ХИМИЯ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ. — 2011. — № 2. — С. 198—210

Дорогому коллеге Л. И. Беленькому по случаю славного юбилея

К. С. Левченко, В. А. Барачевский^а, В. Н. Яровенко⁶, М. М. Краюшкин⁶*, И. С. Семенова⁶, О. И. Кобелева^а, Т. М. Валова^а, П. С. Шмелин

СИНТЕЗ И СВОЙСТВА СВЕТОЧУВСТВИТЕЛЬНЫХ СОЕДИНЕНИЙ НА ОСНОВЕ БРОМСОДЕРЖАЩИХ 3-АЦИЛ-2-ФУРИЛХРОМОНОВ

Разработаны методы синтеза новых фоточувствительных соединений на основе реакций N,S,O-нуклеофилов с 3-ацил-2-(5-бромфуран-2-ил)хромонами и 3-ацил-2-(5-бромметилфуран-l-ил)хромонами. Выявлена зависимость между спектральными свойствами и структурой соединений.

Ключевые слова: хромоны, нуклеофильное замещение, оптические диски, спектры поглощения и флуоресценции.

Ранее мы показали, что производные 2-фурил-3-ацетилхромонов являются перспективными компонентами регистрирующих сред для проведения одноразовой двухфотонной побитовой записи на многослойных оптических дисках сверхвысокой информационной емкости [1, 2]. Известно, что 3-ацетил-2-фурилхромоны в исходной форме **A** не обладают флуоресценцией, но при облучении УФ светом испытывают необратимое фотохимическое превращение с образованием флуоресцирующей формы **B** [1–4], которая обеспечивает многократное флуоресцентное считывание оптической информации.

В настоящей работе мы продолжили изучение влияния структурных факторов на фотохимические свойства 3-ацил-2-фуранилхромонов. В предыдущем исследовании было показано, что спектральные характеристики хромонов в значительной степени зависят от заместителей в фурановом цикле. Введение атомов галогена или нитрогруппы приводит к сильным батохромным сдвигам полос поглощения исходной формы **A**, а также к сдвигам полос поглощения и флуоресценции фотопродукта **B** [2]. Представлялось целесообразным изучить влияние донорных групп на фотохимические и флуоресцентные свойства хромонов.

Исходя из того, что бензопираноновый фрагмент обладает электроноакцепторными свойствами, можно было предположить, что под его влиянием атомы галогена в фурановом цикле должны обладать повышенной реакционной способностью в условиях реакции нуклеофильного замещения, что и позволит вводить различные донорные группы в хромоновую систему.

3-Ацил-2-фурилхромоны 1, содержащие атом брома в положении 5 фуранового кольца, были синтезированы из 2-гидроксиацетофенона в условиях, предложенных нами в предыдущей работе [2] по следующей схеме:

1 а Ar = Ph, R = Me; b Ar = Ph, R = Br; c Ar = тиен-2-ил, R = Br; d Ar = Ph, R = H; e Ar = тиен-2-ил, R = H

Оказалось, что при кипячении в этиловом спирте или при нагревании в ДМФА в присутствии K₂CO₃ или в ряде случаев без него гладко протекают реакции нуклеофильного замещения. Соединения **2–4**, полученные в этих реакциях представлены в табл. 1.

2а,b,d,e, За,b, 4а,b Ar = Ph; **2c** Ar = тиен-2-ил; **4 a** X = O, **b** X = CH₂

Таблица 1

Нуклеофил	Раство- ритель	Основание	Условия	Соеди- нения	R	Вы- ход, %
PhSNa	EtOH	-	Кипячение	2a	Ph	66
t-BuSH	EtOH	K ₂ CO ₃	Кипячение	2b	<i>t</i> -Bu	59
t-BuSH	EtOH	K ₂ CO ₃	Кипячение	2c	<i>t</i> -Bu	29
HSCH ₂ CO ₂ Et	EtOH	K ₂ CO ₃	Кипячение	2d	CH ₂ CO ₂ Et	30
HS(CH ₂) ₂ N(Et) ₂	EtOH	K ₂ CO ₃	Кипячение	2e	$(CH_2)_2NEt_2$	35
PhOH	ДМФА	K ₂ CO ₃	50 °C	3a	Ph	45
4-t-BuC ₆ H ₄ OH	ДМФА	K ₂ CO ₃	50 °C	3b	4- t -BuC ₆ H ₄	35
Морфолин	EtOH	Морфолин	Кипячение	4a	-	79
Пиперидин	EtOH	Пиперидин	Кипячение	4b	_	72
				1		

Продукты нуклеофильного замещения 3-ацил-2-(5-бромфуран-2-ил)хромонов

Типичные фотоиндуцированные изменения спектров поглощения и флуоресценции для соединений типа 2–4 представлены на рис. 1–3 соответственно.

Рис. 1. Спектры поглощения (1–5) и флуоресценции (6–9) раствора соединения 2е в толуоле до (1) и после (2–9) облучения УФ светом через светофильтр УФС-1. Спектры флуоресценции измерялись при возбуждения светом с λ 425 нм (максимум полосы поглощения фотопродукта)

Из рис. 1 видно, что при последовательном облучении раствора хромона 2е интенсивность длинноволновой полосы поглощения исходной формы A при 354 нм снижается с одновременным появлением и усилением интенсивности длинноволновой полосы поглощения при 420 нм, обусловленной образованием фотопродукта B. Появление полосы поглощения фотопродукта сопровождается появлением фотоиндуцированной флуоресценции с максимумом при 495 нм. При увеличении экспозиции УФ светом её интенсивность возрастает.

Рис. 2. Спектры поглощения (1–5) и флуоресценции (6–9) раствора соединения За в толуоле до (1) и после (2–9) облучения УФ светом через светофильтр УФС-1.
Спектры флуоресценции измерялись при возбуждения светом с λ 415 нм (максимум полосы поглощения фотопродукта)

Соединение	$\lambda_{\mathbf{A} \max}$, нм ($D_{\mathbf{A}}$)	$\lambda_{\mathbf{B} \text{ max}}, \text{ HM} \ (D_{\mathbf{B}})$	λ _{B φл max, HM}	$\Delta \lambda =$ = λ _{B φ_{л max}-λ_{B max}, HM}	I _{в фл} , отн. ед.
1d	315 (0.9)	415 (0.15)	495	80	260
2a	327 (1.0)	420 (0.39)	490	70	1000
2d	338 (0.8)	420 (0.19)	488	68	250
2e	354 (0.7)	420 (0.40)	495	75	770
3a	340 (1.0)	415 (0.60)	490	75	1700
3b	345 (0.8)	415 (0.45)	490	75	1650
4 a	406 (1.2)	418 (0.36)	491	73	1840
4b	420 (1.2)	423 (0.33)	491	68	2350

Спектрально-кинетические характеристики* фотопревращений хромонов

* $\lambda_{A \max}$ и $\lambda_{B \max}$ – длины волн максимумов полос поглощения исходной и фотоиндуцированной форм хромонов, соответственно; $\lambda_{B \phi \pi} \max$ – длина волны максимума полосы флуоресценции фотоиндуцированной формы хромона; D_A – фотоиндуцированная оптическая плотность в максимуме полосы поглощения фотопродукта; $I_{B \phi \pi}$ – интенсивность флуоресценции в состоянии фоторавновесия.

Аналогичные фотоиндуцированные спектральные изменения наблюдаются для соединения **За** (рис. 2).

Фотоиндуцированные спектральные изменения, отличные от описанных выше, проявляют хромоны из группы 4 (рис. 3). Из рисунка видно, что полосы поглощения исходной формы хромона A и его фотопродукта сильно перекрываются.

Как свидетельствуют данные табл. 2 фотохимические и флуоресцентные свойства полученных хромонов 2-4 сильно отличаются от свойств

Рис. 3. Спектры поглощения (1, 2) и флуоресценции (3) раствора соединения **4b** в толуоле до (1) и после облучения (2, 3). Спектры флуоресценции измерялись при возбуждения светом с λ 420 нм

а $R^{1}R^{2}NH$ = морфолин, b $R^{1}R^{2}NH$ = 2-метиланилин

Таблица З

1	продукты нуклес	офильного зам	ещения 3-ацил	-2-(5-оромм	етилфуран-2	-ил)хромона	5'

Нуклеофил	Основание	Условия	Соеди- нения	R	R^1	Выход, %
PhSNa	-	~20 °C	6a	Ph	-	75
t-BuSH	K_2CO_3	50 °C	6b	<i>t</i> -Bu	-	80
BuSH	K_2CO_3	50 °C	6c	Bu	-	47
HSCH ₂ CO ₂ Et	K_2CO_3	50 °C	6d	CH ₂ CO ₂ Et	_	64
KSCN	_	Кипячение	6e	CN	-	80
PhOH	K_2CO_3	50 °C	7	Ph	-	20
Морфолин	Морфолин	~20 °C	8a	$(CH_2)_2O(CH_2)$	2)2	60
2-Метиланилин	K_2CO_3	~20 °C	8b	$2-MeC_6H_4$	Н	70

* Растворители: ДМФА (соединения 6а-d, 7, 8а,b) и ЕtOH (соединение 6е).

незамещенного хромона 1d. Так, полосы поглощения хромонов в исходом состоянии A сдвигаются батохромно на 12–105 нм, при слабом сдвиге полос поглощения и флуоресценции фотоиндуцированной формы B (табл. 2).

На основе производных хромонов, содержащих бромметильную группу нами были синтезированы аналоги хромонов 2–4, различающиеся лишь метиленовым фрагментом между фурановым кольцом и амино-, тио- или оксигруппой (соединения 6–8). Данные соединения синтезированы по вышеприведенной схеме.

На первом этапе из метильного производного **1a** при кипячении с NBS и каталитических количеств пероксида дибензоила (PBO) в CCl₄, образуется 3-бензоил-2-(5-бромметилфуран-2-ил)хромон **5**, при взаимодействии которого с нуклеофилами в ДМФА происходит замещение атома брома с образованием тио-, оксо- или аминопроизводных хромонов **6**, **7**, **8** (табл. 3).

Данные фотохимического исследования полученных соединений приведены в табл. 4.

Фотоиндуцированные спектральные изменения соединений 6-8 подобны тем, которые проявляются для соединений типа 2 и 3. Сравнение спектральных характеристик соединений 2-4 и 6-8 показывает. что введение нуклеофила непосредственно в фурановое кольцо приводит к более существенным изменениям положения полос поглощения исходной формы А соединений при сохранении положения полос поглощения и флуоресценции фотоиндуцированной формы В. Наиболее сильное влияние оказывают амины. Так, введение морфолинового и пиперидинового кольца приводит к сильнейшему сдвигу по сравнению с незамещенным хромоном 1d от 315 до 406 и 420 нм, соответственно (соединения 4a,b), тогда как амины, удаленные на одно метиленовое звено дают лишь небольшой (5-10 нм) батохромный сдвиг (соединения 8а,b). Подобная параллель наблюдается и для оксо- и тиопроизводных, однако, батохромное смещение максимумов полос поглощения значительно меньше (15-30 нм). Следует подчеркнуть, что, как показывает сравнительное исследование флуоресцентных свойств, введение нуклеофила непосредственно в фурановое ядро приводит к существенному улучшению флуоресцентных свойств фотопродукта. Действительно, для серии соединений 6-8 интенсивность флуоресценции фотоиндуцированной формы в среднем не превышает 100 отн. ед., тогда как для соединений 2-4 данный параметр составляет от 200 до 2350 отн. ед.

Таким образом, сопряжение электронодонорных групп с фурановым циклом делает его более склонным к фотоиндуцированным превращениям, поскольку все соединения этого типа обладают высокой светочувст-

Таблица 4

Соеди- нение	λ _{A max} , нм (D _A)	$\lambda_{\mathbf{B} \text{ max}}, \text{ HM}$ $(D_{\mathbf{B}})$	$\lambda_{B\phi\pimax,}$ HM	$\Delta \lambda = \\ = \lambda_{\mathbf{B} _{\phi \pi _{\max}}} - \lambda_{\mathbf{B} _{\max}}, \\ \mathbf{H} \mathbf{M}$	I _{в фл} , отн. ед.
6a	330 (1.4)	420 (0.15)	490	70	57
6b	330 (1.2)	420 (0.12)	495	75	60
6c	331 (1.0)	417 (0.13)	490	73	63
6d	329 (1.2)	417 (0.14)	490	73	61
6e	319 (1.3)	420 (0.23)	493	73	63
7	318 (0.9)	420 (0.20)	495	75	40
8 a	320 (1.1)	415 (0.14)	490	75	118
8b	327 (1.2)	400 пл (0.50)	490	90	57

Спектрально-кинетические характеристики фотопревращений хромонов

вительностью, которая проявляется при высоких значениях фото-204 индуцированной оптической плотности и интенсивности флуоресценции. Отдаление же гетероатомов от фуранового ядра посредством метиленового фрагмента приводит к уменьшению интенсивности флуоресценции фотоиндуцированной формы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на приборах Bruker AC-200 (200 МГц) и Bruker AM300 (300 МГц) в CDCl₃, спектры ЯМР ¹³С – на приборе Bruker AM300 (75 МГц) в CDCl₃, внутренний стандарт – остаточные протоны и атом углерода растворителя. Масс-спектры записывали на приборе Varian MAT CH-6 с прямым вводом образца в источник излучения, энергия ионизации 70 эВ и управляющее напряжение 1.75 кВ. Температуры плавления измеряли на нагревательном столике Boetius и не корректировали. Для анализа всех реакционных масс и контроля чистоты выделенных соединений использовали метод TCX на пластинах Merck Silica gel 60 F254 UV-254.

Абсорбционные спектрально-кинетические измерения (спектры поглощения исходных соединений и фотопродуктов, кинетику процессов фотоокрашивания, данные фотоиндуцированной оптической плотности) регистрировали на спектрофотометре фирмы Varian Cary 50. В качестве растворителя использовали толуол фирмы Aldrich. Концентрация раствора $c = 2 \cdot 10^{-4}$ моль/л. Для измерения использовалали кварцевую кювету толщиной 0.2 см. Облучение осуществляли светом лампы LC-4 Нататаtsu через УФ светофильтр. Эффективность фотоокрашивания соединений оценивали по максимальному значению фотоиндуцированной оптической плотности в максимуме полосы поглощения фотопродукта. Её определяли из кинетической кривой зависимости оптической плотности от времени облучения после установления фотостационарного состояния.

Спектры флуоресценции получали на спектрофлуориметре Varian Cary Eclipse. Рабочая концентрация соединений в толуоле $c = 4 \cdot 10^{-5}$ М. Для измерения исполь- зовали кварцевую кювету толщиной 1 см. Спектры флуоресценции измерены после достижения максимального изменения фотоиндуцированной оптической плотности в максимуме полосы поглощения фотопродукта при возбуждении излучением той же длины волны.

Соединения 1 были синтезированы по разработанным ранее методикам [2].

3-Бензоил-2-(5-бромфуран-2-ил)-4Н-хромен-4-он (1b). Выход 1.09 г (70%). Т. пл. 209–210 °С (из этанола). Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.23 (1H, д, *J* = 7.7, H-5); 7.99 (2H, д, *J* = 7.7, H'-2); 7.75 (1H, т, *J* = 7.8, H-7); 7.55–7.60 (2H, м, H Ar); 7.43–7.48 (3H, м, H Ar); 7.02 (1H, д, *J* = 3.7, H-3 фуран); 6.42 (1H, д, *J* = 3.7, H-4 фуран). Масс-спектр, *m/z* (*I*_{0тн}, %): 396 [M]⁺ (5), 394 (9), 316 (95), 315 [M–Br]⁺ (100). Найдено, %: С 60.69; Н 2.73; Br 20.12. С₂₀Н₁₁BrO₄. Вычислено, %: С 60.78; H 2.81; Br 20.22.

2-(5-Бромфуран-2-ил)-3-(тиофен-2-карбонил)-4Н-хромен-4-он (1с). Выход 0.95 г (69%). Т. пл. 178 °С (из этанола). Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.25 (1H, д, *J* = 7.9, H-5); 7.70–7.80 (2H, м, H Ar); 7.40–7.65 (3H, м, H Ar); 7.05–7.10 (2H, м, H Ar); 6.48 (1H, д, *J* = 3.6, H-4 фуран). Масс-спектр, *m/z* (*I*_{отн}, %): 402 [М]⁺ (8), 400 (8), 322 (90), 321 [М–Вг]⁺ (100). Найдено, %: С 53.80; Н 2.21. С₁₈Н₉О₄S. Вычислено, %: С 53.88; Н 2.26.

3-Бензоил-2-(5-(фенилтио)фуран-2-ил)-4Н-хромен-4-он (2а). Смесь 0.395 г (1 ммоль) соединения **1b** и 0.139 г (1.05 ммоль) тиофенолята натрия кипятят в этаноле. После окончания реакции (контроль TCX) растворитель упаривают в вакууме, остаток растворяют в хлористом метилене и фильтруют через слой силикагеля. После упаривания в вакууме остаток перекристаллизовывают из

этанола. Выход 0.28 г (66%). Т. пл. 178–180 °С. Спектр ЯМР ¹Н (300 МГц), δ, м. д. (*J*, Гц): 8.22 (1Н, д, *J* = 8.1, H-5); 7.92 (2Н, д, *J* = 7.7, H'-2); 7.74 (1Н, т, *J* = 7.9, H-7); 7.36–7.56 (5Н, м, Н Аг); 7.02–7.21 (6Н, м, Н Аг); 6.65 (1Н, д, *J* = 3.7, H-4 фуран).

Спектр ЯМР ¹³С (75 МГц), δ , м. д.: 193.61, 176.18, 155.78, 141.71, 136.60, 136.11, 135.87, 134.45, 134.23, 133.93, 131.92, 129.74, 129.62, 129.52, 129.44, 129.17, 129.02, 127.68, 126.10, 125.74, 123.29, 117.97. Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 317 [M–SPh]⁺ (9), 316 (36), 315 (100), 314 (5), 287 (5), 277 (2), 267 (3), 259 (4), 231 (9), 202 (9), 182 (18), 110 (57). Найдено, %: С 73.50; Н 3.69. С₂₆Н₁₆О₄. Вычислено, %: С 73.57; Н 3.80.

Реакция бромпроизводных фурилхромонов с алкантиолами (общая методика). Смесь 1 ммоль соединения 1b или 1c с 1.05 ммоль *t*-BuSH или этилового эфира тиогликолевой кислоты кипятят в этаноле в присутствии K_2CO_3 . После окончания реакции (контроль TCX) растворитель упаривают в вакууме. Остаток растворяют в хлористом метилене и образовавшийся раствор фильтруют через силикагель. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-(5-(*трет*-бутилтио)фуран-2-ил)-4H-хромен-4-он (2b). Выход 0.24 г (59%). Т. пл. 105–106 °С. Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.21 (1H, д, *J* = 6.9, H-5); 8.02 (2H, д, *J* = 6.7, H'-2); 7.76 (1H, т, *J* = 7.6, H-7); 7.34–7.65 (5H, м, H Ar); 7.17 (1H, д, *J* = 3.4, H-3 фуран); 6.65 (1H, д, *J* = 3.5, H-4 фуран), 1.13 (9H, с, С(С<u>H</u>₃)₃). Спектр ЯМР ¹³С (75 МГц), δ, м. д.: 192.20, 176.27, 155.63, 151.89, 150.70, 148.05, 137.18, 134.41, 133.72, 129.57, 128.73, 126.11, 125.62, 123.60, 121.91, 119.55, 117.98, 116.82, 48.88, 30.93. Масс-спектр (ЭУ), *m/z* (*I*_{отн}, %): 404 [M]⁺ (5), 374 (1), 350 (18), 349 (13), 348 (80), 330 (5), 319 (4), 317 (7), 316 (65), 315 [M–S(*t*-Bu)]⁺ (100), 306 (3), 294 (2), 288 (10), 287 (7), 275 (6), 271 (13), 270 (26). Найдено, %: С 71.35; Н 5.06. С₂₄Н₂₀О₄. Вычислено, %: С 71.27; Н 4.98.

2-[5-(*трет***-Бутилтио)фуран-2-ил]-3-(тиофен-2-илкарбонил)-4H-хромен-4-он (2с).** Выход 0.119 г (29%). Т. пл. 133–135 °С. Спектр ЯМР ¹Н (300 МГц), δ , м. д. (*J*, Гц): 8.23 (1H, д, *J* = 8.1, H-5); 7.78–7.62 (5H, м, H Ar); 7.19 (1H, д, *J* = 3.3, H тиофен); 7.07 (1H, т, *J* = 4.4, H тиофен); 6.67 (1H, д, *J* = 3.7, H-4 фуран); 1.22 (9H, с, C(CH₃)₃). Масс-спектр, *m/z* (*I*_{0тн}, %): 411 [M]⁺ (2), 410 (8), 355 (2), 354 (8), 353 (8), 341 (2), 323 (6), 322 (31), 321 [M–S(*t*-Bu)]⁺ (84), 301 (2), 293 (2), 278 (2), 272 (13), 271 (17), 270 (100). Найдено, %: С 64.43; H 4.47. С₂₂H₁₈O₄S₂. Вычислено, %: C 64.37; H 4.42.

Этиловый эфир 2-[5-(3-бензоил-4-оксо-4H-хромен-2-ил)фуран-2-илтио]уксусной кислоты (2d). Выход 0.130 г (30%). Т. пл. 138–139 °С. Спектр ЯМР ¹Н (200 МГц), б, м. д. (*J*, Гц): 8.22 (1Н, д, *J* = 6.6, Н-5); 8.04 (2Н, д, *J* = 7.1, Н'-2); 7.76 (1Н, т, *J* = 7.1, Н-7); 7.63–7.42 (5Н, м, Н Аг); 7.14 (1Н, д, *J* = 3.5, Н-3 фуран); 6.56 (1Н, д, *J* = 3.4, Н-4 фуран); 4.12 (2Н, к, *J* = 7.1, С<u>Н</u>₂CH₃); 3.17 (2Н, с, С<u>Н</u>₂COOEt); 1.23 (3Н, т, *J* = 7.2, CH₃). Найдено, %: С 66.29; Н 4.14. С₂₄Н₁₈О₆S. Вычислено, %: С 66.35; Н 4.18.

3-Бензоил-2-[5-(2-(диэтиламино)этилтио)фуран-2-ил]-4Н-хромен-4-он (2е). Выход 0.156 г (35%). Т. пл. 111–113 °С. Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.22 (1H, д. д. *J* = 7.9, *J* = 1.6, H-5); 8.03 (2H, д. д. *J* = 7.1, *J* = 1.6, H'-2); 7.75 (1H, д. т, *J* = 7.3, *J* = 1.7, H-7); 7.37–7.62 (5H, м, H Ar); 7.14 (1H, д. *J* = 3.5, H-3 фуран); 6.45 (1H, д. *J* = 3.6, H-4 фуран); 2.62–2.69 (2H, м, SCH₂); 2.41–2.53 (6H, м, C<u>H₂N(CH₂Me)₂; 0.93 (6H, т. *J* = 7.1, N(CH₂C<u>H₃)₂).</u> Спектр ЯМР ¹³С (75 МГц), δ, м. д.: 192.59, 176.17, 155.60, 153.76, 150.84, 146.43, 137.17, 134.34, 133.74, 129.41, 128.81, 126.09, 125.57, 123.59, 117.91, 117.45, 115.21, 51.91, 46.90, 32.55, 11.88. Найдено, %: С 69.74; H 5.62. С₂₆H₂₅NO₄S. Вычислено, %: С 69.78; H 5.63.</u> Реакция бромпроизводных фурилхромонов с фенолами (общая методика). Смесь 1 ммоль соединения 1b, 2.1 ммоль фенола или 4-*трет*-бутилфенола нагревают (~ 70 °C) в растворе ДМФА в присутствии K_2CO_3 . После окончания реакции (контроль TCX) смесь выливают в воду, экстрагируют хлористым метиленом, экстракт промывают небольшим количеством ледяной воды и фильтруют через силикагель. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-(5-феноксифуран-2-ил)-4Н-хромен-4-он (3а). Выход 0.184 г (45%). Т. пл. 146–147 °С. Спектр ЯМР ¹Н (300 МГц), δ, м. д. (*J*, Гц): 8.20 (1Н, д, *J* = 7.8, H-5); 7.87 (2Н, д, *J* = 7.8, H'-2); 7.73 (1Н, т, *J* = 7.8, H-7); 7.27–7.58 (7Н, м, H Ar); 7.11–7.18 (2Н, м, H Ar + H-3 фуран); 6.92 (2Н, д, *J* = 8.0, H" Ar); 5.60 (1Н, д, *J* = 3.4, H-3 фуран). Спектр ЯМР ¹³С (75 МГц), δ, м. д.: 192.75, 176.00, 160.49. 155.60, 155.09, 151.04, 137.10, 136.79, 134.18, 133.54, 129.92, 129.35, 128.79, 128.66, 126.09, 125.46, 125.14, 123.57, 118.63, 118.11, 117.99, 117.84. Масс-спектр, *m/z* (*I*_{отн}, %): 408 [М]⁺ (6), 363 (2), 317 (2), 316 (14), 315 [М–ОРh]⁺ (100), 288 (3), 275 (2). Найдено, %: С 76.40; Н 3.89. С₂₆Н₁₆О₅. Вычислено, %: С 76.46; Н 3.95.

3-Бензоил-2-[5-(4-*трет***-бутилфенокси)фуран-2-ил]-4Н-хромен-4-он (3b).** Выход 0.162 г (35%). Т. пл. 168–169 °С. Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.21 (1H, д, *J* = 7.9, H-5); 7.90 (2H, д, *J* = 7.6, H'-2); 7.73 (1H, т, *J* = 7.5, H-7); 7.56– 7.30 (7H, м, H Ar); 7.11 (1H, д, *J* = 3.4, H-3 фуран); 6.86 (2H, д, *J* = 8.5, H" Ar); 5.55 (1H, д, *J* = 3.4, H-4 фуран); 1.33 (9H, с, С(СН₃)₃). Масс-спектр, *m*/*z* (*I*_{0тн}, %): 464 [M]⁺ (2), 407 (1), 388 (1), 360 (2), 338 (2), 317 (11), 316 (15), 315 [M–OPh(*t*-Bu)]⁺ (100), 302 (2), 275 (4), 259 (4). Найдено, %: С 77.49; Н 5.31. С₃₀Н₂₄О₅. Вычислено, %: С 77.57; Н 5.21.

Реакция бромпроизводных фурилхромонов с аминами (общая методика). Смесь 1 ммоль соединения 1b и 2.1 ммоль морфолина или пиперидина кипятят в этаноле. После окончания реакции (контроль TCX) растворитель упаривают в вакууме. Остаток растворяют в хлористом метилене, промывают водой, сушат и отфильтровывают через силикагель. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-(5-морфолин-4-илфуран-2-ил)-4Н-хромен-4-он (4а). Выход 0.316 г (79%). Т. пл. 260–261 °С. Спектр ЯМР ¹Н (200 МГц), б, м. д. (*J*, Гц): 8.18 (1H, д, *J* = 7.7, H-5); 8.03 (2H, д, *J* = 7.3, H'-2); 7.68 (1H, т, *J* = 7.7, H-7); 7.56 (1H, т, *J* = 7.2, H'-4); 7.48–7.36 (4H, м, H Ar); 7.24 (1H, д, *J* = 3.8, H-3 фуран); 5.26 (1H, д, *J* = 3.7, H-4 фуран); 3.59–3.56 (4H, м, N(CH₂C<u>H₂)₂O</u>); 2.92–2.88 (4H, м, N(C<u>H₂CH₂)₂O</u>). Масс-спектр. *m/z* (*I*_{0тн}, %): 329 [М–(CH₂)₂O]⁺ (2), 316 (2), 315 [М–морфолин]⁺ (40), 293 (2), 282 (2), 257 (3), 242 (3), 231 (5), 87 [морфолин] (100). Найдено, %: С 71.75; H 4.71. С₂₄H₁₉NO₅. Вычислено, %: С 71.81; H 4.77.

3-Бензоил-2-[5-(пиперидин-1-ил)фуран-2-ил]-4Н-хромен-4-он (4b). Выход 0.287 г (72%). Т. пл. 212–213 °С. Спектр ЯМР ¹Н (200 МГц), б, м. д. (*J*, Гц): 8.17 (1H, д, *J* = 7.8, H-5); 8.06 (2H, д, *J* = 7.6, H'-2); 7.33–7.70 (6H, м, H Ar); 7.25 (1H, д, *J* = 3.4, H-3 фуран); 5.20 (1H, д, *J* = 3.8, H-4 фуран); 2.91–2.96 (4H, м, N(C<u>H</u>₂CH₂)₂CH₂); 1.41–1.46 (6H, м, N(CH₂C<u>H</u>₂)₂C<u>H</u>₂). Масс-спектр, *m/z* (*I*_{отн}, %): 400 (20), 399 [M]⁺ (64), 368 (3), 342 (4), 318 (5), 317 (10), 316 (25), 315 [М – пиперидин]⁺ (100), 289 (8), 288 (36).

3-Бензоил-2-(5-(бромметил)фуран-2-ил)-4Н-хромен-4-он (5). Смесь 0.330 г (1 ммоль) соединения **1a**, 0.187 г (1.05 ммоль) NBS и каталитических количеств пероксида дибензоила в четырёххлористом углероде кипятят 2 ч (контроль TCX). После окончания реакции раствор разбавляют петролейным эфиром (1:1) и фильтруют через слой силикагеля. Полученный раствор упаривают в вакууме и перекристаллизовывают из смеси ацетон–петролейный эфир, 1:1. Выход 0.31 г (85%), т. пл. 185–186 °C. Спектр ЯМР ¹Н (200 МГц), δ , м. д. (*J*, Гц): 8.23 (1H, д. д, J = 7.9, J = 1.5, H-5); 8.02 (2H, д, J = 7.5, H'-2); 7.75 (1H, д. т, J = 5.0, J = 1.7, H-7);

7.55–7.60 (2H, м, H Ar); 7.43–7.48 (3H, м, H Ar); 7.07 (1H, д, J = 3.5, H-3 фуран); 6.46 (1H, д, J = 3.5, H-4 фуран); 4.22 (2H, с, CH₂Br). Спектр ЯМР ¹³С (75 МГц), δ , м. д.: 192.49, 176.18, 155.63, 154.71, 150.70, 145.55, 137.04, 134.48, 133.81, 129.55, 129.33, 128.85, 126.12, 125.69, 123.57, 119.66, 118.02, 116.62, 112.01, 21.54. Масс-спектр, m/z (I_{0TH} , %): 410 [M]⁺ (8), 409 (5), 408 (7), 373 (4), 343 (9), 330 (26), 329 [M–Br]⁺ (100), 315 [M–CH₂Br]⁺ (31), 303 (18), 302 (13), 301 (59), 283 (6), 273 (6). Найдено, %: С 61.61; H 3.18. С₂₁H₁₃BrO₄. Вычислено, %: С 61.63; H 3.20.

Взаимодействие соединения 5 с солями тиолов (общая методика). Смесь 0.409 г (1 ммоль) соединения 5 и 1.05 ммоль тиофенолята натрия или KSCN нагревают в этаноле (60–70 °C). После окончания реакции (контроль TCX) растворитель упаривают в вакууме. Остаток растворяют в хлористом метилене и фильтруют через слой силикагеля. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-[5-(фенилтиометил)фуран-2-ил]-4Н-хромен-4-он (ба). Выход 0.332 г (75%). Т. пл. 114–115 °С. Спектр ЯМР ¹Н (300 МГц), δ, м. д. (*J*, Гц): 8.23 (1H, д, *J* = 7.8, H-5); 8.02 (2H, д, *J* = 7.6, H'-2); 7.73 (1H, т, *J* = 7.8, H-7); 7.42–7.59 (5H, м, H Ar); 7.14–7.30 (5H, м, H Ar); 7.00 (1H, д, *J* = 3.5, H-3 фуран); 6.17 (1H, д, *J* = 3.5, H-4 фуран); 3.84 (2H, с, CH₂Ph). Масс-спектр, *m/z* (*I*_{отн}, %): 438 [M]⁺ (4), 348 (2), 330 (33), 329 (38), 316 (3), 315 [M–CH₂Ph]⁺ (100), 303 (5), 302 (10), 301 (38), 285 (7). Найдено, %: С 73.87; H 4.10. С₂₇Н₁₈О₄S. Вычислено, %: С 73.96; H 4.14.

3-Бензоил-2-[5-(тиоцианатометил)фуран-2-ил]-4Н-хромен-2-он (бе). Выход 0.309 г (80%). Т. пл. 180–181 °С. Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.23 (1H, д, *J* = 7.8, H-5); 8.00 (2H, д, *J* = 7.3, H'-2); 7.77 (1H, т, *J* = 7.6, H-7); 7.63–7.43 (5H, м, H Ar); 7.13 (1H, д, *J* = 3.2, H-3 фуран); 6.56 (1H, д, *J* = 3.2, H-4 фуран); 3.94 (2H, с, CH₂SCN). Масс-спектр, *m/z* (*I*_{0TH}, %): 387 [M]⁺ (4), 343 (2), 340 (5), 332 (10), 331 (26), 330 (68), 329 (100), 321 (6), 316 (32), 315 [M–CH₂SCN]⁺ (82), 302 (26), 301 (28), 288 (5), 286 (8), 273 (6). Найдено, %: С 73.77; Н 4.00. С₂₂H₁₃NO₄S. Вычислено, %: С 68.21; Н 3.38.

Реакция соединения 5 с тиолами (общая методика). Смесь 0.409 г (1 ммоль) соединения 5 с 1.05 ммоль BuSH или *t*-BuSH, или этилового эфира тиогликолевой кислоты перемешивают в ДМФА при легком нагревании (<50 °C) в присутствии K_2CO_3 . После окончания реакции (контроль TCX) смесь выливают в воду. Выпавший осадок отфильтровывают, промывают водой, растворяют в хлористом метилене, сушат и образовавшийся раствор фильтруют через силика- гель. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-[5-(*трет*-бутилтиометил)фуран-2-ил]-4H-хромен-4-он (6b). Выход 0.334 г (80%), т. пл. 130–132 °С. Спектр ЯМР ¹Н (200 МГц), δ , м. д. (*J*, Гц): 8.22 (1H, д, *J* = 7.3, H-5); 8.02 (2H, д, *J* = 7.3, H'-2); 7.74 (1H, т, *J* = 7.3, H-7); 7.60–7.41 (5H, м, H Ar); 7.09 (1H, д, *J* = 3.4, H-3 фуран); 6.35 (1H, д, *J* = 3.4, H-4 фуран); 3.51 (2H, с, CH₂SCMe₃); 1.16 (9H, с, SC(CH₃)₃). Масс-спектр, *m/z* (*I*_{0тн}, %): 419 [M]⁺ (2), 418 (6), 343 (2), 330 (2), 329 (9), 317 (5), 316 (75), 315 [М–СН₂SCHMe₃] (100), 301 (11), 287 (4). Найдено, %: С 71.71; Н 5.23. С₂₅H₂₂O₄S. Вычислено, %: С 71.75; H 5.30.

3-Бензоил-2-[5-(бутилтиометил)фуран-2-ил]-4Н-хромен-4-он (6с). Выход 0.196 г (47%). Т. пл. 85–86 °С. Спектр ЯМР ¹Н (200 МГц), δ, м. д. (*J*, Гц): 8.22 (1Н, д, *J* = 7.7, Н-5); 8.00 (2Н, д, *J* = 7.5, Н'-2); 7.74 (1Н, т, *J* = 7.6, Н-7); 7.42–7.58 (5Н, м, H Ar); 7.10 (1Н, д, *J* = 2.9, Н-3 фуран); 6.32 (1Н, д, *J* = 2.8, Н-4 фуран); 3.45 (2Н, с, C<u>H</u>₂SC₄H₁₀); 2.30 (2Н, т, *J* = 6.7, SC<u>H</u>₂(CH₂)₂Me); 1.29–1.42 (4Н, м, SCH₂(C<u>H</u>₂)₂Me); 0.88 (3H, т, *J* = 6.8, SCH₂(CH₂)₂C<u>H</u>₃). Масс-спектр, *m/z* (*I*_{отн}, %): 418 [M]⁺ (14), 361 (3), 347 (2), 331 (15), 330 (68), 316 (23), 315 [M–CH₂SBu]⁺ (100), 302 (8), 301 (27). Найдено, %: С 71.70; Н 5.25. C₂₅H₂₂O₄S. Вычислено, %: С 71.75; Н 5.30.

Этиловый эфир 2-{[5-(3-бензоил-4-оксо-4H-хромен-2-ил)фуран-2-ил]метилтио}уксусной кислоты (6d). Выход 0.287 г (64%). Т. пл. 123–125 °С. Спектр ЯМР ¹H (200 МГц), δ , м. д. (*J*, Гц): 8.22 (1H, д, *J* = 8.1, H-5); 8.01 (2H, д, *J* = 7.3, H'-2); 7.75 (1H, т, *J* = 7.9, H-7); 7.41–7.58 (5H, м, H Ar); 7.09 (1H, д, *J* = 3.7, H-3 фуран); 6.36 (1H, д, *J* = 3.7, H-4 фуран); 4.17 (2H, к, *J* = 7.2, CH₂Me); 3.64 (2H, с, CH₂SCH₂COOEt); 2.94 (2H, с, CH₂SCH₂COOEt), 1.28 (3H, т, *J* = 7.2, OCH₂CH₃). Macc-спектр, *m/z* (*I*_{отн}, %): 451 (5), 449 [M]⁺ (8), 435 (5), 416 (2), 403 (6), 385 (2), 373 (1), 362 (13), 361 (100), 343 (2), 333 (6), 331 (10), 330 (31), 329 (46), 316 (81), 315 [M–CH₂SCH₂COOEt]⁺ (99), 302 (10), 301 (39). Найдено, %: C 66.91; H 4.39. C₂₅H₂₀O₆S. Вычислено, %: C 66.95; H 4.49.

3-(Бензоил-2-[5-(феноксиметил)фуран-2-ил]-4Н-хромен-4-он (7). К смеси 1 ммоль К₂CO₃, 1.05 ммоль фенола добавляют 0.409 г (1 ммоль) бромпроизводного **5** и перемешивают в ДМФА при 50 °С. После окончания реакции (контроль TCX) смесь выливают в воду. Выпавший осадок отфильтровывают, промывают водой, растворяют в хлористом метилене, сушат, и образовавшийся раствор фильтруют через силикагель. После упаривания в вакууме остаток перекристаллизовывают из этанола. Выход соединения **7** 84 мг (20%). Т. пл. 136–138 °С. Спектр ЯМР ¹Н (300 МГц), δ , м. д. (J, Гц): 8.24 (1H, д, J = 7.9, H-5); 7.99 (2H, д, J = 7.8, H'-2); 7.75 (1H, т, J = 7.9, H-7); 7.40–7.58 (5H, м, H Ar); 7.22–7.25 (2H, м, H Ar); 6.49 (1H, д, J = 3.1, H-3 фуран); 6.97 (1H, т, J = 7.8, H Ar); 6.76 (2H, д, J = 8.1, H Ar); 6.49 (1H, д, J = 3.4, H-4 фуран); 4.82 (2H, с, CH₂OPh). Масс-спектр, m/z (I_{0TH} , %): 422 [M]⁺ (2), 374 (1), 331 (7), 329 (100), 317 (2), 316 (8), 315 [M–CH₂OPh]⁺ (14), 303 (1), 301 (27), 286 (4), 285 (8), 274 (4), 273 (11). Найдено, %: С 76.70; H 4.21. C₂₇H₁₈O₅. Вычислено, %: С 76.77; H 4.29.

Реакция соединения 5 с аминами (общая методика). В смесь 1 ммоль К₂CO₃, 1.05 ммоль аминотолуола или 2.05 ммоль морфолина, или *о*-толуидина добавляют 1 ммоль бромпроизводного 5 и перемешивают в ДМФА при комнатной температуре. После окончания реакции (контроль TCX) смесь выливают в воду. Выпавший осадок отфильтровывают, промывают водой, растворяют в хлористом метилене, сушат и образовавшийся раствор фильтруют через силикагель. После упаривания в вакууме остаток перекристаллизовывают из этанола.

3-Бензоил-2-[5-(морфолинометил)фуран-2-ил]-4Н-хромен-4-он (8а). Выход 0.249 г (60%). Т. пл. 176–178 °С. Спектр ЯМР ¹Н (300 МГц), δ, м. д. (*J*, Гц): 8.21 (1H, д, *J* = 7.8, H-5); 8.02 (2H, д, *J* = 7.3, H'-2); 7.74 (1H, т, *J* = 7.1, H-7); 7.59–7.54 (2H, м, H Ar); 7.47–7.42 (3H, м, H Ar); 7.15–7.13 (1H, д, *J* = 3.5, H-3 фуран); 6.36 (1H, д, *J* = 3.7, H-4 фуран); 3.54–3.51 (4H, м, N(CH₂C<u>H</u>₂)₂O); 3.36 (2H, с, CH₂N); 2.17–2.15 (4H, м, N(C<u>H</u>₂CH₂)₂O). Масс-спектр. *m/z* (*I*_{отн}, %): 397 [M–O]⁺ (2), 343 (1), 332 (4), 330 (19), 329 (100), 315 [M–CH₂N(CH₂CH₂)₂O]⁺ (2), 314 (18), 301 (5), 293 (4), 285 (3), 273 (6), 271 (5), 261 (4), 86 (7). Найдено, %: С 72.19; Н 5.00. С₂₅H₂₁NO₅. Вычислено, %: С 72.28; Н 5.10.

3-Бензоил-2-{5-[(*о***-толиламино)метил]фуран-2-ил}-4Н-хромен-4-он (8b).** Выход 0.3 г (70%). Т. пл. 91–93 °С. Спектр ЯМР ¹Н (300 МГц), б, м. д. (*J*, Гц): 8.23 (1H, д. д, *J* = 8.0, *J* = 1.4, H-5); 8.00 (2H, д, *J* = 7.2, H'-2); 7.74 (1H, д. т, *J* = 7.8, *J* = 1.6, H-7); 7.39–7.59 (5H, H Ar); 7.00–7.09 (3H, м, H Ar); 6.68 (1H, т, *J* = 7.4, H Ar); 6.33–6.41 (2H, м, H Ar); 4.18 (2H, с, CH₂); 2.08 (3H, с, CH₃). Масс-спектр, *m/z* (*I*_{07H}, %): 436 [M]⁺ (9), 435 (53), 434 (3), 417 (2), 407 (2), 331 (5), 330 (39), 329 (61), 328 (53), 317 (16), 315 [M–CH₂NPhMe]⁺ (100). Найдено, %: С 77.15; H 4.78. C₂₈H₂₁NO₄S. Вычислено, %: С 77.23; H 4.86.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 10-03-00250-а).

СПИСОК ЛИТЕРАТУРЫ

- V. A. Barachevsky, Y. P. Strokach, Y. A. Puankov, O. I. Kobeleva, T. M. Valova, K. S. Levchenko, V. N. Yarovenko, M. M. Krayushkin, *ARKIVOC*, 2009, ix, 70 (2008).
- M. M. Krayushkin, K. S. Levchenko, V. N. Yarovenko, I. V. Zavarzin, V. A. Barachevsky, Y. A. Puankov, T. M. Valova, O. I. Kobeleva, *ARKIVOC*, 2009, ix, 269 (2008).
- 3. K. R. Huffman, C. E. Kuhn, A. Zweig, J. Am. Chem. Soc., 92, 599 (1970).
- 4. R. T. Cummings, J. P. Dizio, G. A. Krafft, Tetrahedron Lett., 29, 69 (1988).

ОАО Центральный научно-исследовательский технологический институт "Техномаш", ул. Ивана Франко, 4, Москва 121108, Россия e-mail: ntc_technology@socket.ru Поступило 21.01.2011

^аЦентр фотохимии РАН, ул. Новаторов, 7а, корпус I, Москва 119421, Россия e-mail: barva@photonics.ru

⁶Институт органической химии им. Н. Д. Зелинского РАН, Ленинский проспект, 47, Москва 119991, Россия e-mail: mkray@mail.ioc.ac.ru