

Прямое окислительное S_NH амидирование 1,3,7-триазапирена

Иван В. Боровлев¹*, Олег П. Демидов¹, Надежда А. Курносова¹, Гульминат А. Амангазиева¹, Елена К. Авакян¹

¹ Северо-Кавказский федеральный университет, ул. Пушкина, 1а, Ставрополь 355009, Россия e-mail: k-biochem-gcs@stavsu.ru

Поступило 20.01.2015 Принято 20.02.2015

Прямым окислительным нуклеофильным замещением водорода впервые синтезированы 6-ациламино-1,3,7-триазапирены. Ключевые слова: 1,3,7-триазапирен, нуклеофильное замещение водорода, окислительное амидирование.

Разработка эффективных и селективных методов образования связей С–N является важным направлением современного органического синтеза, поскольку соединения, содержащие в молекулах аминогруппы или их производные, проявляют разнообразную биологическую активность, используются в медицинской и агрономической химии, а также в химической технологии и биотехнологии.¹ Наиболее общий метод их получения – нуклеофильное замещение галогенов или других нуклеофугных групп как в отсутствие катализатора,² так и в условиях катализа.³ В последние годы активно развиваются методы прямого введения аминных и амидных групп в молекулы электронодонорных гетероциклов активацией связей С–H комплексными соединениями переходных металлов.⁴

В случае электронодефицитных субстратов, таких как азины и нитроарены, нуклеофильное ароматическое замещение водорода (S_NH),⁵ включая его окислительную⁶ и викариозную⁷ версии, являются привлекательной альтернативой перечисленным выше методам. Методология окислительного нуклеофильного замещения водорода в наибольшей степени отвечает принципам зеленой химии,⁸ особенно при использовании кислорода воздуха в качестве окислителя. Она не требует предварительного введения классических уходящих групп в молекулу ароматического субстрата или реагента, применения дорогих катализаторов или лигандов. Механизм реакции S_NH включает образование о^н-аддукта и его последующую реароматизацию (схема 1).

Схема 1

Как правило, вторая стадия определяет скорость всего процесса, поскольку гидрид-анион, который формально должен отщепляться, является очень плохим нуклеофугом. Многочисленные исследования показали, что спонтанная ароматизация подобных σ^{H} -комплексов происходит крайне редко. Добавление окислителя, естественно, облегчает стадию реароматизации. Несмотря на продолжающуюся дискуссию относительно возможности элиминирования гидрид-аниона, общепринятым является ступенчатый механизм, включающий последовательный перенос электрона, протона и еще одного электрона от σ^{H} -аддукта к окислителю (ЕРЕ-механизм).

В присутствии KMnO₄ электронодефицитные азины и нитроарены легко аминируются жидким аммиаком или амидом калия в жидком аммиаке.^{6а} При алкиламинировании применялись такие окислители, как AgNO₃, H₂O₂, *t*-BuOOH, MnO₂, AgMnO₄, церийаммоний нитрат, но наилучшие результаты были получены при использовании комплекса AgMnO₄ и пиридина (AgPy₂MnO₄).^{6b,c} При ариламинировании применяются мягкие окислители, такие как сера, нитробензол, хлоранил.¹⁰ В некоторых случаях наблюдается окисление $\sigma^{\rm H}$ -комплексов кислородом воздуха.¹¹ При использовании нитроаренов или нитрогетаренов в качестве субстратов акцептором гидрид-иона может быть сама нитрогруппа.¹²

В предыдущих сообщениях мы показали, что 1,3,7-триазапирен (1а) проявляет особые свойства, обусловленные необычным пери-сочленением карбо- и гетероциклов. К ним следует отнести необычную легкость реакций окислительного нуклеофильного замещения водорода, таких как гидроксилирование,¹³а алкоксилирование, ^{13b,c} аминирование, ^{13a} алкиламинирование, ^{13d} арилирование^{13e,f} и ариламинирование,^{13g,h} а также склонность вступать в тандемные S_NH-S_NH превращения.^{13b-d,i-k} Другой отличительной особенностью 1,3,7-триазапиренов является то, что большая часть этих превращений выполняется в водной среде. Отметим также, что пери-аннелированные азины, включая и 1,3,7-триазапирен, представляют в настоящее время практический интерес для электронных устройств, особенно в качестве органических светоизлучающих диодов (OLEDs).¹⁴

Целью настоящей работы стало изучение возможности введения в цикл 1,3,7-триазапирена 1 амидной функции путем прямого замещения атома водорода. Впервые окислительное S_NH амидирование было выполнено в 1990-х гг. на примере нитробензола, ^{15а} что позволило авторам разработать известный промышленный метод получения *пара*-нитроанилина. ^{15b} Позднее бензамидированием 1,3-динитробензола в анаэробных условиях синтезирован *N*-(2,4-динитрофенил)бензамид с выходом 12%. ^{12b} Промотируемое солями Cu(II) амидирование бензазолов¹⁶ предполагает, по мнению авторов, промежуточное образование медьорганических соединений, что не соответствует классическому

S_NH механизму. Нам неизвестны другие примеры S_NH амидирования электронодефицитных гетероциклов.

Для поиска оптимальных условий мы изучали сначала реакцию бензамидирования 1,3,7-триазапирена (1а). Поскольку амиды являются слишком слабыми нуклеофилами, в реакцию вводят их *N*-анионы. Мы генерировали образование аниона бензамида действием гидрида натрия в соответствующем безводном растворителе. Однако провести реакцию в толуоле не удалось ни при комнатной температуре, ни при кипячении. Более успешным оказалось использование безводного ДМСО, который, как известно, обеспечивает максимальную нуклеофильность анионам вследствие отсутствия у них сольватной оболочки.

Как выяснилось, взаимодействие 1,3,7-триазапирена (1а) с N-анионом бензамида в ДМСО протекает при комнатной температуре при использовании 6-молярного избытка нуклеофила (при меньшем его количестве реакция не завершается в течение 72 ч). В результате после обработки водой и кристаллизации выход 6-бензоиламино-1,3,7-триазапирена (2а) составил 47% (схема 2, табл. 1, опыт 1). Отметим, что в этом и других экспериментах продолжительность реакции определялась по исчезновению в реакционной смеси исходного субстрата 1а). Следовательно, параллельно основному протекает некий деструктивный процесс, приводящий к образованию смол. Повышение температуры до 65-70 °С ускоряет реакцию бензамидирования, но уменьшает выход продукта 2а (опыт 3). Продолжительное выдерживание реакционной смеси при той же температуре сопровождается сильным ее осмолением. В этом случае единственным выделенным продуктом

Схема 2

Таблица 1. Синтез 6-ациламино-1,3,7-триазапиренов 2а-д

Опыт	Продукт реакции	R	Температура, °С	Время реакции, ч	Выход, %
1	2a	Ph	Комнатная	6	47
2	2a	Ph	Комнатная	6	Следы*
3	2a	Ph	65–70	2	39
4	3	Ph	65–70	10	3.5
5	2b	$4-MeC_6H_4$	65–70	3	16
6	2c	4-MeOC ₆ H ₄	65–70	4	19
7	2d	$4-O_2NC_6H_4$	Комнатная	4	62
8	2e	$2-O_2NC_6H_4$	Комнатная	7	36
9	2f	Me	Комнатная	6	13**
10	2g	Н	Комнатная	7	11

* Реакция проводилась в атмосфере аргона. Выделено 28% исходного соединения 1а.

** Использовался 8-молярный избыток нуклеофила.

реакции с выходом 3.5% оказался продукт двойного S_N H-амидирования – 6,8-*бис*(бензоиламино)-1,3,7-триазапирен (**3**) (табл. 1, опыт 4), что довольно неожиданно с учетом повышенной NH-кислотности амида **2а**. Образование следовых количеств подобных продуктов отмечалось и в других опытах с бензамидами (данные TCX).

Интересно, что если реакции амидов с акцепторными заместителями в бензольном цикле (*орто-* и *пара*нитробензамиды) протекают при комнатной температуре (опыты 7, 8), то с донорными заместителями (*пара*-толуамид, *пара*-метоксибензамид) завершаются лишь при повышенной температуре, образуя продукты **2b,с** с низкими выходами (опыты 5, 6). Эти результаты трудно объяснить относительной нуклеофильностью их *N*-анионов.

При использовании ацетамида и формамида для реакции амидирования 1,3,7-триазапирена (1a) продукты **2f,g** получены лишь с выходами 13 и 11% (табл. 1, опыты 9, 10). Одной из причин этого является меньшая устойчивость алифатических амидов к гидролизу. Изменив условия выделения, т. е. выполнив щелочной гидролиз продуктов амидирования **2f,g** не выделяя их, мы получили ранее уже известный 1,3,7-триазапирен-6-амин (4)^{13a} с выходами 44 и 35% соответственно (схема 3).

Схема 3

Щелочной гидролиз 6-бензоиламино-1,3,7-триазапирена (**2a**) приводит к сложной смеси веществ, тогда как его кислотный гидролиз протекает в концентрированной соляной кислоте при комнатной температуре (схема 4). При этом образуется, однако, не амин **4**, Схема 4

а продукт его последующего гидролиза – 7H-1,3,7-триазапирен-6-он (5).¹⁷

Естественно, диамид **3** в тех же условиях образует 1H-1,3,7-триазапирен-6,8-дион (**6**) (схема 4).¹⁷

В специальном эксперименте мы показали, что в анаэробных условиях (атмосфера аргона) реакция бензамидирования 1,3,7-триазапирена (1а) практически не протекает: ожидаемый амид 2а обнаружен лишь в следовых количествах (данные ТСХ; табл. 1, опыт 2). Следовательно, кольцевые связи C=N данного гетероцикла не способны акцептировать гидрид-анион из σ^н-ациламиноаддукта. Это означает, что их ароматизация протекает под действием кислорода воздуха. Известно, что молекулярный кислород эффективен для ароматизации о^н-аддуктов только в тех случаях, когда последние могут быть далее депротонированы основанием, присутствующим в системе, иными словами, окислению в действительности подвергается соответствующий дианион.^{5b} Следовательно, механизм S_NH амидирования 1,3,7-триазапирена (1а) после образования σ^н-аддуктов 7а-g предполагает их последующее NH-депротонирование и окислительную ароматизацию дианионов 8а-д кислородом (схема 5). Образующиеся в ДМСО *N*-анионы 9а-g протонируются при добавлении воды, о чем свидетельствует быстрое изменение окраски реакционной смеси. Тот факт, что вторичный амид – *N*-метилбензамид, как выяснилось, не реагирует с 1,3,7-триазапиреном (1а) в данных условиях, также свидетельствует в пользу необходимости образования дианионов 8а-д на заключительном этапе процесса.

Результатом эксперимента в анаэробных условиях стало выделение лишь 28% исходного субстрата 1а. На

наш взгляд, это означает, что наряду с образованием σ^{H} -аддуктов 7 (схема 5) происходит нуклеофильное присоединение и по положению 2 триазапиренового цикла. Образующийся в этом случае σ^{H} -комплекс 10 не устойчив, поскольку одна из его резонансных структур имеет хиноидное строение; он и подвергается далее процессам олигомеризации с образованием смолистых веществ. Этим можно объяснить небольшие выходы продуктов S_NH амидирования 2 даже при использовании бензамидов. Повышение термодинамических параметров реакции (температура, время), по-видимому, в большей степени ускоряет этот деструктивный процесс.

Еще одно ограничение предложенного метода заключается в том, что наши попытки ввести в реакцию S_NH амидирования 2-метил-1,3,7-триазапирен (1b) неизменно приводили к полному осмолению реакционной смеси. Мы полагаем, что это результат отщепления протона от группы 2-CH₃ и последующей олигомеризации образующегося хиноидного аниона 11 (схема 5). Этот процесс протекает еще быстрее в отсутствие бензамида, т. е. в системе соединение 1b / ДМСО / NaH.

Таким образом, впервые в ряду гетероароматических соединений предложен метод прямого окислительного замещения водорода на N-амидную группу, что позволило получить ранее неизвестные 6-ациламино-1,3,7-триазапирены. Несмотря на имеющиеся ограничения, метод может оказаться полезным в случае других π -дефицитных гетероциклов для введения амидной группы.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С записаны на приборе Bruker Avance HD 400 (400 и 100 МГц соответственно) в растворе ДМСО- d_6 , в качестве внутреннего стандарта использованы остаточные сигналы растворителя¹⁸: $\delta^{\rm H}$ 2.52 м. д., $\delta^{\rm C}$ 40.45 м. д. Масс-спектры зарегистрированы на приборе Bruker UHR-TOF MaxisTM Impact. Температуры плавления определены на приборе ПТП-1. Контроль за ходом реакций и чистотой полученных соединений осуществлен методом TCX на пластинах Silufol UV-254. Идентичность соединений, полученных разными методами, установлена по отсутствию депрессии температуры плавления смешанных образцов.

1,3,7-Триазапирен (1а) и 2-метил-1,3,7-триазапирен (1b) синтезированы по методике¹⁹. Для реакций использован гидрид натрия фирмы Merck (60% суспензия в парафиновом масле).

Синтез *N*-(1,3,7-триазапирен-6-ил)амидов 2а-g (общая методика). Реакцию проводят в реакторе, защищенном от влаги воздуха. К раствору 3 ммоль соответствующего амида в 4 мл безводного ДМСО добавляют при перемешивании 120 мг (3 ммоль) (для соединения 2f - 160 мг (4 ммоль)) 60% NaH. По окончании выделения водорода в реакционную смесь добавляют 103 мг (0.5 ммоль) 1,3,7-триазапирена (1а) и интенсивно перемешивают в соответствии с данными табл. 1. Далее смесь выливают в 50 г измельченного льда и по достижении комнатной температуры подкисляют разбавленной HCl до pH ~7. Осадок отфильтровывают, промывают водой, сушат. Соединения **2a,d** очищают кристаллизацией из EtOH и ДМФА соответственно; остальные амиды выделяют с помощью метода сухой флеш-хроматографии²⁰ на силикагеле, элюент PhH–EtOAc, 1:1.

N-(1,3,7-Триазапирен-6-ил)бензамид (2а). Выход 76 мг (47%) или 63 мг (39%) (табл. 1, опыты 1 и 3 соответственно). Коричневые кристаллы. Т. пл. 281– 282 °C (ЕtOH). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 7.62 (2H, д. д. *J* = 7.2, *J* = 7.4, H-3,5 Ph); 7.70 (1H, д. *J* = 7.4, H-4 Ph); 8.19 (2H, д. *J* = 7.2, H-2,6 Ph); 8.28 (2H, уш. д, *J* = 9.3, H-4,10); 8.71 (1H, д. *J* = 9.3, H-9); 8.89 (1H, д, *J* = 9.3, H-5); 9.73 (1H, с, H-2); 9.86 (1H, с, H-8); 11.52 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 167.0; 158.0; 154.5; 153.9; 148.6; 147.7; 134.9; 133.8; 133.5; 132.4; 128.6; 128.3; 127.3; 127.0; 126.9; 122.5; 117.7; 114.5. Найдено, *m/z*: 325.1088 [M+H]⁺. С₂₀H₁₃N₄O. Вычислено, *m/z*: 325.1084.

4-Метил-*N***-(1,3,7-триазапирен-6-ил)бензамид** (**2b**). Выход 27 мг (16%). Оранжевые кристаллы. Т. пл. 154– 155 °С (PhH–EtOAc). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.54 (3H, c, CH₃); 7.42 (2H, д, *J* = 8.0, H-3,5 Ar); 8.09 (2H, д, *J* = 8.0, H-2,6 Ar); 8.26 (2H, уш. д, *J* = 9.3, H-4,10); 8.67 (1H, д, *J* = 9.3, H-5); 8.86 (1H, д, *J* = 9.3, H-9); 9.72 (1H, c, H-8); 9.85 (1H, c, H-2); 11.48 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 166.8; 158.0; 154.5; 153.9; 148.7; 147.7; 142.6; 134.9; 133.9; 130.7; 129.1; 128.4; 127.2; 127.1; 127.0; 122.5; 117.7; 114.5; 21.2. Найдено, *m/z*: 339.1243 [M+H]⁺. C₂₁H₁₅N₄O. Вычислено, *m/z*: 339.1240.

4-Метокси-*N*-(**1**,**3**,**7**-тризапирен-6-ил)бензамид (2с). Выход 34 мг (19%). Оранжевые кристаллы. Т. пл. 253–254 °C (PhH–EtOAc). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 3.89 (3H, с, OCH₃); 7.13 (2H, д, *J* = 8.6, H-2,6 Ar); 8.17 (2H, д, *J* = 8.6, H-3,5 Ar); 8.23 (2H, уш. д, *J* = 9.3, H-4,10); 8.64 (1H, д, *J* = 9.3, H-5); 8.84 (1H, д, *J* = 9.3, H-9); 9.70 (1H, с, H-8); 9.82 (1H, с, H-2); 11.39 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 166.4; 162.6; 158.0; 154.5; 153.9; 148.9; 147.7; 134.9; 133.9; 130.4; 127.1; 127.0; 125.5; 122.4; 117.6; 114.5; 113.9; 55.6. Найдено, *m/z*: 355.1193 [M+H]⁺. C₂₁H₁₅N₄O₂. Вычислено, *m/z*: 355.1190. Найдено, *m/z*: 377.1009.

4-Нитро-*N***-(1,3,7-триазапирен-6-ил)бензамид (2d)**. Выход 114 мг (62%). Коричневые кристаллы. Т. пл. > 300 °С (ДМФА). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 8.30 (2H, уш. д, *J* = 9.3, H-4,10); 8.39 (2H, д, *J* = 8.5, H-2,6 Аг); 8.45 (2H, д, *J* = 8.5, H-3,5 Аг); 8.79 (1H, д, *J* = 9.3, H-9); 8.89 (1H, д, *J* = 9.3, H-5); 9.74 (1H, c, H-8); 9.88 (1H, c, H-2); 11.85 (1H, уш. с, NH).* Найдено, *m/z*: 370.0935 [M+H]⁺. C₂₀H₁₂N₅O₃. Вычислено, *m/z*: 370.0935.

2-Нитро-*N***-(1,3,7-триазапирен-6-ил)бензамид (2е)**. Выход 66 мг (36%). Светло-коричневые кристаллы. Т. пл. 234–235 °С (PhH–EtOAc). Спектр ЯМР ¹Н, б, м. д.

^{*} Спектр ЯМР 13 С соединения **2d** записать не удалось из-за недостаточной растворимости.

(*J*, Гц): 7.79–7.97 (3H, м, H-3,4,5 Ar); 8.21 (1H, д, J = 9.1, H-10); 8.25 (1H, д, J = 8.1, H-6 Ar); 8.30 (1H, д, J = 9.4, H-4); 8.80 (1H, д, J = 9.1, H-9); 8.91 (1H, д, J = 9.4, H-5); 9.60 (1H, с, H-2); 9.83 (1H, с, H-8); 11.94 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 165.9; 158.0; 154.5; 153.8 (2C); 147.6; 147.1; 146.5; 134.8; 134.3; 133.1; 132.3; 131.2; 129.4; 127.3; 127.0; 124.4; 122.3; 114.4. Найдено, *m/z*: 370.0934 [M+H]⁺. C₂₀H₁₂N₅O₃. Вычислено, *m/z*: 370.0935.

N-(1,3,7-Триазапирен-6-ил)ацетамид (2f). Выход 17 мг (13%). Коричневые кристаллы. Т. возг. > 245 °С (EtOH). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 2.33 (3H, с, CH₃); 8.22 (1H, д, *J* = 9.2, H-10); 8.24 (1H, д, *J* = 9.4, H-4); 8.73 (1H, д, *J* = 9.4, H-5); 8.83 (1H, д, *J* = 9.2, H-9); 9.65 (1H, с, H-8); 9.82 (1H, с, H-2); 11.13 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 170.0; 157.9; 154.5; 153.9; 148.3; 147.7; 134.9; 133.9; 127.0; 126.7 (2C); 122.0; 116.3; 114.5; 23.6. Найдено, *m/z*: 263.0941 [M+H]⁺. C₁₅H₁₁N₄O. Вычислено, *m/z*: 263.0927.

N-(1,3,7-Триазапирен-6-ил)формамид (2g). Выход 14 мг (11%). Светло-коричневые кристаллы. Т. возг. > 260 °C (ЕtOH). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.10 (1H, д, *J* = 9.2, H-10); 8.25 (1H, д, *J* = 9.3, H-4); 8.77 (1H, д, *J* = 9.2, H-9); 9.15 (1H, д, *J* = 9.3, H-5); 9.52 (1H, с, H-8); 9.77 (1H, с, H-2); 11.79 (2H, уш. с, NH, CHO). Спектр ЯМР ¹³С, δ , м. д.: 164.0; 158.0; 155.0; 153.8; 148.2; 148.0; 135.2 (2C); 130.9; 127.2; 127.0; 125.5; 120.9; 114.9. Найдено, *m/z*: 249.0769 [M+H]⁺. C₁₄H₉N₄O. Вычислено, *m/z*: 249.0771.

N,N'-(1,3,7-Триазапирен-6,8-диил)дибензамид (3) получают по общей методике в соответствии с данными табл. 1. Продукт выделяют методом сухой флешхроматографии²⁰ на силикагеле, элюент PhH–EtOAc, 1:1. Выход 8 мг (3.5%). Оранжевые кристаллы. Т. пл. 272–273 °C (PhH–EtOAc). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.61 (4H, д. д, *J* = 7.3, *J* = 7.6, H-3,5 Ph); 7.69 (2H, т, *J* = 7.3, H-4 Ph); 8.19 (4H, д, *J* = 7.6, H-2,6 Ph); 8.21 (2H, д, *J* = 9.4, H-4,10); 8.68 (2H, д, *J* = 9.4, H-5,9); 9.84 (1H, c, H-2); 11.60 (2H, c, 2NH). Спектр ЯМР ¹³С, δ, м. д.: 166.9; 158.1; 154.3; 147.5; 133.7; 133.3; 132.4; 129.1; 128.6; 128.2; 126.5; 117.2; 114.8. Найдено, *m/z*: 444.1455 [M+H]⁺. С₂₇Н₁₈N₅O₂. Вычислено, *m/z*: 444.1455.

Синтез 1,3,7-триазапирен-6-амина (4). Реакцию проводят в соответствии с общей методикой синтеза амидов 2f,g. По окончании реакции смесь выливают в 50 мл воды, повышают температуру до 65–70 °С и перемешивают при этой температуре в течение 4 ч. По охлаждении реакционную смесь экстрагируют этилацетатом (6 × 15 мл), растворитель упаривают, остаток обрабатывают 15 мл воды, фильтруют, промывают водой и сушат. Выход при использовании ацетамида 48 мг (44%), формамида – 39 мг (35%). Желтые кристаллы. Т. возг. 250 °C (EtOH) (т. возг. 250 °C (EtOH)^{13а}).

Гидролиз *N*-(1,3,7-триазапирен-6-ил)бензамида (2а) и *N,N'*-(1,3,7-триазапирен-6,8-диил)дибензамида (3). Раствор 97 мг (0.3 ммоль) амида 2а в 3 мл конц. HCl или 16 мг (0.036 ммоль) диамида 3 в 0.5 мл конц. HCl выдерживают при комнатной температуре в течение 48 ч. Далее смесь в каждом случае разбавляют водой (30 и 5 мл соответственно), подщелачивают аммиаком до нейтральной среды, экстрагируют 1-BuOH (3×10 мл при получении соединения **5** и 3×5 мл при получении имида **6**) и при пониженном давлении упаривают растворитель.

Из амида **2а** получают 45 мг (68%) **7***H***-1,3,7-триазапирен-6-она** (**5**). Желтые кристаллы. Т. возг. > 284 °C (EtOH) (т. возг. 286 °C (EtOH)^{13a}).

Из диамида **3** получают 8.5 мг (72%) **1***H***-1,3,7-триазапирен-6,8-диона** (6). Светло-коричневые кристаллы. Т. пл. > 300 °С (1-ВиОН) (т. пл. > 300 °С (1-ВиОН)¹⁷).

Работа выполнена при финансовой поддержке Минобрнауки РФ (проект № 4.141.2014/K).

Список литературы

- (a) Corey, E. J.; Czako, B.; Kürti, L. Molecules and Medicine, Wiley: Hoboken, 2007. (b) Patai Series, The Chemistry of Functional Groups, The Chemistry of Anilines, Rappoport, Z., Ed.; Wiley: Chichester, 2007, pt. 2, chap. 13. (c) Amino Group Chemistry, From Synthesis to the Life Sciences, Ricci A., Ed.; Wiley-VCH: Weinheim, 2007. (d) Gangopadhyay, P.; Radhakrishnan, T. P. Chem. Mater. 2000, 12, 3362. e) Bag, B.; Bharadwaj, P. K. J. Phys. Chem. B 2005, 109, 4377.
- Горелик, М. В., Эфрос, Л. С. В кн. Основы химии и технологии ароматических соединений, Химия: Москва, 1992, с. 302.
- (a) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
 (c) Surry, D. S.; Buchwald, S. L. Angew. Chem. 2008, 120, 6438. (d) Roiban, G.-D.; Mehler, G.; Reetz, M. T. Eur. J. Org. Chem. 2014, 2070.
- (a) Kim, J.; Kim, J.; Chang, S. Chem. Eur. J. 2013, 19, 7328 and references cited therein. (b) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem. 2012, 124, 10042.
 (c) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (d) Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.
- (a) Chupakhin, O. N.; Charushin, V. N.; van der Plas, H. C. Nucleophilic Aromatic Substitution of Hydrogen, Academic Press: San Diego, 1994. (b) Mąkosza, M.; Wojciechowski, K. Chem. Rev. 2004, 104, 2631. (c) Gulevskaya, A. V.; Pozharskii, A. F. Top. Heterocycl. Chem. 2014, 37, 179.
- (a) van der Plas, H. C. In Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Elsevier: New York, 2004, vol. 86, p. 1. (b) Gulevskaya, A. V.; Pozharskii, A. F. Russ. Chem. Bull. 2008, 57, 913. [*H36. AH, Cep. xum.* 2008, 899.]
 (c) Gulevskaya, A. V.; Maes, B. U. W.; Meyers, C.; Herrebout, W. A.; van der Veken, B. J. Eur. J. Org. Chem. 2006, 5305.
- (a) Makosza, M. Russ. Chem. Bull. 1996, 45, 491. [*H36. AH*, Cep. xum. 1996, 531.] (b) Bakke, J. M.; Svensen, H.; Trevisan, R. J. Chem. Soc., Perkin Trans. 1 2001, 376. (c) Mąkosza, M.; Białecki, M. J. Org. Chem. 1998, 63, 4878.
- Charushin, V. N.; Chupakhin O. N. Mendeleev Commun. 2007, 17, 249.
- 9. Matern, A. I.; Charushin. V. N.; Chupakhin, O. N. Russ. Chem. Rev. 2007, 76, 23. [Vcnexu xumuu, 2007, 76, 27.]
- Gulevskaya, A. V.; Pozharskii, A. F. In *Advances in Heterocyclic Chemistry*, Katritzky, A. R., Ed.; Elsevier: New York, 2007, vol. 93, p. 57.

- (a) Grabenwöger, M.; Haider, N.; Heinisch, G. Liebigs Ann. Chem. 1989, 481. (b) Boguslavskiy, A. M.; Ponizovskiy, M. G.; Kodess, M. I.; Charushin, V. N. Russ. Chem. Bull. 2003, 52, 2175. [U38. AH, Cep. xum. 2003, 2060.]
- 12. (a) Esser, F.; Pook, K.-H. *Synthesis* 1992, 596.
 (b) Gulevskaya, A. V.; Tyaglivaya, I. N.; Verbeeck, S.; Maes, B. U. W.; Tkachuk, A. V. *ARKIVOC* 2011, (ii), 238.
- 13. (a) Demidov, O. P.; Borovlev, I. V.; Saigakova, N. A.; Nemykina, O. A.; Demidova, N. V.; Pisarenko, S. V. Chem. Heterocycl. Compd. 2011, 47, 114. [Химия гетероцикл. соединений 2011, 142.] (b) Demidov, O. P.; Borovlev, I. V.; Pisarenko, S. V.; Nemykina, O. A.; Saigakova, N. A. Chem. Heterocycl. Compd. 2010, 46, 636. [Химия гетероцикл. соединений 2010, 791.] (с) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Russ. Chem. Bull. 2011, 60, 1784. [Изв. АН, Сер. хим. 2011, 1755.] (d) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A.; Pisarenko, S. V.; Nemykina, O. A. J. Heterocycl. Chem. 2011, 48, 1206. (e) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Chem. Heterocycl. Compd. 2013, 49, 618. [Химия гетероцикл. соединений 2013, 662.] (f) Borovlev, I. V.; Demidov, O. P.; Borovlev, I. I.; Saigakova, N. A. Chem. Heterocycl. Compd. 2013, 47, 952. [Химия гетероцикл. соединений 2013, 1018.] (g) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Chem. Heterocycl. Compd. 2014, 50, 685 [Химия гетероцикл. соединений 2014, 746.] (h) Borovlev, I. V; Demidov, O. P; Saigakova, N. A;

Amangasieva, G. A. *Eur. J. Org. Chem.* **2014**, 7675. (i) Demidov, O. P.; Borovlev, I. V.; Saigakova, N. A.; Nemykina, O. A.; Pisarenko, S. V. *Chem. Heterocycl. Compd.* **2012**, 48, 1527. [*Химия гетероцикл. соединений* **2012**, 1639.] (j) Demidov, O. P.; Borovlev, I. V.; Pisarenko, S. V.; Nemykina, O. A. *Russ. J. Gen. Chem.* **2010**, 80, 160. [*Журн. общ. химии* **2010**, 80, 165.] (k) Borovlev, I. V.; Demidov, O. P.; Pisarenko, S. V.; Demidova, N. V.; Nemykina, O. A. *Russ. J. Org. Chem.* **2009**, 45, 1736. [*Журн. орган. химии* **2009**, 45, 1739.]

- (a) Schaefer, T.; Eichenberger, T.; Bardon, K.; Ricci, A.; Chebotareva, N. US Patent 20110186821A1; (b) Schaefer, T.; Bardon, K. Patent WO 2010031738A1.
- (a) Stern, M. K.; Cheng, B. K. J. Org. Chem. 1993, 58, 6883.
 (b) Stern, M. K.; Bashkin, K. J. US Patent 5117063.
- 16. Wang, Q.; Schreiber S. L. Org. Lett. 2009, 11, 5178.
- Saigakova, N. A.; Borovlev, I. V.; Demidov, O. P. Russ. J. Org. Chem. 2013, 49, 1199. [Журн. орган. химии 2013, 49, 1215.]
- Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- Aksenov, A. V.; Borovlev, I. V.; Aksenova, I. V.; Pisarenko, S. V.; Kovalev, D. A. *Tetrahedron Lett.* 2008, 49, 707.
- Sharp, J. T.; Gosney, I.; Rowley, A. G. *Practical Organic Chemistry*, Springer: London, New York, 1989. [Шарп, Д.; Госпи, И.; Роули А. *Практикум по органической химии*; Москва, В. В., Ред.; Мир: Москва, 1993.]