Ю. Д. Орлов*, Е. М. Чернова, В. В. Туровцев

ЭНТАЛЬПИИ ОБРАЗОВАНИЯ ОРГАНИЧЕСКИХ КИСЛОРОДСОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ РАДИКАЛОВ

Энтальпии образования ($\Delta_f H^\circ$) 57 кислородсодержащих гетероциклических радикалов определены по литературным значениям энергий диссоциации химических связей С–Н в соответствующих молекулах. В рамках количественной корреляции "строение–свойство", основанной на аддитивно-групповой модели, проведён анализ полученных значений $\Delta_f H^\circ$, показана надёжность этих данных, а также определён ряд значений энергий циклического напряжения для рассматриваемых радикалов. Параметры аддитивно-группового метода рекомендованы для расчетов $\Delta_f H^\circ$ радикалов рассмотренного класса.

Ключевые слова: кислородсодержащие гетероциклические радикалы, взаимо- связь "строение-свойство", методы расчёта, энергии циклического напряжения, энтальпии образования.

Изучение превращений кислородсодержащих органических соединений циклического строения имеет большое значение для понимания аспектов экологии, химической технологии и биохимии. Важная роль свободных радикалов при этом определяет чрезвычайную актуальность детального изучения их строения и физико-химических свойств. Среди последних наиболее информативны термохимические характеристики.

Экспериментальные исследования термохимических свойств радикалов сопряжены с серьёзными затруднениями методологического и технического характера, возникающими вследствие высокой химической активности радикалов. Информация о термодинамических свойствах кислородсодержащих органических радикалов циклического строения крайне скудна и носит предварительный характер [1, 2]; среди них только семь кислородсодержащих гетероциклических радикалов охарактеризованы значениями стандартных энтальпий образования ($\Delta_{f}H^{\circ}$).

Расчётные оценки $\Delta_f H^o$ указанных радикалов с помощью феноменологических методов затруднены неопределённостью энергий циклического напряжения E_c (энергий напряжения циклов) [1], квантовохимические методы весьма ресурсоёмки и пока эффективны лишь для простейших радикалов с числом атомов менее 5–7 [3]. Поэтому до сих пор происходит расширение числа кислородсодержащих гетероциклических радикалов, охарактеризованных значениями $\Delta_f H^o$, конкретизация их значений E_c и установление на основе этих данных соответствующих количественных корреляций "строение–свойство".

В работах [4–10] предложен подход к решению данной задачи и 42

практически реализован для широкого класса радикалов, в том числе циклических [6–10]. В настоящей работе данный подход к определению $\Delta_f H^0$ радикалов на основе известных значений энергий диссоциации связей (*D*) и количественных корреляций "строение – энтальпия образования", устанавливаемых аддитивно-групповым методом [1], применён к кислород-содержащим гетероциклическим радикалам.

Достаточно широкая база надежных данных по $\Delta_f H^\circ$ необходима для поиска количественных корреляций "строение – энтальпия образования" и построения расчётных моделей. Сравнительно недавно опубликован новый массив данных по энергиям диссоциации связей С–Н в кислород-содержащих гетероциклических соединениях [2], на основе которого нам удалось существенно расширить базу данных по $\Delta_f H^\circ$ кислородсодержащих гетероциклических радикалов.

В настоящей работе рассматриваются только насыщенные C,H,Oсодержащие соединения. Молекулы и радикалы, включающие двойные и тройные связи, бензольные кольца, карбонильные группы, а также другие атомы, будут описаны в последующих наших работах.

Новые значения $\Delta_f H^\circ$ рассматриваемых радикалов определены с использованием известного термохимического соотношения:

$$D(\mathbf{R}-\mathbf{H}) = \Delta_{f} H^{0}(\mathbf{R}^{\bullet}) + \Delta_{f} H^{0}(\mathbf{H}) - \Delta_{f} H^{0}(\mathbf{R}\mathbf{H}), \qquad (1),$$

где $\Delta_f H^o(\mathbf{R}^{\bullet})$, $\Delta_f H^o(\mathbf{H})$ и $\Delta_f H^o(\mathbf{RH})$ – стандартные энтальпии образования, соответственно, свободного радикала (\mathbf{R}^{\bullet}), атома водорода (\mathbf{H}) и молекулы (\mathbf{RH}). Число молекул гетероциклических кислородсодержащих соединений с определёнными экспериментально значениями $\Delta_f H^o$ более чем на порядок превышает число соответствующих радикалов. Тем не менее, дефицит экспериментальных данных по $\Delta_f H^o$ таких молекул существенно затрудняет определение $\Delta_f H^o(\mathbf{R}^{\bullet})$ по соотношению (1). В этих условиях в качестве опорных могут быть использованы значения $\Delta_f H^o(\mathbf{RH})$, рассчитанные при использовании варианта [11] аддитивно-группового метода с наиболее современной параметризацией или методом макроинкрементирования [12]. Продуктивность такого подхода убедительно продемонстрирована для органических радикалов различного строения в работах [4–10].

В данной работе два значения $\Delta_f H^\circ$ молекул определены методом макроинкрементирования [12], суть которого заключается в моделировании структуры (свойства) соединения на основании структур (свойств) более простых аналогов (модельных соединений). Для этого составляется символьное "соотношение" и предполагается, что по аналогичному численному соотношению рассчитывается величина свойства для моделируемой структуры на основании величин свойств модельных соединений. Эти величины обычно записывают под соответствующими символами в символьном "соотношении".

Нами для определения $\Delta_f H^0$ молекул составлены схемы 1 и 2.

Схема 1

Одно значение $\Delta_{f}H^{o}(RH)$ определено методом замещения [13] по схеме 3.

Схема 3

$$- \underbrace{\bigcirc}_{O} \underbrace{\bigcirc}_{O} \underbrace{\bigcirc}_{O} = \underbrace{\bigcirc}_{O} \underbrace{\bigcirc}_{O} \underbrace{\bigcirc}_{O} + J_{1}(H \longrightarrow CH_{3}) + J_{2}(H \longrightarrow CH_{3})$$

-754.3 -678.7 -44.7 -30.9

 $J(H\to CH_3)$ – инкременты замены (замещения) атома H на группу CH₃. Различие между J_1 и J_2 определяется различием ближайшего окружения групп CH в моделируемой структуре. Значения J_1 и J_2 рассчитаны нами по инкрементам (вкладам в $\Delta_f H^\circ$) молекул, заимствованным из работы [11], следующим образом:

$$\begin{split} J_1(\text{H} \to \text{CH}_3) &= \{\text{C}(-\text{H})_3(\text{C})\} + \{\text{C}(-\text{H})(\text{C})(\text{O})_2\} - \{\text{C}(-\text{H})_2(\text{O})_2\} = \\ &= -41.8 - 69.0 + 66.1 = -44.7 \text{ кДж/моль} \end{split}$$

$$J_2(H \rightarrow CH_3) = \{C(-H)_3(C)\} + \{C(-H)(C)_3\} - \{C(-H)_2(C)_2\} =$$

= -41.8 - 10.0 + 20.9 = - 30.9 кДж/моль

Здесь и далее использованы общепринятые обозначения групп, когда сначала указывается центральный атом, а после тире в скобках атомы, с которыми он непосредственно связан, включая одновалентные, составляющие вместе с центральным группу.

Вычисленные нами для радикалов – производных насыщенных кислородсодержащих гетероциклов – значения энтальпий образования ($\Delta_f H^\circ$) и энергий диссоциации связей С–Н (*D*) представлены в табл. 1. Среди объектов исследования – производные оксирана (**1** и **2**), тетрагидрофурана (**3–10**), 1,3-диоксолана (**11–20**), тетрагидропирана (**21–31**), 1,3-диоксана (**32-50**), 1,4-диоксана (**51**), 1,3-диоксепана (**52–57**), 1,3,6-триоксокана (**58**), спироциклических систем (**59–61**). Как отмечено выше, до настоящего времени только семь гетероциклических кислородсодержащих радикалов охарактеризованы значениями $\Delta_f H^\circ$; из них к изученным Таблица 1

Радикалы (R*)	D(R-H) [2]	$\Delta H^{0}(\mathrm{RH})^{*}$	$\Delta_f H^o(\mathbf{R}^{\bullet})$		δ* ⁴
		, , , , , , , , , , , , , , , , , , ,	рек.**	расч.***	
1	2	3	4	5	6
Оксиран-2-ил (1) <i>ДH</i> ⁰ (R [•]) _{лит} : 138 ± 21 [1], 149.8 ± 6.3 [2]	420.5	-52.6 [14]	149.8	128.4	21.4
2-Метилоксиран-2-ил (2)	376.0	-94.7 [14]	63.3	84.7	-21.4
Тетрагидрофуран-2-ил (3) $\Delta H^{0}(\mathbf{R}^{\bullet})_{лит}$: -18.0±2.0 [1], - 8.0±6.3 [2], -10.5 [15]	391.6	-184.2 ± 7.1 [14]	-10.8	-7.6	-3.2
2-Метилтетрагидрофуран-2-ил (4) Δ _/ <i>H</i> ^o (R [•]) _{лит} : −54.0 [15]	384.1	-222.5	-56.4	-51.2	-5.2
2,5-Диметилтетрагидрофуран- 2-ил (5)	387.5	-260.5	-91.0	-90.0	-1.0
2-Изобутилокситетрагидрофуран- 2-ил (6)	381.4 [16]	-443.8	-280.4	-285.2	4.8
2- <i>трет</i> -Бутилокситетрагидро- фуран-2-ил (7)	381.4	-469.3	-305.9	-305.9	0.0
2-Пентилокситетрагидрофуран- 2-ил (8)	378.5	-454.7	-294.2	-296.1	1.9
2-Циклогексилокситетрагидро- фуран-2-ил (9)	374.3	-448.0	-291.7	-293.3	1.6
2-Октилокситетрагидрофуран- 2-ил (10)	375.3	-517.4	-360.1	-361.3	1.2
1,3-Диоксолан-2-ил (11)	381.2	-301.7 ± 2.2 [14]	-138.5	-145.5	7.0
2-Метил-1,3-диоксолан-2-ил (12)	373.4	-350 ± 3.0 [14]	-194.6	-194.3	-0.3
2-Пропил-1,3-диоксолан-2-ил (13)	372.5	-394.6	-240.1	-237.8	-2.3
2-Изопропил-1,3-диоксолан-2-ил (14)	373.1	-404.6	-249.5	-248.7	0.8
2-Бутил-1,3-диоксолан-2-ил (15)	372.2	-415.5	-261.3	-259.6	-1.7
2-Изобутил-1,3-диоксолан-2-ил (16)	371.3	-425.5	-272.2	-270.5	-1.7
2-Пентил-1,3-диоксолан-2-ил (17)	373.6	-436.4	-280.8	-281.3	0.5
2-Гексил-1,3-диоксолан-2-ил (18)	371.6	-457.3	-303.7	-303.1	-0.6
2,2-Диметил-1,3-диоксолан-4-ил (19)	404.8	-396.2	-209.3	-	—
2-Метил-2-этил-1,3-диоксолан- 4-ил (20)	381.7	-417.1	-253.4	_	-
Тетрагидропиран-2-ил (21)	401.7	-223.8 [14]	-40.1	-41.7	1.6

Энтальпии образования Д_/H⁰ кислородсодержащих гетероциклических радикалов и энергии диссоциации химических связей С–H(*D*) в соответствующих молекулах (кДж/моль)

Продолжение таблицы 1

			1	I	
1	2	3	4	5	6
2-Октилтетрагидропиран-2-ил (22)	380.5	-409.8	-247.3	-242.2	-5.1
2-Пропилокситетрагидропиран- 2-ил (23)	386.0	-453.9	-285.9	-286.6	0.7
2-Изопропилокситетрагидропиран- 2-ил (24)	385.0	-471.0	-304.0	-303.6	-0.4
2 <i>-трет</i> -Бутилокситетрагидропиран- 2-ил (25)	386.0	-510.3	-342.3	-340.0	-2.3
2-Циклогексилокситетрагидро- пиран-2-ил (26)	378.3	-489.0	-328.7	-330.4	1.7
2-Гексилокситетрагидропиран- 2-ил (27)	381.8	-516.6	-352.8	-351.9	-0.9
2-(Окт-4-илокси)тетрагидропиран- 2-ил (28)	380.5	-575.5	-413.0	-412.4	-0.6
2-(2-Циклогексилэтилокси)тетра- гидропиран-2-ил (29)	383.7	-523.7	-358.0	-363.2	5.2
2-[(Тетрагидропиран-2-ил)метокси]- тетрагидропиран-2-ил (30)	377.1	-612.9 [14]	-453.8	-452.0	-1.8
2-[2-(Тетрагидропиран-2-ил)- этокси]тетрагидропиран-2-ил (31)	383.7	-782.4	-616.7	-	_
1,3-Диоксан-2-ил (32)	388.0	-349.6[14]	-179.6	-181.0	1.4
2-Метил-1,3-диоксан-2-ил (33)	378.0	-397.5 [14]	-237.5	-229.7	-7.8
4-Метил-1,3-диоксан-2-ил (34)	383.6	-390.7	-224.7	-219.8	-4.9
2-Этил-1,3-диоксан-2-ил (35)	381.7	-412.5	-248.8	-251.5	2.7
2,4-Диметил-1,3-диоксан-2-ил (36)	378.9	-428.0 [14]	-267.1	-268.5	1.4
5,5-Диметил-1,3-диоксан-2-ил (37)	388.7	-421.2 [14]	-250.5	-243.0	-7.5
4,4-Диметил-1,3-диоксан-2-ил (38)	389.8	-430.0	-258.2	-256.2	-2.0
2-Пропил-1,3-диоксан-2-ил (39)	377.7	-433.4	-273.7	-273.2	-0.5
2,5,5-Триметил-1,3-диоксан-2-ил (40)	380.3	-454.7	-292.4	-291.7	-0.7
4,4,5-Триметил-1,3-диоксан-2-ил (41)	388.4	-461.8	-291.4	-288.8	-2.6
2-Бутил-1,3-диоксан-2-ил (42)	377.0	-454.3	-295.3	-295.0	-0.3
4,4-Диметил-2-этил-1,3-диоксан- 2-ил (43)	381.4	-489.8	-326.4	-326.6	0.2
5,5-Диметил-2-пропил-1,3-диоксан- 2-ил (44)	379.4	-496.5	-335.1	-335.2	0.1
5,5-Диметил-2-изопропил-1,3- диоксан-2-ил (45)	380.1	-505.9	-343.8	-346.2	2.4
			•	•	•

Окончание таблицы 1

2	3	4	5	6
379.1	-517.4	-356.3	-357.0	0.7
378.5	-527.4	-366.9	-367.9	1.0
376.5	-496.1	-337.6	-338.5	0.9
378.1	-559.2	-399.1	-400.5	1.4
389.7	-494.3	-322.6	_	-
405.7	-315.3 [14]	-127.6	-127.6	0.0
385.5	-346.4	-178.9	-175.6	-3.3
380.8	-385.3	-222.5	-224.3	1.8
379.2	-406.2	-245.0	-246.0	1.0
378.1	-427.1	-267.0	-267.8	0.8
377.4	-437.1	-277.7	-278.7	1.0
378.1	-489.8	-329.7	-333.1	3.4
400.9	-467.2 [14]	-284.3	-284.3	0.0
396.2	-442.5	-264.3	_	-
390.8	-678.7	-505.9	-	-
375.5	-754.3	-596.8	_	_
	2 379.1 378.5 376.5 378.1 389.7 405.7 385.5 380.8 379.2 378.1 377.4 378.1 400.9 396.2 390.8 375.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	234 379.1 -517.4 -356.3 378.5 -527.4 -366.9 376.5 -496.1 -337.6 378.1 -559.2 -399.1 389.7 -494.3 -322.6 405.7 -315.3 [14] -127.6 385.5 -346.4 -178.9 380.8 -385.3 -222.5 379.2 -406.2 -245.0 378.1 -427.1 -267.0 377.4 -437.1 -277.7 378.1 -489.8 -329.7 400.9 -467.2 [14] -284.3 396.2 -442.5 -264.3 390.8 -678.7 -505.9 375.5 -754.3 -596.8	2345 379.1 -517.4 -356.3 -357.0 378.5 -527.4 -366.9 -367.9 376.5 -496.1 -337.6 -338.5 378.1 -559.2 -399.1 -400.5 389.7 -494.3 -322.6 $ 405.7$ -315.3 [14] -127.6 -127.6 385.5 -346.4 -178.9 -175.6 380.8 -385.3 -222.5 -224.3 379.2 -406.2 -245.0 -246.0 378.1 -427.1 -267.0 -267.8 377.4 -437.1 -277.7 -278.7 378.1 -489.8 -329.7 -333.1 400.9 -467.2 [14] -284.3 -284.3 396.2 -442.5 -264.3 $ 390.8$ -678.7 -505.9 $ 375.5$ -754.3 -596.8 $-$

* Расчёты по групповым вкладам и значениям E_c молекул, представленным в работе [11] (соединения 4–10, 13–20, 22–29, 31, 34, 35, 37–50, 52–57), по схемам макроинкрементирования (1) и (2) (см. текст)(соединения 59, 60) и замещения (3) (см. текст)(соединение 61).

** Расчёты по соотношению (1).

*** Вычисления по параметрам аддитивно-группового метода из табл. 2 и 3.

 $*^{4} \delta = \Delta_{f} H^{o}(\mathbf{R}^{\bullet})_{\text{pek}} - \Delta_{f} H^{o}(\mathbf{R}^{\bullet})_{\text{pacy.}}$

в данной работе относятся четыре – оксиранил 1, тетрагидрофуран-2-ил (3), 2-метилтетрагидрофуран-2-ил (4) и 1,4-диоксан-2-ил (51). Литературные значения $\Delta_f H^o(\mathbb{R}^{\bullet})_{\pi u \tau}$ указанных радикалов и все количественные данные, использованные при пересчёте значений $\Delta_f H^o$ рассматриваемых радикалов, приведены в табл. 1. Там же приведены в качестве рекомендуемых ($\Delta_f H^o(\mathbb{R}^{\bullet})_{pek}$) впервые найденные значения $\Delta_f H^o$ для 57 гетероциклических кислородсодержащих радикалов.

1, 3, 11, 21, 32, 34, 37, 38, 52, 60 R = H, 2, 4, 12, 33, 36, 40, 53, 61 R = Me, 6, 16, 47 R = *i*-Bu, 7, 25 R = *t*-Bu, 8, 17 R = *n*-C₅H₁₁, 9, 26 R = *cycl*-C₆H₁₁, 10, 22 R = *n*-C₈H₁₇, 13, 23, 39, 44, 55 R = Pr, 14, 24, 45, 56 R = *i*-Pr, 15, 42, 46 R = Bu, 18, 27, 48, 49, 57 R = *n*-C₆H₁₃, 19 R = R¹ = Me, 20 R = Me, R¹ = Et; 28 R = CH(Pr)Bu, 29 R = CH₂CH₂C₆H₁₁-*cycl*, 35, 43, 54 R = Et, 30 *n* = 1, 31 *n* = 2

Погрешности этих значений складываются из погрешностей опорных данных – $\Delta_f H^0(RH)$ и D(R-H). Их определение для каждого конкретного случая затруднительно, однако анализ источников опорных данных позволяет указать предельный интервал погрешностей для найденного массива значений $\Delta_f H^0(R^{\bullet})$ в целом. По нашим оценкам он не превышает ±12 кДж/моль. Исключением являются радикалы 1 и 2, для которых этот интервал следует, как будет показано ниже, считать не превышающим ±22 кДж/моль (см. табл. 1). Полученные данные с точки зрения классификации качества (severity) [1] следует считать предварительными.

Достаточно большой объём нового фонда значений $\Delta_{\mu}H^{\circ}$ гетероциклических кислородсодержащих радикалов (табл. 1) и разнообразие их структур открывают возможность проведения детального анализа взаимосвязи "строение – энтальпия образования" для данного гомологического ряда. Применительно к органическим радикалам оптимальным инструментом такого анализа представляется аддитивно-групповой метод. Именно этот метод для радикалов получил наиболее глубокую проработку (с рассмотрением различных приближений) и наиболее широкую практическую реализацию [1]. Для радикалов он также достаточно строго обоснован теоретически в работе [17] с рассмотрением влияния свободной валентности и переносимости групп.

В работе [18] данный анализ впервые проведен для циклических соединений. При этом установлена детальная взаимосвязь значений *E_c* в

радикалах и их исходных молекулах, а также впервые оценено значение E_c для кислородсодержащего гетероциклического радикала тетрагидрофуран-2-ила (3).

В рамках аддитивно-группового подхода значения $\Delta_f H^{\circ}$ циклических радикалов могут быть рассчитаны по формуле

$$\Delta_{f}H^{o}(\mathbf{R}^{\bullet}) = \{B^{\bullet}\} + \sum\{A\}_{i} + E_{c},$$

где $\{B^{\bullet}\}$ – инкремент (вклад в $\Delta_f H^{\circ}$) группы B^{\bullet} , включающей неспаренный электрон, $\{A\}_i$ – инкременты остальных групп, составляющих радикал. Энтальпийный вклад E_c определяется строением радикала. В результате обобщающих исследований [1, 6, 18] показано, что значения E_c с приемлемой точностью можно полагать равными для циклов с одинаковым числом, видом и расположением атомов, образующих цикл. При этом в рамках погрешностей для $\Delta_f H^{\circ}(\mathbb{R}^{\bullet})$ значение E_c не зависит от вида и числа заместителей у этих атомов.

На основании описанных представлений нами в рамках первого приближения [1, 18] при расчетах $\Delta_j H^o(\mathbb{R}^{\bullet})$ рассмотрена взаимосвязь "строение – энтальпия образования" для гетероциклических кислородсодержащих радикалов, представленных в табл. 1. Использованные при этом инкременты $\{B^{\bullet}\}$ и $\{A\}_i$ (табл. 2) определены ранее [1, 19] при рассмотрении ациклических углеводородных и кислородсодержащих радикалов.

Значения E_c (табл. 3) определены стандартным путем – решением переопределенной системы линейных уравнений с известными $\Delta_f H^o(\mathbb{R}^{\bullet})$, $\{B^{\bullet}\}$ и $\{A\}_i$ методом наименьших квадратов. В табл. 3 для сравнения представлены также соответствующие значения E_c молекул. Отметим, что значения E_c радикалов, как правило (за исключением тетрагидропиран-2-ила), немного ниже, чем E_c молекул.

В табл. 1 приведены также значения $\Delta_f H^{\circ}(\mathbb{R}^{\bullet})$, рассчитанные по параметрам аддитивно-группового метода ($\{B^{\bullet}\}, \{A\}_i$ и E_c), приведенным в табл. 2 и 3. Для семи радикалов из табл. 1 расчётные значения получить не удалось в связи с недостатком необходимых параметров.

Сравнение рассчитанных значений $\Delta_f H^o(\mathbb{R}^{\bullet})$ с рекомендуемыми, найденными нами из экспериментальных данных (табл. 1), показывает хорошее согласие между ними за исключением данных для двух радикалов – оксиранила и 2-метилоксиран-2-ила. Для них отклонения рассчитанных значений от рекомендуемых достаточно высоки. По нашему мнению, это связано с погрешностями значений опорных величин $D(\mathbb{R}-\mathbb{H})$, которые для них также очень существенно различаются и, по-видимому, нуждаются в дополнительной проверке. В связи с этим, как указано выше, для данных радикалов назначен интервал погрешностей (± 22 кДж/моль), почти вдвое превышающий интервал погрешности (± 12 кДж/моль) остальных значений $\Delta_f H^o(\mathbb{R}^{\bullet})$ из табл. 1. Отмеченное выше согласие позволяет рекомендовать аддитивно-групповой метод с параметрами из табл. 2 и 3 для расчётов $\Delta_f H^o$ кислородсодержащих гетероциклических радикалов соответствующего строения с алкильными заместителями.

Цикл	<i>Е</i> _с (ℝ•), кДж/моль	<i>E_c</i> (RH) [11]	Цикл	$E_c(\mathbf{R}^{\bullet})$	<i>E_c</i> (RH) [11]
1 / оксиран	113.3	113.0	32 / 1,3-диоксан	1.74	4.2
3 / тетрагидрофуран	22.4	24.7	51 / 1,4-диоксан	28.7	14.6
11 / 1,3-диоксолан	15.4	22.2	52 / 1,3-оксепан	29.0	31.4
21 / тетрагидропиран	10.1	4.6	58 / 1,3,6-триоксан	46.5	36.4

Энергии циклического напряжения *E_c* в гетероциклических радикалах **R**[•] и исходных молекулах **R**H

Таким образом, нами сформирован фонд данных по $\Delta_f H^\circ$ кислородсодержащих гетероциклических радикалов, содержащий значения для 61 соединения. Установленные в рамках аддитивно-группового метода взаимосвязи строения и энтальпийных характеристик радикалов являются подтверждением надежности рекомендованных значений $\Delta_f H^\circ(\mathbb{R}^{\bullet})$, а найденные значения энергий циклического напряжения вместе с другими параметрами метода открывают возможность оценки $\Delta_f H^\circ$ для новых радикалов, пока не охарактеризованных этими значениями. Представленные результаты в совокупности заметно углубляют количественную и методологическую базу термохимии органических свободных радикалов.

Таблица З

Группа	Вклад, кДж/моль	Группа	Вклад, кДж/моль
C•(-H) ₂ (C)	148.47 [1]	O(-H)(C)	-160.06 [19]
$C^{\bullet}(-H)(C)_2$	154.60 [1]	C(-H) ₃ (C)	-41.04 [1]
C [●] (−C) ₃	161.00 [1]	$C(-H)_2(C)_2$	-21.76 [1]
C [•] (-C) ₂ (O)	146.5 [19]	C(-H)(C) ₃	-13.39 [1]
C•(-H)(C)(O)	149.06 [19]	C(-C) ₄	-1.69 [1]
$C^{\bullet}(-H)_2(O)$	138.83 [19]	C(-H) ₃ (O)	-41.04 [19]
C [•] (-H)(O) ₂	110.19 [19]	$C(-H)_2(C)(O)$	-34.2 [19]
$C^{\bullet}(-C)(O)_2$	102.53 [19]	C(-C) ₂ (H)(O)	-31.9 [19]
O(-C) ₂	-101.39 [19]	C(-C) ₃ (O)	-27.28 [19]

Вклады групп в $\Delta_f H^0$ радикалов

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. Д. Орлов, Ю. А. Лебедев, И. Ш. Сайфуллин, *Термохимия органических* свободных радикалов, Наука, Москва, 2001.
- 2. J.-R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, Boca Raton: London, N.-Y., 2007.
- K. Raghavachari, L. A. Curtiss, in: *Theory and Applications of Computational Chemistry. The First Forty Years*, C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (Eds.), Elsevier, Amsterdam, Boston, 2005, p. 785.
- 4. Ю. Д. Орлов, Р. Х. Зарипов, Ю. А. Лебедев, Изв. АН, Сер. хим., 637 (1998).
- 5. Ю. Д. Орлов, Р. Х. Зарипов, Ю. А. Лебедев, Изв. АН, Сер. хим., 643 (1998).
- 6. Ю. Д. Орлов, Ю. А. Лебедев, Изв. АН, Сер. хим., 286 (1999).
- 7. Ю. Д. Орлов, А. А. Томилин, Ю. А. Лебедев, *Журн. физ. химии*, **74**, 1184 (2000).
- 8. Ю. Д. Орлов, В. О. Лавров, Ю. А. Лебедев, Изв. АН, Сер. хим., 923 (2001).
- 9. Ю. Д. Орлов, В. В. Туровцев, Ю. А. Лебедев, Изв. АН, Сер. хим., 1494 (2001).
- 10. Ю. Д. Орлов, В. В. Туровцев, И. В. Степников, А. Н. Кизин, Ю. А. Лебедев, Изв. АН, Сер. хим., 1574 (2004).
- 11. N. Cohen, J. Phys. Chem. Ref. Data, 25, 1411 (1996).
- 12. H. M. Rosenstock, J. Dannacher, J. F. Liebman, Radiat. Phys. Chem., 20, 7 (1982).
- 13. Ю. Д. Орлов, Ю. А. Лебедев, Журн. физ. химии, 58, 2880 (1984).
- 14. *NIST Scientific and Technical Databases. Version 2008*; http://webbook.nist.gov/chemistry/ form-ser.htm.
- 15. В. Е. Туманов, Е. А. Кромкин, Е. Т. Денисов, Изв. АН, Сер. хим., 1508 (2002).
- 16. В. Е. Туманов, Нефтехимия, 45, 379 (2005).
- 17. В. В. Туровцев, Ю. Д. Орлов, Ю. А. Лебедев, Журн. физ. химии, 83, 313 (2009).
- 18. Ю. Д. Орлов, Ю. А. Лебедев, Изв. АН СССР. Сер. хим., 1121 (1986).
- 19. Е. М. Чернова, В. В. Туровцев, Ю. Д. Орлов, Вестн. Тверского гос. ун-та, Сер. химия, 13, 10 (2010).

Тверской государственный университет, Тверь 170100, ул. Желябова, 33, Россия e-mail: Yurij.Orlov@tversu.ru Поступило 17.08.2010