998.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03, Revision D.01*, Gaussian, Inc., Wallingford, 2004.
- 27. D. V. Steglenko, M. E. Kletsky, S. V. Kurbatov, A. V. Tatarov, V. I. Minkin, R. Goumont, F. Terrier, J. Phys. Org. Chem., 22, 298 (2009).

<sup>1</sup> Южный федеральный университет, ул. Зорге, 7, Ростов-на-Дону 344090, Россия e-mail: mpg@sfedu.ru Поступило 31.10.2014