Посвящается 80-летию Леонида Исааковича Беленького

М. А. Кузнецов*, В. В. Воронин

ВНУТРИ- И МЕЖМОЛЕКУЛЯРНЫЕ ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ 2-АЦИЛ- И 2-АЛКОКСИКАРБОНИЛ-N-ФТАЛИМИДОАЗИРИДИНОВ

Нагревание 2-ацил- и 2-алкоксикарбонил-N-фталимидоазиридинов приводит к замещенным оксазолам с выходом 45–65%, причём при наличии в азиридине ацильной и алкоксикарбонильной групп образуются только эфиры оксазолкарбоновых кислот. В результате термолиза тех же азиридинов в присутствии N-фенилмалеимида и диметилового эфира ацетилендикарбоновой кислоты из азиридинов с двумя заместителями при атомах углерода получаются как оксазолы, так и продукты 1,3-диполярного циклоприсоединения, но из тризамещённых азиридинов – только оксазолы.

Ключевые слова: N-аминопирролидины, N-аминопирролины, азиридины, азо-метинилиды, 1,3-оксазолы, пирролы, 1,3-диполярное циклоприсоединение.

Термически или фотохимически индуцированный разрыв связи С–С в напряженном азиридиновом цикле приводит к 1,3-диполям, так называемым азометинилидам [1], присоединение которых по кратным связям диполярофилов дает разнообразные пятичленные азотистые гетероциклы [2]. В работах [3–5] была показана возможность генерирования в термических условиях и последующего 1,3-диполярного циклоприсоединения азометинилидов из производных N-фталимидоазиридина. В то же время, нагревание N-фталимидоазиридинов, имеющих ацильные [6] или алкоксикарбонильные [7] заместители при атомах углерода азиридинового цикла, в отсутствие диполярофилов приводит к оксазолам, что можно рассматривать как результат 1,5-электроциклизации промежуточных ацилазометинилидов, сопровождающейся отщеплением фталимидной группы.

Таким образом, для ацильных и алкоксикарбонильных производных N-фталимидоазиридина возможны, по меньшей мере, два типа термических превращений: 1,3-диполярное циклоприсоединение и перегруппировка в оксазолы. Эти процессы могут конкурировать, и их препаративная ценность будет зависеть от того, какой из них окажется предпочтительнее. Поэтому целью настоящей работы стало исследование как внутри-, так и межмолекулярных термических превращений 2-ацил- и 2-алкоксикарбонил-N-фталимидоазиридинов.

В качестве объектов исследования мы выбрали соединения **1а–f**. При нагревании азиридина **1a** ранее уже был получен соответствующий оксазол с выходом 60% [6], однако в реакции с диполярофилами его

не вводили. Выбор соединений **1b** и **1c** обусловлен потенциальной возможностью получения на их основе в результате 1,3-диполярного циклоприсоединения труднодоступных спиросочленённых гетероциклических структур. Для азиридина **1d** мы предполагали возможность альтернативных превращений вследствие наличия связи C=C в боковой цепи, а на примере соединений **1e** и **1f** мы рассчитывали выяснить, какая группировка окажется более активной при перегруппировке в оксазол – ацильная или алкоксикарбонильная. Диполярофилами послужили наиболее активные и часто применяемые в качестве "ловушек" N-фенилмалеимид и диметиловый эфир ацетилендикарбоновой кислоты (ДМАД).

N-Фталимидоазиридины 1a-f получены окислительным аминоазиридинированием соответствующих непредельных карбонильных соединений 50% избытком N-аминофталимида при -20 °C по стандартной методике [8].

1a, **2a** R = Me, $R^1 = H$, $R^2 = Ph$, **1–3 b–d** $R^2 = Ph$, **b** $R+R^1 = (CH_2)_4$, **c** $R+R^1 = (CH_2)_3$, **d** $R = C^{\alpha}H=C^{\beta}HPh$, $R^1 = H$; **e** R = Ph, $R^1 = H$, $R^2 = CO_2Me$; **f** R = Me, $R^1 = CO_2Et$, $R^2 = Ph$

Азиридины **1b**–**f** ранее не описаны или были лишь упомянуты в литературе, поэтому они охарактеризованы результатами элементного анализа и спектральными данными. Вследствие характерной для производных N-аминоазиридина медленной в шкале времени ЯМР инверсии эндоциклического атома азота [9] в средней области спектров ЯМР ¹Н (3.7–5.0 м. д.)

соединений **1а,d,е** присутствуют две пары дублетов, соответствующих 220

протонам азиридинового цикла двух инвертомеров. Их соотношение для азиридинов **1a**, **1d** и **1e** составляет 1:0.06, 1:0.07 и 1:0.7, соответственно, поэтому в спектрах ЯМР ¹³С соединений **1a**, d надежно идентифицируются сигналы только основного инвертомера. Содержание минорного инвертомера для соединений **1b**, c, f, по-видимому, настолько мало, что его сигналы в спектрах ЯМР не обнаруживаются.

Исходя из стерических соображений, можно полагать, что для азиридинов **1a**,**d** основным является инвертомер, в котором фталимидная группа находится в *иис*-положении к меньшей по размеру группе COR, а в случае 1b.c.f единственный тризамещенных азиридинов наблюдаемый инвертомер имеет цис-ориентацию фталимидной группы и азиридинового протона. Инвертомеры азиридина 1е присутствуют в сопоставимых количествах, так как в данном случае эффективные объёмы заместителей при атомах углерода азиридинового цикла близки по величине (оба заместителя имеют карбонильные группы рядом с трёхчленным циклом). Значения вицинальных КССВ соединений 1a,d,e (4.4-4.9 для основного инвертомера и 4.7-5.8 Гц для минорного) свидетельствуют о *транс*-расположении азиридиновых протонов, что согласуется с хорошо известной полной стереоспецифичностью окислительного аминоазиридинирования [3-10]. Нужно также отметить, что в спектрах ЯМР ¹³С азиридинов 1а-f сигналы атомов углерода фталимидной группы обычно уширены, что является следствием второго медленного в шкале времени ЯМР процесса – вращения по тетразамещённой связи N–N [4, 5, 10], причём в спектре азиридина 1c сигналы атомов C(a) и NCO вследствие сильного уширения вообще не видны.

Нагревание азиридинов **1b**–**f** в толуоле при 90–200 °C в герметичных сосудах в течение 45 мин– 5 ч приводит к оксазолам **3b**–**f** с выходами 45–65%. Видно, что для азиридинов **1e**,**f**, имеющих и ацильные, и алкоксикарбонильные заместители, превращение в оксазолы происходит только с участием ацильных групп. Соединения **3b**,**f** уже известны и идентифицированы сравнением их спектров ЯМР с литературными данными. Оксазолы **3с**–**e** нами полностью охарактеризованы, поскольку соединения **3с**,**e** получены впервые, а для оксазола **3d** в литературе имеется лишь температура плавления. Интересно отметить, что азиридины **1b**,**c** начинают разрушаться с заметной скоростью уже при 150 °C, однако при этом наблюдается сильное осмоление, и выходы оксазолов **3b**,**c** малы (20–28%). Повысив температуру до 180 °C, нам удалось увеличить выходы целевых соединений до 45–54%. Это говорит о том, что при повышении температуры скорость раскрытия азиридинов в азометинилиды увеличивается быстрее, чем скорости конкурирующих побочных процессов.

Таким образом, термолиз всех полученных нами ацилазиридинов приводит к соответствующим оксазолам, причём при наличии в молекуле и ацильной, и алкоксикарбонильной групп реакция протекает только с участием ацильной группы.

Термолиз азиридинов **1a**,**d**,**e** в тех же условиях, но в присутствии 2 экв. N-фенилмалеимида приводит к смеси аддуктов **4a**,**d**,**e** и оксазолов **3a**,**d**,**e**.

4 a R = Me, R² = Ph; d R = -CH=CHPh, R² = Ph; e R = Ph, R² = CO_2Me

Следует отметить, что, как и для исходных N-фталимидоазиридинов, вследствие затрудненного вращения по связи N–N тетразамещённого гидразинного фрагмента в спектрах ЯМР ¹³С пирролидинов **4a,d,e** отсутствуют сигналы атомов NCO фталимидной группы, соединений **4d,e** – атомов C(a), а соединения **4d** – ещё и атомов C(b).

Пространственное строение циклоаддуктов **4a**,**d**,**e** установлено по данным двумерных спектров NOESY ¹Н. Сопоставление величин ЯЭО для протонов пирролидиновых циклов соединений **4a**,**d**,**e** позволяет утверждать, что они являются аддуктами *экзо*-типа с *цис*-ориентацией заместителей бывшего азиридинового цикла.

5a R = Me, $R^2 = Ph$; e R = Ph, $R^2 = CO_2Me$

Нагревание азиридинов **1а**, е в присутствии ДМАД приводит к пирролам **5а**, е, причём, если из реакции с азиридином **1а** мы выделили и оксазол **3а**, то для азиридина **1е** образование оксазола **3е** зафиксировано не было. Помимо этого, в случае азиридина **1a** в спектре ЯМР ¹Н реакционной смеси присутствовал дополнительный набор сигналов, включающий синглеты при 2.55, 3.64 и 3.79 и два дублета при 5.05 и 6.10 м. д. с КССВ 5.8 Гц с соотношением интенсивностей 3:3:3:1:1. По значению химических сдвигов и КССВ дублеты соответствуют протонам H-2,5 пирролинового цикла в 1-фталимидо-2,3,4,5-тетразамещённых 3-пирролинах [10], а синглеты явно отвечают протонам ацетильной и двух метоксикарбонильных групп. Исходя из этого, мы приписываем соединению структуру 3-пирролина **6a**. К сожалению, выделить это неустойчивое соединение нам не удалось ни хроматографически, ни кристаллизацией. Одним из продуктов его деструкции, очевидно, является пиррол **5a**, поскольку его препаративный выход оказался много выше ожидаемого на основе спектра ЯМР ¹Н реакционной смеси*.

Термолиз азиридинов **1b**,**c** в присутствии как N-фенилмалеимида, так и ДМАД не дает ожидаемых циклоаддуктов. В ходе опытов наблюдается сильное осмоление, а в результате хроматографического разделения реакционных смесей получаются бензальдегид, фталимид и оксазолы **3b**,**c**. Варьирование температуры нагревания (150–190 °C) и избытка диполярофилов (2–9 экв.) не привело к получению циклоаддуктов.

Единственным продуктом термолиза азиридина **1f** в присутствии тех же диполярофилов, согласно спектрам ЯMP ¹H, зарегистрированным непосредственно после охлаждения и упаривания реакционных смесей, стал оксазол **3f**. Нагревание азиридина **1d** в присутствии ДМАД также не привело к ожидаемому циклоаддукту. В спектре ЯMP ¹H реакционной смеси мы смогли надёжно идентифицировать только сигналы оксазола **3d**.

Как уже отмечалось нами ранее [4, 5], взаимодействие *транс*-дизамещённых азиридинов **1**а,**d**,**e** с N-фенилмалеимидом приводит к аддуктам *экзо*-типа с *цис*-ориентацией заместителей при атомах углерода бывшего азиридинового цикла, что согласуется с приведённой ниже схемой реакции.

На первой стадии происходит конротаторное раскрытие азиридинового цикла с образованием азометинилилов *U*- или *W*-типа. Наблюдаемая стереоспецифичность присоединения диполей к N-фенилмалеимиду свидетельствует о том, что в условиях реакции их изомеризации в S-диполи не происходит. Присоединяться к диполярофилу, в принципе, может как *W*-, так и U-диполь, но для N-фенилмалеимида более вероятной представляется реакция с участием *W*-диполя, так как для него возможен стерически незатрудненный экзо-подход к диполярофилу. В пользу такого пространственного течения реакции говорит и экзо-расположение заместителей в циклоаддуктах. U-Диполь может циклизоваться в оксазолин, из которого в результате отщепления молекулы фталимида образуется оксазол, или превращаться в нитрилилид А, который далее способен циклизоваться непосредственно в оксазол. Совершенно аналогично наблюдаемое в реакциях с ДМАД образование пирролов может происходить как вследствие отщепления молекулы фталимида от первоначальных пирролинов, так и в результате присоединения к ДМАД нитрилилида А.

^{*} Согласно спектру ЯМР ¹Н реакционной смеси соотношение соединений **5а–3а–6а** составляет 22 : 38 : 40.

con. - конротаторное раскрытие

Отсутствие циклоаддуктов и сильное осмоление при термолизе спироазиридинов, вероятно, является следствием того, что для аналогичного U-диполю (Z,Z)-диполя предпочтительным процессом оказывается превращение в оксазол, а присоединение (E,E)-диполя к диполярофилу не идет вследствие стерических затруднений.

В случае тризамещённого азиридина **1f**, по-видимому, скорость присоединения промежуточного азометинилида к диполярофилу в условиях реакции мала, но вследствие хорошей стабилизации диполя акцепторными заместителями процессы деструкции также идут медленно, и самым быстрым процессом оказывается его превращение в оксазол.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на спектрометре Bruker DPX-300 (300 и 75 МГц соответственно) для растворов в CDCl₃ с использованием в качестве внутреннего стандарта в спектрах ЯМР ¹Н сигнала остаточных протонов (δ 7.26 м. д.), а в спектрах ЯМР ¹³С – сигнала атома углерода растворителя (δ 77.16 м. д.) [11]. Элементные анализы выполнены на автоматическом CHN-анализаторе HP-185B фирмы Hewlett-Packard. Масс-спектры высокого разрешения с ионизацией методом электрораспыления (ESI) зарегистрированы на спектрометре micrOTOF фирмы Bruker. Состав реакционных смесей и полученных при их разделении фракций, а также чистота выделенных соединений контро-лировались методом TCX на пластинках POLYGRAM SIL G/UV₂₅₄ и ALUGRAM SIL G/UV₂₅₄ фирмы Macherey-Nagel.

N-Аминофталимид получен согласно работе [12]. (*E*)-2-Бензилиденциклогексанон (**2b**) [13] и (*E*)-2-бензилиденциклопентанон (**2c**) [14] синтезированы по методике, аналогичной [15], бензальацетон (**2a**) и дибензальацетон (**2d**) – по методикам [16]. Обработкой β-бензоилакриловой [(2*E*)-4-оксо-4-фенилбут-2еновой] кислоты [17] тионилхлоридом с последующим добавлением избытка метанола получен соответствующий метиловый эфир **2e** [18]. Этиловый эфир (*Z*)-2-бензилиден-3-оксобутановой кислоты **2f** синтезирован согласно работе [19]. Чистый (*Z*)-изомер получен хроматографическим разделением первоначально полученной смеси диастереомеров, его пространственная конфигурация подтверждена сравнением спектров ЯМР ¹Н с литературными данными [19].

N-Фталимидоазиридины 1a-f (общая методика). К суспензии 1.863 г (13.5 ммоль) поташа в растворе 3.0 ммоль непредельного соединения в 30 мл безводного дихлорметана, охлаждённой до –20 °С, при перемешивании в течение 30 мин поочередно добавляют небольшими примерно равными порциями 0.729 г (4.5 ммоль) N-аминофталимида и 1.995 г (4.5 ммоль) тетраацетата свинца. Смесь перемешивают ещё 20 мин при комнатной температуре, фильтруют через слой силикагеля (1.5 см) и промывают остаток дихлорметаном (100–150 мл). Объединённые фильтраты упаривают в вакууме, остаток разделяют методом колоночной хроматографии на 30 г силикагеля, элюируя дихлорметаном.

(2*R*',3*S*')-2-Ацетил-3-фенил-1-фталимидоазиридин (1а). Выход 0.679 г (74%). Зеленовато-жёлтые кристаллы, т. пл. 192 °С (т. пл. 192–193 °С [6]). Согласно спектру ЯМР ¹Н, существует в виде смеси двух инвертомеров в соотношении 1 : 0.06. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.55 (с, СН₃ осн.) и 2.47 (с, СН₃ мин.), всего 3H; 3.72 (д, *J* = 4.4) и 4.37 (д, *J* = 4.4) – H-2,3 осн., 4.02 (д, *J* = 5.8) и 4.54 (д, *J* = 5.8) – H-2,3 мин., всего 2H; 7.37–7.43 (5H, м, C₆H₃); 7.66–7.77 (4H, м, PhthN). Спектр ЯМР ¹³С основного инвертомера, δ , м. д.: 31.51 (СН₃); 49.92, 51.07 (С-2,3); 123.07 (С-b); 127.06 и 128.60 (С-*m*,*o*); 128.52 (С-*p*); 130.18 (С-a); 133.98 (С-c); 134.91 (С-*ipso*); 164.67 (NCO); 198.50 (СО). Литературные спектры ЯМР ¹Н и ¹³С [6] хорошо согласуются с этими данными.

(2*R*',3*S*')-2-Фенил-1-фталимидо-1-азаспиро[2.5]октан-4-он (1b). Выход 1.027 г (99%). Зеленовато-жёлтые кристаллы, т. пл. 162 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.63 (1H, д. д. д, *J* = 14.5, *J* = 10.6, *J* = 3.9), 1.71–1.88 (3H, м) и 2.10–2.25 (2H, м) – H-6,7,8; 2.49 (1H, д. д. д. *J* = 18.0, *J* = 5.2, *J* = 5.2, H-5); 2.77 (1H, д. д. д. *J* = 18.0, *J* = 10.1, *J* = 7.5, H-5); 4.81 (1H, с, H-2); 7.32–7.43 (5H, м, C₆H₅); 7.65–7.75 (4H, м, PhthN). Спектр ЯМР ¹³С, δ, м. д.: 21.21, 23.12, 28.77, 39.47 (С-5,6,7,8); 54.14 (С-2); 55.22 (С-3); 123.14 (С-b); 127.92 (С-*p*); 128.02 и 128.42 (С-*m*,*o*); 130.42 (С-а); 133.59 (С-*ipso*); 134.08 (С-с); 164.95 (NCO); 203.09 (СО). Найдено: *m*/*z* 347.1340 [M + H]⁺. Вычислено: [M + H]⁺ 347.1390. Найдено, %: С 72.85; Н 5.20; N 8.04. С₂₁Н₁₈N₂O₃. Вычислено, %: С 72.82; Н 5.24; N 8.09. (2*R*',3*S*')-2-Фенил-1-фталимидо-1-азаспиро[2.4]гептан-4-он (1с). Выход 0.920 г (92%). Бесцветные кристаллы, т. пл. 114–116 °С. Спектр ЯМР ¹Н, б, м. д.: 1.87–2.02 (2H, м), 2.31–2.50 (3H, м), 2.69–2.80 (1H, м) – H-5,6,7; 4.36 (1H, с, H-2); 7.34–7.40 (5H, м, C₆H₅); 7.65-7.74 (4H, м, PhthN). Спектр ЯМР ¹³С, б, м. д.: 19.35, 27.06, 38.56 (С-5,6,7); 54.71 (С-2); 57.32 (С-3); 123.17 (С-b); 127.68 (С-*p*); 128.29 и 128.61 (С-*m*,*o*); 133.57 (С-*ipso*); 134.09 (С-с); 209.72 (СО). Сигналы атомов углерода С-а и NCO фталимидной группы не видны из-за сильного уширения. Найдено: *m*/*z* 333.1203 [М + Н]⁺. Вычислено: [М + Н]⁺ 333.1234. Найдено, %: С 72.29; H 4.78; N 8.45. С₂₀Н₁₆N₂O₃. Вычислено, %: С 72.28; H 4.85; N 8.43.

(2*R*',3*S*')-2-Фенил-3-[(*E*)-3-фенилпроп-2-еноил]-1-фталимидоазиридин (1d). На 0.702 г (3.0 ммоль) дибензальацетона 2d берут 0.486 г (3.0 ммоль) N-аминофталимида и 1.329 г (3.0 ммоль) тетраацетата свинца. Остаток после отгонки дихлорметана разделяют на 40 г силикагеля, элюируя смесью этилацетат–гексан, 1 : 4. Выход 0.415 г (35%). Желтоватые кристаллы, т. пл. 141 °C. Согласно спектру ЯМР ¹H, существует в виде смеси двух инвертомеров в соотношении 1 : 0.07. Спектр ЯМР ¹H, б, м. д. (*J*, Гц): 3.98 (д, *J* = 4.9) и 4.60 (д, *J* = 4.9) – H-2,3 осн., 4.15 (д, *J* = 5.5) и 4.93 (д, *J* = 5.5) – H-2,3 мин., всего 2H; 7.12 (д, *J* = 16.1) – H- α осн. и 7.23 (д, *J* = 16.2) – H- α мин., всего 1H; 7.34–7.67 (м, 2Ph, PhthN и H- β осн.) и 8.02 (д, *J* = 16.2) – H- β мин., всего 15H. Спектр ЯМР ¹³С основного инвертомера, δ, м. д.: 50.32 и 50.92 (C-2,3); 123.25 (C-b); 125.96 (C- α); 127.27, 128.79, 128.87, 129.11 (C-*m*,*o*); 128.67 и 131.17 (C-*p*); 130.38 (C-a); 134.09 (C-c); 134.23 и 135.37 (C-*ipso*); 144.75 (C- β); 164.70 (NCO); 189.32 (CO). Найдено: *m*/*z* 395.1442 [M + H]⁺. Вычислено: [M + H]⁺ 395.1390. Найдено, %: C 76.38; H 4.77; N 7.11. C₂₅H₁₈N₂O₃. Вычислено, %: C 76.13; H 4.60; N 7.10.

Метиловый эфир (2*R'*,3*R'*)-3-бензоил-1-фталимидоазиридин-2-карбоновой кислоты (1е). Реакцию проводят при 0 °С. Выход 0.885 г (84%). Бесцветные кристаллы, т. пл. 142 °С. Согласно спектру ЯМР ¹Н, существует в виде смеси двух инвертомеров в соотношении 1 : 0.7. Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 3.77 (с, CH₃ мин.) и 3.89 (с, CH₃ осн.), всего 3H; 3.85 (д, *J* = 4.7) и 4.87 (д, *J* = 4.7) – H-2,3 мин., 4.27 (д, *J* = 4.7) и 4.51 (д, *J* = 4.7) – H-2,3 осн., всего 2H; 7.51–7.82 (7H, м, PhthN и H-*m*,*p*), 8.08–8.11 (м, H-*o* осн.) и 8.25–8.28 (м, H-*o* мин.), всего 2H. Спектр ЯМР ¹³С, δ , м. д.: 43.69, 44.81, 45.35, 46.49, 53.28, 53.40 (CH₃, C-2,3); 123.47 и 123.49 (C-b); 128.98, 129.08, 129.27, 134.16, 134.30, 134.41 (*C*-*m*,*o*,*p*, C-c); 130.07 и 130.13 (C-a); 136.09 и 136.81 (C-*ipso*); 164.14 и 164.51 (NCO); 166.12 и 167.34 (COO); 188.97 и 191.34 (CO). Найдено: *m*/*z* 373.0763 [M + Na]⁺. Вычислено: [M + Na]⁺ 373.0795. Найдено, %: C 65.03; H 4.18; N 8.20. C₁₉H₁₄N₂O₅. Вычислено, %: C 65.14; H 4.03; N 8.00.

Этиловый эфир (2*R*',3*S*')-2-ацетил-3-фенил-1-фталимидоазиридин-2-карбоновой кислоты (1f). Реакцию проводят при 20 °С. После разделения на колонке фракции, содержащие соединение 1f, объединяют и упаривают в вакууме до объёма ~3 мл. Добавляют 4 мл эфира, а затем по каплям гексан до начала выпадения осадка. Через 3 ч осадок отфильтровывают и сушат на воздухе. Выход 0.882 г (78%). Зеленоватые кристаллы, т. пл. 138–139 °С. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.96 (3H, т, *J* = 7.1, CH₃); 2.57 (3H, с, COCH₃); 4.10 (2H, к, *J* = 7.1, CH₂); 4.78 (1H, с, H-3); 7.30–7.37 (3H, м, H-*m*,*p*); 7.42–7.45 (2H, м, H-*o*); 7.66–7.77 (4H, м, PhthN). Спектр ЯМР ¹³С, б, м. д.: 13.82 (CH₃); 29.36 (CO<u>C</u>H₃); 54.27 (C-3); 60.07 (C-2); 62.25 (CH₂); 123.39 (C-b); 127.67 и 128.47 (C-*m*,*o*); 128.75 (C-*p*); 130.26 (Cа); 132.08 (C-*ipso*); 134.31 (C-c); 164.39 (NCO); 165.53 (COO); 194.19 (CO). Найдено: *m/z* 401.1083 [M + Na]⁺. Вычислено: [M + Na]⁺ 401.1108. Найдено, %: С 66.43; H 4.78; N 7.18. C₂₁H₁₈N₂O₅. Вычислено, %: С 66.66; H 4.79; N 7.40. **Термические превращения азиридинов 1b–f в отсутствие диполярофилов** (общая методика). Раствор 0.5 ммоль азиридина **1b–f** в 10 мл безводного толуола нагревают в толстостенном стеклянном реакторе. Затем растворитель отгоняют в вакууме, остаток хроматографируют на 10 г силикагеля, элюируя смесью гексан–этилацетат от 10 : 1 до 4 : 1.

2-Фенил-4,5,6,7-тетрагидробензо[*d*]оксазол (3b) получают после 45 мин нагревания азиридина 1b при 180 °С. Выход 54 мг (54%). Желтоватые кристаллы, т. пл. 74 °С. Спектр ЯМР ¹Н, δ, м. д.: 1.83–1.91 (4H, м, H-5,6); 2.60–2.69 (4H, м, H-4,7); 7.40–7.43 (3H, м, H-*m*,*p*); 7.99–8.01 (2H, м, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 22.05, 23.02, 23.10, 23.24 (С-4,5,6,7); 125.98 и 128.76 (С-*m*,*o*); 129.76 (С-*p*); 128.17, 135.25 (С-*ipso*, С-3а); 146.97 (С-7а); 159.81 (С-2). Литературные спектры ЯМР ¹Н и ЯМР ¹³С [20] хорошо согласуются с этими данными.

2-Фенил-5,6-дигидро-4H-циклопента[*d*]оксазол (3с) получают после 1 ч нагревания азиридина 1с при 180 °С. Выход 42 мг (45%). Жёлтое масло. Спектр ЯМР ¹Н, δ, м. д.: 2.50–2.60 (2H, м, CH₂); 2.63–2.68 (2H, м, CH₂); 2.76–2.81 (2H, м, CH₂); 7.38–7.44 (3H, м, H-*m*,*p*); 7.97–8.00 (2H, м, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 22.62, 22.77, 27.10 (C-4,5,6); 125.86 и 129.82 (С-*m*,*o*); 128.80 (С-*p*); 128.63 (С-*ipso*); 145.41 (С-3а); 154.74 (С-7а); 165.63 (С-2). Найдено: *m*/*z* 186.0967 [M + H]⁺. C₁₂H₁₂NO. Вычислено: [M + H]⁺ 186.0919.

(*E*)-5-Стирил-2-фенилоксазол (3d) получают после 4 ч нагревания азиридина 1d при 140 °С и разделения на колонке (элюент гексан–этилацетат от 6 : 1 до 3 : 1). Выход 80 мг (65%). Жёлтые кристаллы, т. пл. 82 °С (т. пл. 105 °С [21]). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 6.95 (1Н, д, *J* = 16.3, =CH); 7.17 (1Н, с, H-4); 7.18 (1Н, д, *J* = 16.3, =CH); 7.27–7.53 (8Н, м, Н аром.); 8.10–8.13 (2Н, м, 2-Ph, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 113.21; 126.54; 126.64; 126.72; 127.48 (С-*ipso*); 128.38; 128.97; 129.60; 130.58; 136.52 (С-*ipso*); 150.48 (С-5); 161.22 (С-2). Найдено: *m*/*z* 248.1089 [M + H]⁺. Вычислено: [M + H]⁺ 248.1070. Найдено, %: С 82.68; H 5.39; N 5.43. С₁₇Н₁₃NO. Вычислено, %: С 82.57; H 5.30; N 5.66.

Метиловый эфир 5-фенилоксазол-2-карбоновой кислоты (3e) получают после 2 ч 30 мин нагревания азиридина **1e** при 200 °С и разделения на колонке (элюент гексан-этилацетат от 6 : 1 до 3 : 1). Выход 63 мг (62%). Бесцветные кристаллы, т. пл. 89–90 °С. Спектр ЯМР ¹Н, δ, м. д.: 4.01 (3H, с, CH₃); 7.38–7.48 (3H, м, H-*m*,*p*); 7.52 (1H, с, H-4); 7.73–7.76 (2H, м, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 53.24 (CH₃); 124.05 (C-4); 126.74 (C-*ipso*); 125.24 и 129.20 (C-*m*,*o*); 129.98 (C-*p*); 151.52, 154.52, 156.20 (C-2,5, CO). Найдено: *m/z* 226.0450 [M + Na]⁺. Вычислено: [M + Na]⁺ 226.0474. Найдено, %: С 65.07; H 4.47; N 6.89. C₁₁H₉NO₃. Вычислено, %: С 65.02; H 4.46; N 6.89.

Этиловый эфир 5-метил-2-фенилоксазол-4-карбоновой кислоты (3f) получают после 5 ч нагревания азиридина 1f при 90 °С и разделения на колонке (элюент дихлорметан). Выход 75 мг (65%). Жёлтые кристаллы, т. пл. 52–53 °С (т. пл. 48–49 °С [21]). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.41 (3H, т, *J* = 7.1, CH₃); 2.70 (3H, с, Het-CH₃); 4.42 (2H, к, *J* = 7.1, CH₂); 7.42–7.47 (3H, м, H-*m*,*p*); 8.04–8.08 (2H, м, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 12.35 (CH₃); 14.51 (CH₃); 61.14 (CH₂); 126.69 и 128.82 (С-*m*,*p*); 126.72, 128.91 (С-*ipso*, С-4); 130.83 (С-*p*); 156.27, 159.75, 162.61 (С-2,5, СО). Литературные спектры ЯМР ¹Н и ЯМР ¹³С [22] хорошо согласуются с этими данными.

Термические реакции азиридинов 1а,d,е с N-фенилмалеимидом (общая методика). Раствор 0.5 ммоль азиридина и 173 мг (1 ммоль) N-фенилмалеимида в 10 мл безводного толуола нагревают в толстостенном стеклянном реакторе. Затем растворитель отгоняют в вакууме, остаток разделяют на колонке с 20 г силикагеля.

Азиридин 1а нагревают 5 ч при 150 °С. Продукты реакции разделяют на колонке, элюируя смесью гексан–этилацетат от 4 : 1 до 1 : 1. Фракцию, содержащую соединение 4а, повторно разделяют на 6 г силикагеля, элюируя дихлорметаном, затем кристаллизуют из метанола. В результате получают 141 мг (59%) аддукта 4а и 16 мг (20%) оксазола 3а.

(3а*R'*,4*R'*,6*S'*,6а*S'*)-4-Ацетил-2,6-дифенил-5-фталимидотетрагидропирроло-[3,4-*с*]пиррол-1,3(2H,3аH)-дион (4а), бесцветные кристаллы, т. пл. 231–232 °С. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.55 (3H, с, CH₃); 3.58 (1H, д. д, *J* = 9.3, *J* = 7.2, H-6a); 4.03 (1H, д. д, *J* = 9.3, *J* = 4.9, H-3a); 4.72 (1H, д, *J* = 4.9, H-4); 5.13 (1H, д, *J* = 7.2, H-6); 7.28–7.64 (10H, м, 2C₆H₅); 7.71–7.80 (4H, м, PhthN). Спектр ЯМР ¹³С, δ, м. д.: 27.34 (CH₃); 45.75 и 52.33 (C-3a,6a); 71.42 и 73.26 (C-4,6); 123.93 (C-b); 126.78, 127.19, 128.96, 129.41 (С-*m*,*o*); 128.65 и 129.04 (С-*p*); 129.56 (С-а); 131.88 (2-Ph, C-*ipso*); 134.87 (С-с); 138.36 (6-Ph, C-*ipso*); 175.10 и 175.82 (C-1,3); 203.68 (CO). Сигналы NCO фталимидной группы не видны из-за сильного уширения. Найдено: *m/z* 480.1529 [M + H]⁺. Вычислено: [M + H]⁺ 480.1554. Найдено, %: С 69.70; H 4.26; N 8.67. С₂₈H₂₁H₃O₅. Вычислено, %: С 70.14; H 4.42; N 8.76.

5-Метил-2-фенилоксазол (За), бесцветное масло. Спектр ЯМР ¹Н, б, м. д.: 2.39 (3H, с, CH₃); 6.84 (1H, с, H-4); 7.41–7.46 (3H, м, H-*m*,*p*); 7.98–8.01 (2H, м, H-*o*). Литературный спектр ЯМР ¹Н [23] хорошо согласуется с этими данными.

Азиридин 1d 4 ч нагревают при 140 °C и после хроматографического разделения (элюент гексан–этилацетат от 6 : 1 до 2 : 1) получают 136 мг (48%) аддукта 4d и 21 мг (17%) оксазола 3d.

(3а*R'*,**4***R'*,**6***S'*,**6***aS'***)**-2,**4**-Дифенил-6-[(*E*)-3-фенилпроп-2-еноил]-5-фталимидотетрагидропирроло[3,4-*с*]пиррол-1,3(2H,3аH)-дион (4d), бесцветные кристаллы, т. пл. 162–163 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.61 (1Н, д. д. *J* = 9.4, *J* = 7.6) и 4.08 (1Н, д. д. *J* = 9.4, *J* = 5.7) – H-3a,6a; 5.04 (1Н, д. *J* = 5.7) и 5.21 (1Н, д. *J* = 7.6) – H-4,6; 7.59–7.82 (21Н, м, Н аром). Спектр ЯМР ¹³С, δ, м. д.: 46.13 и 51.91 (С-3а,6а); 70.89 и 71.67 (С-4,6); 122.07 (С-α); 126.90, 127.65, 128.84, 129.02, 129.12, 129.14, 129.20, 129.51, 131.20 (С-*m*,*o*,*p*); 131.96, 134.59, 137.94 (С-*ipso*); 134.83 (С-с); 145.83 (С-β); 175.02, 175.90 (С-1,3); 194.48 (СО). Сигналы атомов углерода С-а,b и NCO фталимидной группы не видны из-за сильного уширения. Найдено: *m/z* 568.1804 [М + Н]⁺. Вычислено: [М + Н]⁺ 568.1867. Найдено, %: С 74.30, Н 4.51, N 7.38. С₃₅Н₂₅N₃O₅. Вычислено, %: С 74.06, Н 4.44, N 7.40.

Азиридин 1е нагревают 2 ч 30 мин при 200 °С и после хроматографического разделения (элюент гексан-этилацетат от 6 : 1 до 2 : 1) получают аддукт 4е, который дополнительно очищают перекристаллизацией из смеси эфир-дихлорметан 8 : 1. В результате выделяют 84 мг (32%) пирролидина 4е и 26 мг (25%) оксазола 3е.

Метиловый эфир (1*R'*,3*S'*,3*aS'*,6*aR'*)-3-бензоил-4,6-диоксо-5-фенил-2-фталимидооктагидропирроло[3,4-с]пиррол-1-карбоновой кислоты (4е), бесцветные кристаллы, т. пл. 130–132 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.76 (3H, с, CH₃); 4.20 (1H, д. д, *J* = 9.6, *J* = 3.9) и 4.29 (1H, д. д, *J* = 9.6, *J* = 4.7) – H-3a,6a; 4.54 (1H, д, *J* = 4.7) и 5.47 (1H, д, *J* = 3.9) – H-1,3; 7.32–7.56 (8H, м, H аром); 7.73–7.82 (4H, м, PhthN); 7.92–7.95 (2H, м, PhCO, H-*o*). Спектр ЯМР ¹³С, δ, м. д.: 47.31, 47.36, 53.33 (CH₃, C-3a,6a); 69.35 и 70.16 (C-1,3); 124.01 (C-b); 126.93, 128.83, 129.10, 129.43, 133.80 (С-*m*,*o*,*p*); 134.92 (С-с); 129.54 и 135.20 (С-*ipso*); 169.24, 175.36, 176.14 (СОО, С-4,6); 193.80 (СО). Сигналы атомов углерода С-а и NCO фталимидной группы не видны из-за сильного уширения. Найдено: *m*/*z* 546.1248 [M + Na]⁺. Вычислено: [M + Na]⁺ 546.1272. Найдено, %: С 66.32; H 4.14; N 7.88. С₂₉H₂₁N₃O₇. Вычислено, %: С 66.54; H 4.04; N 8.03. **Термические реакции азиридинов 1а,е с** ДМАД (общая методика). Раствор 0.5 ммоль азиридина **1а,е** и 213 мг (1.5 ммоль) ДМАД в 10 мл безводного толуола нагревают в толстостенном стеклянном реакторе. Затем растворитель отгоняют в вакууме, остаток разделяют на колонке с 20 г силикагеля.

Смесь ДМАД с азиридином **1a** нагревают 5 ч при 150 °С. Остаток после упаривания реакционной смеси разделяют на колонке, элюируя смесью гексанэтилацетат от 6 : 1 до 1 : 1. Фракцию, содержащую аддукт **5a**, повторно разделяют на 10 г силикагеля, элюируя дихлорметаном. В результате получают 53 мг (35%) пиррола **5a** и 11 мг (14%) оксазола **3a**.

Диметиловый эфир 2-ацетил-5-фенил-1Н-пиррол-3,4-дикарбоновой кислоты (5а), бесцветные кристаллы, т. пл. 107 °С. Спектр ЯМР ¹Н, δ, м. д.: 2.45 (3H, с, CH₃); 3.74 (3H, с, OCH₃); 3.99 (3H, с, OCH₃); 7.43–7.46 (3H, м, H-*p*,*m*); 7.54–7.57 (2H, м, H-*o*); 9.47 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 26.78 (CH₃); 51.87 (OCH₃); 53.19 (OCH₃); 113.12 и 124.10 (C-3,4); 128.39, 132.77, 140.06 (C-*ipso*, C-2,5); 128.55 и 129.28 (С-*m*,*o*); 129.89 (С-*p*); 163.59 (СОО); 166.60 (СОО); 187.86 (СО). Найдено: *m/z* 324.0897 [M + Na]⁺. Вычислено: [M + Na]⁺ 324.0842. Найдено, %: С 63.66; H 4.99; N 4.70. С₁₆H₁₅NO₅. Вычислено, %: С 63.78; H 5.02; N 4.65.

Триметиловый эфир 5-бензоил-1Н-пиррол-2,3,4-трикарбоновой кислоты (5е) получают после нагревания в течение 2 ч 30 мин смеси азиридина 1е и ДМАД при 200 °С и хроматографического разделения (элюент гексан–этилацетат, 4 : 1). Выход 76 мг (44%). Бесцветные кристаллы, т. пл. 127–128 °С. Спектр ЯМР ¹Н, δ, м. д.: 3.31 (3H, с, OCH₃); 3.92 (3H, с, OCH₃); 3.94 (3H, с, OCH₃); 7.44–7.49 (2H, м, H-*m*); 7.57–7.62 (1H, м, H-*p*); 7.75–7.78 (2H, м, H-*o*); 10.10 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 51.81 (OCH₃); 52.92 (OCH₃); 53.03 (OCH₃); 118.84, 122.55, 123.41, 132.91, 137.42 (C-2,3,4,5, C-*ipso*); 128.66 и 129.12 (С-*m*,*o*); 133.60 (С-*p*); 159.50 (СОО); 162.60 (СОО); 164.48 (СОО); 187.04 (СО). Найдено: *m/z* 368.0692 [M + Na]⁺. Вычислено: [M + Na]⁺ 368.0741. Найдено, %: С 59.20; H 4.40; N 4.16. С₁₇H₁₅NO₇. Вычислено, %: С 59.13; H 4.38; N 4.06.

СПИСОК ЛИТЕРАТУРЫ

- 1. J.W. Lown, in: *1,3-Dipolar Cycloaddition Chemistry*, A. Padwa (Ed.), John Wiley & Sons, N. Y., 1984, vol. 1, p. 653.
- L. M. Harwood, R. J. Vickers, in: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. The Chemistry of Heterocyclic Compounds, A. Padwa, W. H. Pearson (Eds.), John Wiley & Sons, Hoboken, 2003, vol. 59, p. 169.
- 3. J. Charrier, A. Foucaud, H. Person, E. Loukakou, J. Org. Chem., 48, 481 (1983).
- 4. М. А. Кузнецов, А. С. Панькова, А. В. Ушков, С. И. Селиванов, *ЖОрХ*, 44, 807 (2008).
- 5. М. А. Кузнецов, А. В. Ушков, С. И. Селиванов, А. С. Панькова, А. Linden, *ЖОрХ*, **45**, 1200 (2009).
- 6. Е. В. Белецкий, М. А. Кузнецов, *ЖОрХ*, **45**, 1237 (2009).
- 7. H. Person, K. Luanglath, M. Baudru, A. Foucaud, Bull. Soc. Chim. Fr., 1989 (1976).
- 8. M. A. Kuznetsov, L. M. Kuznetsova, J. G. Schantl, K. Wurst, *Eur. J. Org. Chem.*, 1309 (2001).
- 9. R. S. Atkinson, J. J. Malpass, J. Chem. Soc., Perkin Trans. 1, 2242 (1977).

- 10. А. С. Панькова, Автореф. дис. канд. хим. наук, Санкт-Петербург, 2009.
- 11. H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 62, 7512 (1997).
- 12. H. D. K. Drew, H. H. Hatt, J. Chem. Soc., 16 (1937).
- 13. U. P. Kreher, A. E. Rosamilia, C. L. Raston, J. L. Scott, C. R. Strauss, *Org. Lett.*, 5, 3107 (2003).
- 14. H. O. House, H. Babad, J. Org. Chem., 28, 90 (1963).
- 15. Л. Титце, Т. Айхер, *Препаративная органическая химия*, Мир, Москва, 1999, с. 209.
- 16. Г. В. Голодников, Т. В. Мандельштам, *Практикум по органическому синтезу*, Изд-во ЛГУ, Ленинград, 1976, с. 358.
- 17. D. Papa, E. Schenk, F. Villani, E. Klingsberg, J. Am. Chem. Soc., 70, 3359 (1948).
- 18. P. Chiang, M. Rommel, J. Bode, J. Am. Chem. Soc., 131, 8714 (2009).
- O. Anaç, Ö. Sezer, Ö. Aldaş, F. Ş. Güngör, M. Ş. Cansever, *Tetrahedron Lett.*, 49, 1062 (2008).
- K. C. Nicolaou, J. Hao, M. V. Reddy, P. B. Rao, G. Rassias, S. A. Snyder, X. Huang, D. Y.-K. Chen, W. E. Brenzovich, N. Giuseppone, P. Giannakakou, A. O'Brate, J. Am. Chem. Soc., 126, 12897 (2004).
- 21. R. P. Foulds, R. Robinson, J. Chem. Soc., 103, 1768 (1913).
- 22. C. Wan, J. Zhang, S. Wang, J. Fan, Z. Wang, Org. Lett., 12, 2338 (2010).
- 23. A. Herrera, R. Martínez-Alvarez, P. Ramiro, D. Molero, J. Almy, *J. Org. Chem.* 71, 3026 (2006).

Санкт-Петербургский государственный университет Университетский пр., 26, Старый Петергоф, С.-Петербург 198504, Россия e-mail: mak@mail.wplus.net Поступило 26.01.2011