

Химия гетероциклических соединений 2015, 51(5), 395-420

обзоры

Методы синтеза 1-замещенных 1Н-имидазол-2(3Н)-онов

Мария М. Антонова¹, Владимир В. Баранов¹, Ангелина Н. Кравченко¹*

¹ Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119991, Россия e-mail: kani@server.ioc.ac.ru

Поступило 6.02.2015 Принято 16.03.2015

Обобщены данные за 1923–2014 гг. о методах синтеза 1-замещенных 1*H*-имидазол-2(3*H*)-онов, представляющие интерес для широкого круга химиков.

Ключевые слова: ацилоины, 1-замещенные 1*H*-имидазол-3-оксиды, 1-замещенные мочевины, изоцианаты, имидазолидин-2,4-дионы, имидазолоны, 1*H*-имидазол-2(3*H*)-оны, первичные амины, уреидоацетали, уреидокетоны, методы синтеза.

В последнее время 1-замещенные 1Н-имидазол-2(3Н)-оны (имидазолоны) активно изучаются как биологически активные соединения. Они обладают противогрибковыми, противовоспалительными, противоопухолевыми, кардиостимулирующими свойствами.² Обнаружено, что некоторые представители 1-замещенных имидазолонов улучшают память,³ а также проявляют антиоксидантную, 3,4 вазодиляторную,⁴ ангиотензивную,⁵ цитотоксическую,⁶ гербицидную, инсектицидную^{7,8} активность. Соединения такого типа также являются регуляторами роста,⁷ инотропными агентами,⁹ антиконвульсантами,⁴ антагонистами дофаминовых рецепторов,^{10,11} агонистами различных рецепторов,^{2,12} в том числе CGRP¹³ и простагландиновых,⁴ ингибиторами тирозинфосфатазы¹⁴ и ренина,⁵ предшественниками в синтезе природных агеластатиновых алкалоидов, проявляющих противораковую

активность,^{15,16} а также используются для окраски клеток эпителия человека¹⁷ (рис. 1.). Все это способствовало росту исследований, связанных с разработкой методов синтеза 1-замещенных 1*H*-имидазол-2(*3H*)-онов.

Отдельные примеры получения 1-замещенных имидазолонов очень кратко без акцента на синтетической ценности метода описаны в предыдущих обзорах.^{18,19} В настоящем обзоре они рассмотрены подробно. Представленные с 1923 по 2014 г. в литературе методы синтеза 1-замещенных 1Н-имидазол-2(3H)-онов можно разделить на две группы. Первая из них включает реакции, в которых имидазолоновый цикл формируется из ацилоинов и мочевин или внутримолекулярной циклизацией уреидоацеталей, уреидо-1,3-оксазинанов и уреидокетонов. Вторая группа методов представлена трансформациями производных имидазола: имидазолидин-2,4-дионов, 1-замещенных 1Н-имидазол-3-оксидов и незамещенных по атомам азота 1*Н*-имидазол-2(3*H*)-онов.

^{*} Здесь и далее в номере фамилия автора, с которым следует вести переписку, отмечена звездочкой.

(–)-Агеластатин А противораковая активность

Рисунок 1. Структуры и свойства некоторых 1-замещенных имидазолонов.

1. СИНТЕЗ ИМИДАЗОЛОНОВ КОНДЕНСАЦИЕЙ АЦИЛОИНОВ И МОЧЕВИН

Одним из наиболее простых методов синтеза имидазолонов **1** является конденсация ацилоинов **2** с монозамещенными мочевинами **3** (схема 1).^{8,10,20–24} Реакции протекают в различных растворителях (уксусная кислота,^{8,23} этиленгликоль,^{20,21,24} толуол¹⁰) как в условиях кислотного катализа (уксусная кислота,^{8,23} трифторуксусная кислота (TFA)¹⁰), так и в его отсутствие.^{10,20–22} В литературе представлен один пример получения соединений **1** сплавлением реагентов – бензоина **2a** (R¹ = R² = Ph) и фенилмочевины **3a** (R³ = Ph).²²

Схема 1

В подобного рода циклизациях наиболее изучен 2-гидрокси-1,2-дифенилэтанон (бензоин) **2а**. Его реакции с монозамещенными мочевинами **3** проводят в этиленгликоле²⁰ или уксусной кислоте⁸ при высоких температурах в течение 1–7 ч, используя 4-кратный избыток мочевин **3**, так как в условиях реакции они частично разлагаются с выделением аммиака.

Ким и соавторы предлагают следующий механизм этого превращения.²⁰ При конденсации бензоина 2a и метилмочевины 3b образуется интермедиат A, который в условиях реакции таутомеризуется в енол B, а затем в кетон C, претерпевающий внутримолекулярную циклизацию до имидазолона 1a (схема 2).

Схема 2

Фенилмочевина (**3a**) не вступает в аналогичное превращение. По мнению авторов, циклизации препятствуют стерические и электронные факторы.¹⁶ В этом случае интермедиат **D** (аналогичный интермедиату **C**, схема 2) реагирует со второй молекулой фенилмочевины (**3b**) с образованием амида **E**, который диспропорционирует с образованием дифенилмочевины **4**а и 4,5-дифенил-1*H*-имидазол-2(3*H*)-она (**5a**) (схема 3).

Схема 3

1,4,5-Трифенил-1*H*-имидазол-2(3*H*)-он **1b** был синтезирован из бензоина **2a** и мочевины **3a** в отсутствие растворителя²² или при нагревании в $AcOH^{19}$ с выходами 70 и 43% соответственно.

В то же время конденсация 1,2-дизамещенных 2-гидроксиэтанонов 2 с 1-(4-бензилпиперидин-1-ил)мочевиной при кипячении в толуоле в течение 2 ч с использованием TFA в качестве катализатора¹⁰ оказалась малоэффективной для получения соединений **1**, выходы которых составили 2–9%.

2. СИНТЕЗ ИМИДАЗОЛОНОВ ВНУТРИМОЛЕКУЛЯРНОЙ ЦИКЛИЗАЦИЕЙ УРЕИДОАЦЕТАЛЕЙ, УРЕИДО-1,3-ОКСАЗИНАНОВ И УРЕИДОКЕТОНОВ

В литературе широко представлены методы получения имидазолонов 1 через циклизацию уреидоацеталей $6^{1,25-48}$ уреидо-1,3-оксазинанов (защищенных уреидоальдегидов) $7^{11,12}$ или уреидокетонов $8^{2,3,6,31,49-56}$ причем эти подходы связаны между собой общностью протекающих процессов (схема 4).

Схема 4

В кислой среде уреидоацеталь 6 или уреидо-1,3-оксазинан 7 в присутствии воды трансформируется в соответствующий уреидоальдегид F. Неподеленная электронная пара фрагмента 1-NH уреидоальдегида F атакует электрофильный атом углерода карбонильной группы, давая после протонирования катион G. Далее происходит отщепление протона с образованием интермедиата H, который гидролизуется до имидазолона 1 (схема 5). Интермедиат G может генерироваться также из уреидокетона 8 в присутствии кислоты.

Схема 5

Синтез исходных соединений **6–8** осуществляется разными способами, и иногда эти соединения используются в синтезе имидазолонов **1** без выделения, поэтому рассмотрим методы их синтеза в комплексе с их последующей циклизацией.

2.1. Синтез имидазолонов на основе уреидоацеталей

Уреидоацетали 6 могут быть получены взаимодействием α -аминоацеталей 9 с изоцианатами 10 (метод I)^{25–36} или амидами 11 (метод II),^{1,37–47} а также конденсацией изоцианатоацеталей 12 с первичными аминами 13 (метод III)⁴⁸ (схема 6).

Схема 6

Полученные уреидоацетали **6** претерпевают циклизацию в имидазолон **1** в присутствии различных кислот, таких как соляная, $^{1,25,27,28,30,31,34-36,40-44,47}$ трифторуксусная, 26,29 уксусная, 32,48 муравьиная, 33,37,45 серная 38,39 (схема 4).

2.1.1. Синтез имидазолонов взаимодействием α-аминоацеталей с изоцианатами (метод I)

Взаимодействие α -аминоацеталей **9** с изоцианатами **10** наиболее широко представлено на примере 2,2-диметоксиэтиламина (**9a**) (R¹ = R² = H, R⁴ = Me) (схема 7). Эти реакции осуществляются с использованием различных растворителей, таких как MeCN,²³ CH₂Cl₂,^{26,29,32,33} MeOH³⁰ и бензол,³¹ а также в их отсутствии.^{27,28} Реакции проводятся при комнатной температуре,^{25–30} кипячении³¹ или охлаждении,^{27,28} при этом их продолжительность колеблется от 30 мин до 3 сут. На втором этапе осуществляется кислотнокатализируемая циклизация синтезированных уреидоацеталей **6** с образованием имидазолонов **1** под действием HCl,^{25,27,28,30,31} TFA,^{26,29} AcOH³² и HCO₂H.³³ Следует отметить, что в некоторых случаях соединения **6** не выделялись, и обе стадии осуществлялись однореакторно.

Имидазолон 1с с выходом 95% был получен также из 3-метил-1-(2,2-диэтоксиэтил)мочевины **6а** в MeOH при обработке HCl в течение 2 сут (схема 8)³⁰.

Синтез имидазолона **1d** проводили при нагревании диэтоксиацеталя **6b** в 2 н. H_2SO_4 до 80 °C в течение 4 ч. Выход имидазолона **1d** составил 98% (схема 9).³⁹

p-Tol, 2,6-(MeO)₂C₆H₃, 3-Br(Cl,I)C₆H₄, 3,4-Cl₂C₆H₃,

Схема 8

Схема 9

В литературе³⁴ приводятся данные о синтезе имидазолона **1e** с выходом менее 2% из уреидоацеталя **6c** под действием 4 н. HCl с дальнейшей обработкой 8 н. NaOH (схема 10). Авторы не сообщают о методе синтеза соединения **6c**.

Схема 10

Описаны два варианта взаимодействия 4-изоцианатопиперидинкарбоксилата **10a** и 2,2-диметоксиэтиламина (**9a**)^{35,36} (схема 11). В первом случае в присутствии Pd/C происходит снятие бензильной защитной группы. Последующий гидролиз под действием HCl сопровождается гетероциклизацией с одновременным декарбоксилированием, что приводит к имидазолону **1f** с количественным выходом.³⁵ Во втором случае реакцию проводят в MeCN с последующим гидролизом в водно-метанольном растворе HCl.³¹ Выход соединения **1g** при этом достигает 90%. Промежуточно образующиеся уреидоацетали в обоих превращениях не выделялись.

Схема 11

2.1.2. Синтез имидазолонов из α-аминоацеталей и амидов (метод II)

В отличие от метода I в методе II вместо изоцианатов 10 используются амиды 11 (схема 12). Синтез соединений 1 осуществляется взаимодействием α -аминоацеталей 9a,b с амидами 11 в среде $T\Gamma\Phi$,³⁷ EtO(CH₂)₂OH,³⁸ пиридина^{40,44} или MeCN.^{41,42} Циклизация полученных уреидоацеталей 6 проходит в присутствии муравьиной^{37,45} или соляной^{1,41–44} кислоты. Соединения 6 в некоторых случаях были выделены с выходами 32–94%.

Схема 12

Заслуживает отдельного внимания работа,³⁸ в которой синтез 1-[(5-нитрофурфурилиден)амино]-4-имидазолин-2-она (**1h**) осуществляется из семикарбазона **11a** и диэтилацеталя аминоацетальдегида **9b** в 2-этоксиэтаноле с образованием на первой стадии семикарбазона **6d** (схема 13). Кислотный гидролиз продукта **6d** в присутствии 5-нитрофурфурола **14** приводит к желаемому продукту **1h** с выходом 84%.

Схема 13

Также известен пример однореакторного синтеза имидазолона 1i с использованием в качестве исходных веществ 6-аминохиназолина 13а и фенилхлорформиата с последующим добавлением аминоацеталя 9a⁴⁶ (схема 14).

Схема 14

Синтез имидазолона 1f с количественным выходом осуществлен кислотным гидролизом уреидоацеталя 6e (схема 15). Последний получали в две стадии: на первой из них амин 13b обрабатывали трифосгеном, образующийся при этом амид 11b конденсировали с 2,2-диметоксиэтанамином 9a.⁴⁷

Схема 15

2.1.3. Синтез имидазолонов конденсацией изоцианатоацеталей с первичными аминами (метод III)

Метод III только начинает развиваться. В литературе⁴⁸ описан пример генерации уреидоацеталя **66** реакцией изоцианатоацеталя **12a** с первичным амином **13c** в дихлорметане в присутствии Et_3N (схема 16). Кислотный гидролиз продукта **6f** в HCO₂H/AcOH дает имидазолон **1j** с выходом 28%.

Схема 16

Синтез имидазолонов 1 не ограничивается превращениями на основе уреидоацеталей 6. Для их получения широко используются и другие методы.

2.2. Синтез имидазолонов на основе уреидо-1,3-оксазинанов

Имидазолоны 1 были синтезированы также посредством циклизации уреидо-1,3-оксазинанов 7.11,12 Функционально замещенный 1,3-оксазинан 15а реагирует с концевой аминогруппой связанного со смолой HMBA-PEGA₈₀₀ дипептида Phe-Gly 16a, что приводит к соединению 7a. Последнее при обработке 10% TFA дает 1-замещенный имидазолон 1k в качестве единственного продукта (схема 17).¹¹ Другое соединение – β-карболиновое производное 17a – с энантиомерной чистотой более 95% и выходом 94% (в расчете на соединение 7b) получено при использовании полимерносвязанного дипептида Trp-Gly 16b. Сила кислот, используемых для циклизации соединения 7а, b, не влияет на направление и выход реакции: TFA (10-100%), HCl (1 M) и H₂SO₄ (1 M) обладают одинаково хорошей реакционной способностью.

Субстрат **15а** был введен в реакцию с рядом дипептидов **16** на твердом носителе, что привело к синтезу соединений **7** (схема 18, табл. 1).¹¹ Обработка соединений **7** 10% водной TFA способствовала региоселективному образованию имидазолонов **11–о**, **17b,c** (табл. 1). Исключениями стали более реакционноспособные 3-тиенил- и 3,4-диметоксифенилпроизводные **7**, которые помимо имидазолонов **1р,q** дали соответствующие 4,5,6,7-тетрагидротиено[2,3-*c*]пиридин **17d** и 1,2,3,4-тетрагидроизохинолин **17e**. Интересно отметить, что после-

Схема 17

дующее воздействие 100% ТFA на полимерносвязанные имидазолоны **11**,**m**,**p**,**q** в течение 12 ч количественно превратило их в полициклические продукты **17b-е**. Все продукты были очищены от полимера обработкой 0.1 М водным раствором NaOH.¹¹

Во всех приведенных выше реакциях в кислой среде происходит снятие защитной группы альдегида, что приводит к образованию смеси N,O-полуацеталя (не показано) и циклического N-карбамилиминиевый интремедиат I (схема 18). N-карбамилиминиевый интремедиат I может быть атакован или электронами соседней связи С–H цикла, при этом с потерей протона цикла превращаясь в имидазолон 1, или π -электронами ароматического фрагмента боковой цепи аминокислоты с образованием соответствующего циклического продукта 17. Авторы предполагают, что превращение циклических N-карбамилиминиевых ионов в имидазолоны обратимо, и в сильнокислой среде устанавливается равновесие между этими двумя формами.¹¹

Схема 18

Габлица 1	. Выходы и соотношение продуктов 1	l–q	и	17b-e
-----------	------------------------------------	-----	---	-------

изинци 1. Быходы и соотношение продуктов 11 с и 176 с				
Имидазолоны 1	Полициклы 17	1:17,%		
	$(\mathbf{A}_{1}, \mathbf{A}_{2}, A$	100:0* 0:100**		
11 (58%*)	17b (19%**)	100.04		
$\begin{array}{c} 0 & 0 \\ HN \\ HN \\ - \\ - \\ H \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		100:0* 0:100**		
1m (68%*)	17c (45%**)			
	-	100:0* 100:0**		
1n (16%*)		100.0*		
$ \begin{array}{c} $		100:0**		
		66:34* 0:100**		
1р (-) н	17d (45%**)	02.7*		
		1q+17e (76%*) 0:100**		
О́Ме	MeO 17e (38%**)			
1q	1/e (30/01)			

* Условия реакции: 10% TFA.

** Условия реакции: 100% TFA.

Те же авторы продолжили развивать методы синтеза имидазолонов 1 в твердой фазе и растворе в другой работе.¹² При связывании строительных блоков 15 с дипептидами 16 образовались продукты 7, которые были последовательно обработаны 10 и 95% ТFA до полного снятия защитной группы, после чего имидазолоны 1 были очищены от полимера действием 0.1 н. NaOH (схема 19). Выходы соединений 1 и 7 в статье не указаны.

Схема 19

Аналогично при взаимодействии полимерносвязанного амида 16с с субстратами 15 получены имидазолоны 1r,s, хотя промежуточно образующиеся уреидо-1,3-оксазинаны 7 не выделялись¹² (схема 20).

Схема 20

Синтез имидазолонов был осуществлен и без использования полимерной подложки¹² (схема 21). Реакция метилового эфира L-аланина с соединением **15b** в ДМФА с использованием *N*-этилморфолина для нейтрализации гидрохлорида привела к продукту **7i** с выходом 82%. После обработки соединения **7i** смесью TFA, MeCN и воды (19:200:1) был получен имидазолон **1t**. Схема 21

2.3. Синтез имидазолонов на основе уреидокетонов

В литературе представлен ряд работ по синтезу имидазолонов **1** циклизацией уреидокетонов **8**, ^{2,3,6,31,39,49-56} которая осуществляется под действием кислот (HCl, ^{30,53} TFA, ^{3,49,51-53} AcOH²) (схема 4). Соединения **8** генерируются путем взаимодействия α -аминокетонов и изоцианатов (раздел 2.3.1), ^{3,6,31,39,49,55,56} с использованием монозамещенных мочевин (раздел 2.3.2)⁵⁰⁻⁵³ или другими методами (раздел 2.3.3).^{2,54}

2.3.1. Синтез имидазолонов из α-аминокетонов и замещенных изоцианатов

Имидазолоны 1 получены циклизацией уреидокетонов 8 в конц. HCl (схема 22).³¹ Соединения 8 синтезируют из 2-амино-1-фенилэтанона 18а и соответствующих изоцианатов 10 в присутствии триэтиламина. Выходы имидазолонов 1 составили 72–95% после перекристаллизации из EtOH.

Схема 22

Имидазолоны 1 также получены реакцией аминокетонов 18 с цианатом калия в присутствии уксусной кислоты (схема 23).^{39,55}

Схема 23

В другой статье⁴⁰ авторы синтезируют α -аминокетон 18b из 2-бромо-1-фенилпропан-1-она 19a и амина 13d, а далее взаимодействием с бензоилизоцианатом 10b генерируют соответствующий уреидокетон, который обрабатывают в однореакторном варианте трифторуксусной кислотой и получают имидазолон **1u** с выходом 25% (схема 24).

Схема 24

Аналогичное превращение было выполнено Na Xue и соавторами.⁶ Замещенные 2-бромо-1-арилэтаноны **19** обрабатывались гексаметилентетрамином (HMTA), а затем гидролизовались конц. HCl в EtOH с образованием соответствующих гидрохлоридов 2-амино-1-арилэтанонов **18** (схема 25). Циклизация последних с 3,4,5-триметоксифенилизоцианатом **10с** в кипящем толуоле протекала с образованием смеси соединений **1** и **20** в соотношении примерно 1:3. Соответствующие промежуточные уреидокетоны выделены не были. Некоторые из полученных соединений **1**, связанных с комбретастатином A-4 (CA-4), в экспериментах *in vitro* проявили цитотоксическую активность в отношении различных клеточных линий рака человека, в том числе клеточной линии MDR.

Схема 25

 $R^1 = p$ -Tol, 4-MeOC₆H₄, 3,4-(MeO)₂C₆H₃, 3-O₂N-4-MeOC₆H₃; $R^2 = 3,4,5$ -(MeO)₃C₆H₂

Группа японских исследователей³ синтезировала серию имидазолонов 1 (63 примера) для изучения их антиоксидантной активности и поиска ингибиторов пероксидирования липидов. Соединения 18' получены бромированием соответствующих арилкетонов 21 и дальнейшим взаимодействием с амидом трифторуксусной кислоты (схема 26). Далее полученные под действием HCl аминокетоны 18 в виде гидрохлоридов вводились в реакцию с изоцианатами 10 с последующей циклизацией под действием TFA в продукты 1.

Применяя аналогичный метод, синтез имидазолонов проводили в 2 стадии. На первой стадии аминокетоны **18** конденсировали с изоцианатами **10**. На второй стадии добавляли *n*-толуолсульфокислоту (*p*-TsOH), которая катализировала циклизацию уреидокетонов **8** до целевых продуктов **1** (схема 27).⁵⁶ Выходы полученных соединений по обеим стадиям составили 28–84%.

2.3.2. Синтез имидазолонов на основе монозамещенных мочевин

Конденсацией 1-(адамантан-1-ил)-3-бромпропан-2-она **19b** с монозамещенными мочевинами **3** в этиленгликоле в присутствии K₂CO₃ были получены адамантанзамещенные имидазолоны **1** с умеренными выходами⁵⁰ (схема 28).

Схема 28

Ученые из Института Скриппса осуществили исследования реакции внедрения α -диазо- β -кетоэфиров (диазокарбонилов) **21** по связи N–H монозамещенных мочевин **3** с образованием имидазолонов **1**.^{51–53} При нагревании диазосоединений **21** и монозамещенных мочевин **3** в присутствии каталитического количества Rh₂Oct₄ были получены имидазолоны **1**^{51,52} (схема 29). Интермедиатами этой реакции являются уреидокетоны **8**, которые были выделены в трех случаях. Было установлено, что некоторые продукты **8** циклизовались в соответствующие имидазолоны 1 даже в присутствии такой слабой кислоты, как силикагель. В связи с этим после реакции внедрения в реакционную смесь или к выделенному продукту 8 была добавлена TFA и полученные имидазолоны были очищены колоночной хроматографией.

Схема 29

 $R^{1} = H, CO_{2}Et, C(O)NHPh, C(O)NMe_{2}, PO(OEt)_{2}, C(O)Ph;$ $R^{2}, R^{3} = Me, Ph, Bn$

- *i*: Rh₂Oct₄ (2 mol %), **3** (1.5 equiv), PhMe–CICH₂CH₂CI, 1:1, 80°C, 30 min;
- ii: 10% TFA, rt, 30 min

Была также исследована реакция внедрения в твердофазном варианте⁵¹ (схема 30). Полимер Гидроксифенил-JandaJel с иммобилизованными α -диазо- β -кетоэфирами 21' был введен в реакцию с 3 экв. мочевины 3 в условиях, аналогичных жидкофазным. Обработка продуктов 8' раствором TFA привела к образованию иммобилизованного имидазолона 1'а-к. Продукт был удален с поверхности полимера переэтерификацией с

Схема 30

 $R^2 = Me$, Ph, PMP, Bn, 4-BrC₆H₄; \bigcirc = Hydroxyphenyl-JandaJel

образованием эфиров 1" или заменой пиперидиновым фрагментом, что привело к соединениям 1"". Общие выходы по всем стадиям для соединений 1" и 1"" составили 16–79 и 53–84%. Исследование реакции показало ее толерантность к различным субстратам.

Показана возможность синтеза имидазолонов 1 из α -диазо- β -кетоэфиров 21' и фенилмочевины 3a в отсутствие металлокомплексного катализа с использованием полимерной подложки JandaJel (схема 31).⁵³

Интересное наблюдение было сделано в ходе изучения циклизации продукта внедрения $8'a^{53}$ (схема 32). Реакция циклизации уреидокетона 8'a может происходить по двум направлениям после отщепления от полимерной подложки: по пути I или II. Если реализуется путь I, продукт отщепления β -кетокислоты может подвергаться кислотно-катализируемому декарбоксилированию с последующим образованием интермедиата J и кетомочевины K до замыкания

Схема 32

имидазолидинового цикла. В этом случае основным продуктом расщепления является соединение 1v (выход 16%), а не кислота 1w (выход 4%).

2.3.3. Другие методы синтеза имидазолонов

Альтернативный способ синтеза имидазолонов 1 основан на многокомпонентной реакции пяти простых и легкодоступных строительных блоков: оловоорганических реагентов 22, иминов 23, хлороформиатов 24, монооксида углерода (25) и ацетата аммония (26) (схема 33).²

Схема 33

 R^1 = Ph, 2-thienyl, 4-MeOC₆H₄; R^2 = Tol, 4-MeOC₆H₄, 4-BrC₆H₄, β-naphthyl, 1,3-benzodioxol-5-yl; R^3 = Bn, Et, OMe, *n*-Hex

Еще один метод синтеза имидазолонов 1 основан на рециклизации триазинанонов 27.^{17,54} 1,3,5-Триазинан-2-оны 27 были получены конденсацией диметилмочевины 4b с первичными аминами 13 и формалином 28 (схема 34). На следующей стадии осуществлялась реакция с *s*-BuLi в качестве литиирующего агента в присутствии различных электрофилов, что привело к соответствующим производным 1,3,5-триазинан-2-онов 29. Последние легко гидролизуются до интермедиатов L с последующей циклизацией в имидазолоны 1.

Схема 34

 R^3 = Bn, *p*-Tol; R^4 = OMe, NH, Bn; R^5 = H, Br

3. СИНТЕЗ 1-ЗАМЕЩЕННЫХ ИМИДАЗОЛОНОВ ИЗ ИМИДАЗОЛИДИН-2,4-ДИОНОВ

В литературе известен метод синтеза 1-замещенных 1Н-имидазол-2(3Н)-онов 1 восстановлением соответствующих имидазолидин-2,4-дионов (гидантоинов) 30 и 5-тиоксоимидазолидин-2-онов (тиогидантоинов) 31^{9,57-62} (схема 35). Интермедиатами этой реакции являются 1-замещенные 5-гидроксиимидазолидин-2-оны 32. которые могут быть выделены из реакционной смеси и подвергнуты обработке кислотой (TFA, 58 p-TsOH, 59,60 HCO₂H⁶¹) (путь I), что приводит к последующему элиминированию молекулы воды. В случае, когда промежуточные соединения 32 малоустойчивы, реакция проходит гладко с образованием имидазолонов 1 (путь II),^{57,61,62} однако в некоторых случаях требуется подкисление реакционной смеси соляной кислотой. 9,58 В качестве восстанавливающих агентов используются LiAlH₄,^{9,57-59} NaBH₄,⁶⁰ AlkLi,⁶¹ реагенты Гриньяра,⁶¹ реагент Шварца (Cp₂Zr(H)Cl, Cp = η^5 -циклопентадиенил).⁶² В случае тиогидантоинов **31** синтез целевого имидазолона 1 осуществляется взаимодействием с MeI (путь III).⁶³

Впервые синтез 1-замещенных 1*H*-имидазол-2(3*H*)онов из имидазолидин-2,4-дионов (гидантоинов) был описан уже в 1950 г.⁵⁷ Авторы исследовали восстановление гидантоина **30a** действием LiAlH₄ и установили, что оба амидных фрагмента, содержащиеся в скелете субстрата, могут быть восстановлены (схема 36). Частичное восстановление 3-метил-5-фенилимидазолидин-2,4-диона **30a**, осуществляемое в диэтиловом эфире в течение 16 ч, приводит к 1-метил-4-фенил-1*H*имидазол-2(3*H*)-ону **1x**. Восстановление второй карбонильной группы протекает сложнее: при взаимодействии имидазолона **1x** и LiAlH₄ в течение 21 сут был получен 1-метил-4-фенил-1*H*-имидазол **33a** с выходом 19%.

Схема 36

LiAlH₄ использовался в качестве восстановителя и в других работах.^{9,58,59} Так, имидазолон **1у** был получен восстановлением гидантоина **30b** действием LiAlH₄ в тетрагидрофуране в течение 48 ч. Исходный субстрат **30b** синтезировали N-алкилированием 5-этилимидазо-

лидин-2,4-диона **30с** бензилбромидом при 3-часовом кипячении в водном этаноле ⁹ (схема 37).

Схема 37

1-Бензил-1*H*-имидазол-2(3*H*)-он 1z синтезировали двумя методами (схема 38).⁵⁸ Первый заключается в восстановлении гидантоина **30d** до 1-бензил-5-гидроксиимидазолидин-2-она **32a** обработкой LiAlH₄ в ТГФ. Соединение **32a** стабильно в нейтральной среде, но претерпевает быструю дегидратацию в присутствии ТFA, образуя соответствующий имидазолон 1z с выходом 43%. Нужно отметить, что в литературе известны и другие дегидратирующие агенты, такие как *n*-толуолсульфокислота.⁵⁹ Этот же синтез реализован также в однореакторном варианте: промежуточно образующееся соединение **32a** не выделяется, а гидантоин **30d** сразу дегидратируется под действием HCl в имидазолон **1y** с выходом 39 %.

Схема 38

1-(2-Этилтиобензил)-4,5-диметилимидазол-2(3H)-она **1аа** был получен с выходом 58% восстановлением гидантоина **30е** борогидридом натрия (схема 39).⁶⁰ Было показано, что первоначально образующийся гидроксиимидазолидинон **32b** под действием *p*-TsOH подвергается беспрецедентной кислотно-катализируемой реакции, включающей перенос метильной группы и элиминирование молекулы воды с образованием имидазолона **1аа**.

В качестве восстановителей, помимо LiAlH₄ и NaBH₄, также используются алкиллитиевые производные (BuLi, *s*-BuLi) и реагенты Гриньяра, что приводит к соответствующим 4-гидроксиимидазолидин-2-онам **32**.⁶¹ В случае взаимодействия AlkLi и 5-монозамещенного гидантоина **30f** образуются малоустойчивые интер-

Схема 39

медиаты **32**, которые при выделении самопроизвольно дегидратируются с образованием имидазолон-2-онов **1** (схема 40).

Схема 40

При использовании реагента Гриньяра (BuMgBr) в реакции с гидантоином **30g** получается его магниевая соль, которую обрабатывают бромидом пент-4-ен-1-илмагния с образованием устойчивого 1-бензил-5-гидрокси-5-(пент-4-ен-1-ил)имидазолидин-2-она (**32c**), который был выделен и охарактеризован методом массспектрометрии, а затем подвергнут обработке муравьиной кислотой в течение 72 ч (схема 41). В результате был получен имидазолон **1ab** с выходом 43%.⁶¹

Схема 41

В качестве восстанавливающего агента имидазолидин-2,4-дионов использовался реагент Шварца,⁶² который известен своей восстанавливающей способностью в реакциях с нитрилами,^{64,65} изонитрилами, эпоксидами, кетонами,⁶⁶ альдегидами⁶⁷ и другими классами соединений. Авторы исследовали его в реакции восстановления гидантоинов **30** до соответствующих имидазолонов **1** (схема 42).⁶² В результате была получена серия 1-замещенных 1*H*-имидазол-2(*3H*)-онов **1** с выходами 76–85%.

Было показано, что реагент Шварца участвует в реакции восстановительного элиминирования, которая, предположительно, протекает через простое гидридное присоединение по лактамной карбонильной группе имидазолидин-2,4-диона **30** с образованием алкоксидного циркониевого комплекса **L**, очень чувствительного к влаге. В присутствии воды происходит элиминирование [Cp₂ZrCl(O)]⁻ (через ассоциат **M**) и обра-

 $R^{1} = (3-MeC_{6}H_{4})CH_{2}, (1-Br-4-CIC_{6}H_{3})CH_{2}, (1-BrC_{6}H_{4})(CH_{2})_{2}$

зование нестабильного иминиевого катиона N, который может спонтанно перегруппировываться в более стабильный циклический енаминный продукт 1.

Известен также пример синтеза имидазолонов из 5-тиоксоимидазолидин-2-она (тиогидантоина) **31**⁶³ (схема 43). При взаимодействии 5-тиоксо-1-фенил-4-(*м*-толилдиазенил)имидазолидин-2-она (**31**) с МеІ при комнатной температуре в течение 12 ч протекает реакция *S*-метилирования с образованием 5-(метилтио)-1-фенил-4-(*м*-толилдиазенил)-1*H*-имидазол-2(3*H*)-она (**1ас**) с выходом 72%.

Схема 43

4. ТРАНСФОРМАЦИЯ 1*Н*-ИМИДАЗОЛ-3-ОКСИДОВ В ИМИДАЗОЛОНЫ

Имидазолоны **1** получают из соответствующих 1*H*-имидазол-3-оксидов (*N*-оксидов) **34** посредством изомеризации, которая осуществляется химически,^{68,74} термически^{68,75,76} или фотохимически⁷⁷ либо протекает самопроизвольно^{75,78} в случае малоустойчивых 3-оксидов.

4.1. Химическая изомеризация *N*-оксидов

Химическая изомеризация соединений **34** протекает под действием различных реагентов, таких как уксусный ангидрид,^{68–72} бис(трифторметил)этилен-1,1-дикарбонитрил (BTF)⁷³ и гидрат гексафторацетона (HFAH) (схема 44, табл. 2).⁷⁴ В качестве растворителя используются Ac₂O,⁶⁸ CH₂Cl₂^{69–71,73,74} или CHCl₃.⁷²

Схема 44

 R^1 = Ph, (CO)NHMe, (CO)NHPh; R^2 = Me, Ph; R^3 = Me, Ph, Bn, CH₂Bn,(CH₂)_nOAc, Cy, All,

Таблица 2. Условия синтеза и выходы имидазолонов 1

Условия реакции	Выход, %
Ac ₂ O, Δ^{68}	60–98
Ac ₂ O, CH ₂ Cl ₂ , комн. т., 12 ч ⁶⁹	48-73
Ac ₂ O, CH ₂ Cl ₂ или CHCl ₃ , комн. т. ^{70–72}	34–94
BTF, CH ₂ Cl ₂ , комн. т., 0.5 ч ⁷³	63-82
HFAH, CH_2Cl_2 , Δ , 0.5 u^{74}	49–72

Впервые об изомеризации 1*H*-имидазол-3-оксидов **34** в имидазолоны **1** при нагревании с Ac_2O на водяной бане сообщил Бартник с сотр.⁶⁸ (табл. 2, строка 1).

В другой работе⁶⁹ 1-замещенные имидазолоны 1 (табл. 2, строка 2) были получены из соответствующих *N*-оксидов **34** также под действием уксусного ангидрида, однако реакцию осуществляли в среде CH_2Cl_2 при комнатной температуре. Авторы также пытались получить эти соединения посредством термической изомеризации, но это не привело к желаемым результатам. В аналогичных условиях (Ac₂O, CH₂Cl₂, комн. т.) была получена серия 1-алкил- и 1-арилзамещенных 1*H*-имидазол-2(3*H*)-онов $1^{70,71}$ (табл. 2, строка 3).

В случае соединений $34a-c^{70}$ изомеризация под действием уксусного ангидрида сопровождается ацетилированием группы ОН с образованием соответствующих ацетатов **1ad-af**. Реакцию проводят при 0–5 °С, так как при нагревании реакционной смеси происходит ацилирование образующегося имидазол-2-она по атому N-3 цикла (схема 45).

Схема 45

1,1'-(Этан-1,2-диил)бис(4,5-диметил-1*H*-имидазол-2(3*H*)он) (**1ag**) был получен кипячением *N*-оксида **34d** с уксусным ангилрилом в CHCl₃ в течение 3 ч⁷⁰ (схема 46).

Был предложен механизм перегруппировки 1*H*-имидазол-3-оксидов **34** в соответствующие имидазолоны **1** под действием Ac₂O (схема 47).⁷¹ Предполагается, что на первом этапе осуществляется ацетилирование 1*H*-имидазол-3-оксида **34** с образованием

34 ۰ xH₂O

Схема 46

Схема 47

интермедиата О, который переходит в 2-ацетокси-1*H*имидазол Р через элиминирование молекулы уксусной кислоты. Далее происходит О-протонирование интермедиата Р уксусной кислотой и деацетилирование через нуклеофильную атаку ацетат-ионом.

В качестве другого агента, изомеризующего *N*-оксиды в имидазолоны, выступает BTF $(35)^{73}$ (табл. 2, строка 4). Реакция гидратов 1,4,5-тризамещенных 1Нимидазол-3-оксидов 34·хH2O с ВТГ приводит к 1,3дигидро-2*H*-имидазол-2-онам 1 и 2-(1,3-дигидро-2*H*имидазол-2-илиден)малононитрилам 36 в зависимости от используемого растворителя (схема 48).

Ключевым интермедиатом рассматриваемого процесса является цвиттер-ион Q, который формируется при нуклеофильном присоединении *N*-оксида 34 к ВТГ (35). В хлористом метилене цвиттер-ион Q реа-

Схема 49

гирует с водой, приводя к соединению R, которое претерпевает фрагментацию с образованием продукта 1 (схема 49). В качестве второго продукта выступает соединение 37, образующееся из воды и соединения 35.

MeOH

CN

ĊN

'n3

36

Превращение соединения 34 в динитрил 36 в метанольном растворе проходит через 1,5-диполярную электроциклизацию цвиттер-иона Q, которая приводит к "циклоаддукту" S (схема 50). Последующий разрыв связи N-O сопровождается ретроеновой реакцией, приводящей к соединению 36 и гексафторацетону 38.

Разные результаты при использовании CH₂Cl₂ и МеОН объясняются высокой нуклеофильностью H₂O в апротонных растворителях типа CH₂Cl₂ по сравнению с МеОН. Как показано на схемах 46 и 47, H₂O играет важную роль в образовании продуктов в реакции N-оксидов 34 и ВТГ (35). По этой причине реакцию провели с безводными *N*-оксидами **34**, которые были получены осушением соответствующих гилратов с активированными молекулярными ситами в CHCl₃. В этих условиях (1,3-дигидро-2*H*-имидазол-2-илиден)малононитрилы 36 образуются с высокими выходами, что может быть объяснено формальным [3+2] циклоприсоединением, приводящим к интермедиату S. Возникновение 1,3-дигидро-2*H*-имидазол-2-онов 1 (в присутствии H₂O) объясняет пошаговый механизм реакции (схема 50). Общим интермедиатом в образовании соединений 1 и 36 является цвиттер-ион Q, который представляет собой продукт региоселективной реакции соединения 34 и

407

ВТF (**35**). Это взаимодействие может быть отнесено к начальной стадии присоединения по Михаэлю, приводящей к активации атома C-2 имидазольного цикла.⁷⁹

Химически активируемая изомеризация *N*-оксидов **34** может осуществляться под действием гидрата гексафторацетона **39**⁷⁴ (табл. 2, строка 5). Взаимодействие 1*H*-имидазол-3-оксидов **34** с HFAH (**39**) приводит к образованию комплексов **40** состава 1:1 с количественными выходами (схема 51). Нагревание выделенных комплексов **40**, содержащих фенильный цикл у атома C-4 имидазольного цикла, сопровождается их изомеризацией в имидазолоны **1** с выходами 49–72%.

Схема 51

Согласно мнению авторов (схема 52), на первой стадии превращения НFAH (39) присоединяется к имидазол-3-оксидам 34 с образованием интермедиатов U. Дальнейшая реароматизация имидазольного цикла приводит к элиминированию воды и генерации полуацеталя V, превращение которого в имидазолоны 1 протекает через 1,5-гидридный сдвиг и отщепление гексафторацетона 38.

Схема 52

4.2. Синтез имидазолонов термической изомеризацией *N*-оксидов

Термическая изомеризация *N*-оксидов **34** в имидазолоны **1** представлена тремя работами.^{68,75,76} Соединения **1** получали из 1*H*-имидазол-3-оксидов **34** кипячением в бензоле или бромбензоле в течение 1–2 ч (схема 53). К сожалению, в литературе отсутствует информация о механизме протекающей реакции.

Схема 53

В работе⁷⁶ получение *N*-оксида **34** из 1,3,5-три-(4-бромфенил)-1,3,5-триазинана **41** и 1-(3-хлорфенил)-1-(гидроксиимино)пропан-2-она **42** и его перегруппировка в имидазолон **1** протекают тандемно (схема 54).

Схема 54

4.3. Синтез имидазолонов фотохимической изомеризацией *N*-оксидов

Синтез 1-замещенных 1*H*-имидазол-2(3*H*)-онов 1 из соответствующих 1*H*-имидазол-3-оксидов **34** посредством фотохимической изомеризации представлен всего одной работой⁷⁷ (схема 55). Реакцию проводили при облучении кварцевой лампой от 2 до 4 ч до полного исчезновения субстрата **34**. Использование ацетона и метанола в качестве растворителя привело к одинаковым результатам. Предполагается, что механизм фотохимической изомеризации включает в себя формирование в качестве интермедиата оксазиридина **W**, типичного для реакции фотохимической перегруппировки 5- и 6-членных *N*-оксидов.^{80,81} Наиболее вероятно, что оксазиридин **W** очень нестабилен и быстро перегруппировывается в соответствующий цвиттер-ион **X**.

Схема 55

4.4. Спонтанная изомеризация *N*-оксидов в имидазолоны

Известны примеры спонтанной изомеризации 1*H*-имидазол-3-оксидов **34** до имидазолонов **1**, проходящей уже при комнатной температуре (схема 56).^{75,78} Трехкомпонентная однореакторная конденсация параформа **28**, первичных аминов **13** и этилового эфира

2-(гидроксиимино)-3-оксобутановой кислоты (**43a**) или 3-(гидроксиимино)пентан-2,4-диона (**43b**) приводит к образованию соединений **34**, которые самопроизвольно перегруппировываются в имидазолоны **1**. Промежуточно образующиеся *N*-оксиды **34** не были выделены из реакционной смеси. Легкость превращения объясняется наличием электроноакцепторного заместителя у атома C-4 в молекуле 1*H*-имидазол-3-оксида **34**.

Схема 56

В другом описанном примере изомеризации *N*-оксидов **34**, полученных аналогично трехкомпонентной конденсацией, синтезированные *N*-оксиды **34** изомеризовались в соответствующие имидазолоны **1** с количественными выходами при очистке колоночной хроматографией с использованием силикагеля (элюент CHCl₃/MeOH).⁸²

5. СИНТЕЗ ИМИДАЗОЛОНОВ МОДИФИКАЦИЕЙ 1*Н*-ИМИДАЗОЛ-2(3*H*)-ОНОВ

Одним из наиболее простых методов получения монозамещенных имидазолонов 1 является алкилирование незамещенных по атомам азота имидазолонов $5^{9,83-89}$ (схема 57).

Схема 57

В целях поиска кардиотонических препаратов авторы статьи⁹ синтезировали *N*-ацилированные имидазолоны **1** из незамещенного по атомам азота имидазолона **5b** (схема 58, табл. 3). Взаимодействие последнего с различными ангидридами приводит к *N*-моноацил-имидазолонам **1** с высокой региоселективностью. Наряду с продуктами **1** образуются также диацетильные производные **20** в следовых количествах.

В реакции 4,5-дифенил-1*H*-имидазол-2(3*H*)-она **5а** и этиниларилкетонов **44а,b** в присутствии триэтиламина, помимо целевых соединений **1ат,ап**, наблюдается образование дизамещенных продуктов **20а,b**⁸³ (схема 59).

Взаимодействие 5-алкилзамещенных 4-бензил-1*H*-имидазол-2(3*H*)-онов **5** с этоксиметилхлоридом в присутствии *N*,*O*-бис(триметилсилил)ацетамида (BSA) приводит к моноалкилированию по атому N-1 или N-3

Схема 58

Таблица 3. Условия синтеза 3-ацилимидазол-2(3Н)-онов 1

R ³	Условия реакции	Выход, %
Ac	Ac ₂ O, Et ₃ N, 85–90 °С, 3 ч	37 (1ah)
C(O)Ph	1) 1 экв. NaOMe, MeOH, Δ, 1 ч 2) (PhCO) ₂ O, ДМФА, 65 °C, 18 ч	45 (1ai)
C(O)Et	(EtCO) ₂ O, ДМФА, 40 °С, 2.5 ч	20 (1aj)
C(O)Pr-i	(<i>i</i> -PrCO) ₂ O, ДМФА, 50 °С, 1 ч	41 (1ak)
C(O)Bn	1 экв. NaOMe, (BuCO) ₂ O, ДМФА, 40 °C, 24 ч	16 (1al)

Схема 59

1am, 20a, 44a R¹ = Ph; 1an, 20b, 44b R¹ = 2-thienyl

цикла и образованию изомеров соединений 1, а также N,N-дизамещенных производных 20 (схема 60).⁸⁴

2'-Деоксирибонуклеозиды (α - и β -изомеры) **1ао,ар** были синтезированы гликозилированием 2-деокси-3,5-ди-(*о*-толил)-1-хлор- α -D-э*ритро*-пентафуранозой **45** 2-((триметилсилил)окси)-1*H*-имидазола **Y**, полученного взаимодействием имидазолона **5с** и гексаметилдисилазана (HMDS), в присутствиии SnCl₄ (схема 61).⁸⁵ После снятия защитных толильных групп были выделены α -изомер **1ао** и β -изомер **1ар** (схема 61).⁸⁵ Схема 61

Имидазолоны laq,ar были синтезированы из 1*H*-имидазол-2(3*H*)-она (5с), 4-хлоро-6-(3,4-дихлорофенил)пиримидина (46) или 3-[(2-хлорпиридин-4-ил)окси]-6-иодо-2-метилпиридина (47) при микроволновом облучении, а имидазолон las был получен из 4-(mpemбутил)-1*H*-имидазол-2(3*H*)-она (5d) и 5-[4-(3-иодо-(**48**)^{86–89} фенетил)пиперазин-1ил]-2-метилхинолина (схема 62). Стоит отметить, что эти реакции могут протекать как в присутствии катализатора (CuI), так и без него, при этом время реакции может изменяться от нескольких минут до 1.5 ч.

6. ДРУГИЕ МЕТОДЫ СИНТЕЗА ИМИДАЗОЛОНОВ

6.1. Формирование имидазольного цикла из соединений, не содержащих гетероциклические фрагменты

Синтез имидазолонов 1 осуществлен восстановительной циклизацией метиловых эфиров уреидокислот 49, полученных взаимодействием изоцианатов 10 с гидрохлоридами метиловых эфиров аминокислот **50** (схема 63).⁹⁰

Схема 63

Были исследованы границы применимости реакции циклизации 2-амино-2-фенилацетонитрила 13е и изоцианатов 10 с образованием 1-замещенных 1Н-имидазол-2(3*H*)-онов 1 (схема 64, табл. 4).⁹¹ По таблице видно, что в мягких условиях реакции, толерантной к ряду функциональных заместителей, получают различные *N*-замещенные 5-амино-4-фенилимидазол-2-оны 1. Если R является электроноакцепторной этоксикарбо-

Таблица 4. Условия синтеза и выходы 3-R-4-амино-5-фенилимидазол-2(3*H*)-онов **1**

R	Условия реакции	Выход, %
Ph	MeCN, 80 °С, 2 ч	68
CH ₂ Bn	Диоксан, 100 °С, 2 ч	59
Pr	MeCN, 80 °С, 2 ч	85
(CH ₂) ₂ Cl	Диоксан, 100 °С, 2 ч	82
(O)P(EtO) ₂	Диоксан, 100 °С, 2 ч	59
CO ₂ Et	Диоксан, 100 °С, 12 ч	24
CO ₂ Et	Et ₃ N (0.1 экв.), (CH ₂ Cl) ₂ , 25 °C, 24 ч	48
CO ₂ Et	Еt ₃ N (0.1 экв.), (CH ₂ Cl) ₂ , 80 °C, 1 ч	51

нильной группой (табл. 4), то для промотирования реакции может быть использовано каталитическое количество основания (Et₃N), увеличивающего нуклеофильность мочевинного интермедиата **Z**, циклизующегося далее в 1-замещенный 5-имино-4-фенилимидазолидин-2-он **AA**.

Исследованию взаимодействия α -хлоральдиминов 51 и α -бромкетиминов 52 с цианатом калия посвящено несколько статей.^{7,8,92} Де Кимпе и соавторы показали, что 1-алкил-5,5-диметил-4-метоксиимидазолидин-2-оны 53 легко доступны взаимодействием α -хлоральдиминов 51 в метаноле с КОСN. Реакция протекает через промежуточный метоксиазиридин **AB** с образованием на первой стадии имидазолона 53. Катион **AC**, образующийся при обработке соединения 53 ТFA в отсутствие каких-либо других растворителей при комнатной температуре, перегруппировывается в катион **AD** с дальнейшим образованием 1-замещенных 4,5-диметил-4-имидазол-2-онов **1** (выходы 48–92%)^{7,92} (схема 65).

5-Арил-1*Н*-имидазол-2(3*H*)-оны 1 были получены реакцией α-бромкетиминов **52** с КОСN в ДМФА (схема 66,

R = Me, El, FI, R = FII, p-10I, R = El, I-FI, Cy

Таблица 5. Условия синтеза имидазолонов 1 из α-бромкетиминов 52

Заместители	Условия реакции	Выход соединений 1, %
$R^1 = Me; R^2 = Ph; R^3 = i-Pr$	MeCN, кип, 115 ч	31
$R^{1} = Me, Et; R^{2} = Ph; R^{3} = i-Pr$	ДМФА, 120 °С, 2.5 ч	22-35
$R^1 = Me; R^2 = Ph;$ $R^3 = Et, Pr, i-Pr$	ДМФА, 120 °С, 2 ч	43–55
$R^1 = Me, R^2 = p$ -Tol, $R^3 = i$ -Pr	ДМФА, 120 °С, 1 ч	70

табл. 5).⁸ Механизм реакции может быть представлен, как нуклеофильное замещение гетероаллильного атома брома в соединении 52 на амбидентный цианатный анион. Образующиеся при этом имины 54' таутомеризуются в енамины 54, способные к внутримолекулярному нуклеофильному присоединению и образованию цвиттер-иона AE. Такая трансформация интермедиатов 54 также может быть связана с 6π -электроциклической реакцией.

Синтез 1-замещенных 5-амино-4-циано-2-гидроксиимидазолов 1 был осуществлен взаимодействием аминомалононитрила (55) с изоцианатами 10, генерированным из трифосгена и первичных аминов 13 в присутствии (*i*-Pr)₂NEt в ТГФ (схема 67).^{93,94} Следует отметить, что эффективность реакции сильно зависит от количества (*i*-Pr)₂NEt. Реакция в присутствии 0.8 экв. (*i*-Pr)₂NEt проходит гладко. Однако использование более чем 1.0 экв. основания резко снижает выход соединений 1, приводя к полимеризации аминомалононитрила (55).

Оригинальный способ синтеза имидазолонов 1 предложен Чумаченко и соавторами⁹⁵ (схема 68), которые показали, что при нагревании соединений **56** в разбавленном щелочном растворе происходит внутримолекулярная циклизация с образованием целевых соединений **1**.

Схема 65

R¹ = Bn, Et, *i*-Pr, CH₂Bn, *t*-Bu, Cy

3,4-(MeO)₂C₆H₃CH₂, 4-MeC₆H₄CH₂, 4-ClC₆H₄CH₂, 4-FC₆H₄CH₂, 2,5-F₂C₆H₃CH₂, C₇H₁₅, 2-NphthCH₂

Возможный механизм превращения включает последовательные стадии депротонирования соединения 56 с образованием аниона AF, который циклизуется в интермедиат AG (схема 69). На следующей стадии происходит отщепление спирта и генерация аниона AH, дальнейшее протонирование которого приводит к продуктам 1.

Схема 69

В работе, посвященной синтезу фосфорзамещенных 1*H*-имидазол-2(3*H*)-онов **1**, показано, что первичные β-енаминофосфонаты **57** присоединяются к диэтилазодикарбоксилату (DEAD) (**58**) в кипящем ТГФ с образованием функционализированных енаминов **59**, дальнейшее нагревание которых в ТГФ в присутствии NaH дает соединения **1** (схема 70).⁴

Схема 70

 R^1 = Ph, *p*-Tol, 2-thienyl, 2-Py

Имидазолоны 1 были получены также взаимодействием аминобутенонов 60 и DEAD (58) в MeCN или EtOH в присутствии NaOH, предположительно через интермедиат AI; выходы составили 55–76%⁹⁶ (схема 71).

Установлено, что при взаимодействии *анти-а*-аминооксима **61** с фосгеном образуется интермедиат **AJ**, который превращается в соединение **1at** путем отщепления HCl (схема 72).⁹⁷

Синтез 3-метил-2-оксо-2,3-дигидро-1*H*-имидазол-4-карбоновой кислоты (**1au**) основан на конденсации винной кислоты **62** с метилмочевиной **3b** (схема 73).⁹⁸ В качестве катализатора использовалась серная кислота, выход целевого продукта составил 54%.

Схема 73

Муди предложил элегантный подход к синтезу имидазолона **1av**, заключающийся в дегидроиодировании 4-(иодметил)имидазолидин-2-она **63** диазабициклоундеценом (DBU) (схема 74).⁹⁹ Соединение **63** получали в две стадии из аллиламина **65** и триметилсилилизоцианата.

6.2. Синтез имидазолонов трансформацией других гетероциклических систем

6.2.1. ANRORC-трансформации гетероциклов в имидазолоны

В литературе встречается ряд работ по превращению производных оксазола и замещенных бензоксазол-2(3H)-онов в имидазолоны 1. 100-102

Взаимодействие 4,5-дифенилоксазол-2(3*H*)-она (**66a**) с первичными аминами **13** приводит к соответствующим 1-замещенным 4,5-дифенил-1*H*-имидазол-2(3*H*)-онам **1** с последовательным образованием интермедиатов **AK** и **AL** (схема 75).¹⁰⁰ При введении в реакцию бензил- и циклогексиламинов **13f**,g из реакционной смеси в небольших количествах были также выделены N,N-дизамещенные мочевины **4c**,d, образующиеся, повидимому, за счет переаминирования промежуточной β -оксомочевины **AK**.

Схема 75

В работах^{100,101} получили имидазолоны 1 взаимодействием ариламинов 13 и 2-метокси-5-морфолино-1,3-оксазол-4-карбонитрила (66b) (схема 76). Возможный ANRORC-механизм образования соединений 1 включает нуклеофильное замещение метоксигруппы остатком ариламина AM, раскрытие оксазольного цикла при атаке водой (интермедиат AN) и последующую циклизацию с образованием производного имидазолона AO, таутомеризующегося в имидазолон 1.

3-(2-Оксоалкил)бензоксазол-2(3*H*)-оны **67** трансформируются в имидазолоны **1** с выходами 50–89% при восстановлении $Na_2S_2O_4$ в щелочной среде (схема 77).¹⁰² Предполагается, что вначале оксим **67** восстанавливается в имин **АР**. Интермедиат **АР** невозможно выделить, так как он претерпевают быструю рециклизацию через нуклеофильную атаку иминогруппы по

Схема 76

карбонильному углероду с расщеплением связи C(2)–O оксазольного цикла.

Схема 77

При обработке бензоксазолона **67а** гидридом натрия в ДМФА и добавлении α -бромо-4'-(трифторметил)ацетофенона **19с** с выходом 93% образуется продукт **1aw** (схема 78).¹⁰³

Схема 78

Имидазолон **1ах** получен с выходом 56% взаимодействием 1-метил-5-(метиламино)-1H-имидазол-4-карбонитрила (**33b**) с хлоругольным эфиром в воде в присутствии NaHCO₃¹⁰⁴ (схема 79). Предположительно, процесс протекает через образование интермедиата **AQ**.

Схема 79

В литературе представлен термолиз (3*R*,4*R*)-4-(метилсульфинил)-3-(тритиламино)азетидин-2-она (**68**), приводящий к имидазолону **1ау** посредством генерации интермедиата **AR**, который, вероятно, претерпевает расширение цикла через промежуточный азиридин **AS**, хотя не исключено и образование изоцианата **AT** (схема 80).¹⁰⁵

Схема 80

Дас и его коллеги предлагают получать 1-замещенные имидазолоны **69** конденсацией фенолов **70**, нингидрина **(71)** и мочевины при кипячении в уксусной кислоте (схема 81).¹⁷ Конденсацию проводят однореакторно в два этапа. На первом происходит конденсация фенолов **70** с нингидрином **71** с образованием соединений **72** и **73**, на втором этапе синтеза добавляют мочевину.

Предполагаемый механизм образования соединений 1 показан на схеме 82 ($R^1 = R^2 = R^3 = H$). Превращение

Схема 81

соединений 72, 73 в конечный продукт – результат нуклеофильной атаки группой NH_2 мочевины по карбонильной группе соединения 72, приводящей к раскрытию цикла и образованию интермедиата AU. Последний циклизуется с образованием изоиндола AV и затем имидазоизоиндола AW. На заключительном этапе процесса происходит дегидратация интермедиата AW с образованием целевых имидазолонов 69.

6.2.2. Другие трансформации гетероциклов в имидазолоны

Известно, что пурины 74 также используются в синтезе 1*H*-имидазол-2(3*H*)-онов 1.^{106,107} Было показано, что обработка 6-амино-9-метил-8-оксопурина 74а *м*-хлорпероксибензойной кислотой (МСРВА) в МеОН приводит к *N*-оксиду 75 с выходом 98% (схема 83).¹⁰⁶ Метилирование соединения 75 МеІ в AcNMe₂ при 50 °С приводит к соединению 76а с выходом 61%. 1-Бензилоксизамещенное производное 76b было получено в

Схема 83

R^1 , R^2 , R^3 = H, Me, OMe, Cl, Br, CHO, CO₂Me, CO₂Et

виде перхлората **76b** $HClO_4$ при бензилировании соединения **75**. В водном растворе NaOH при 40 °C пиримидиновый цикл соединений **76а,b** претерпевает раскрытие с образованием имидазолонов **1az,ba**.

Еще один пример подобного превращения зафиксирован в литературе:¹⁰⁷ соединение **74b** разлагается при обработке 4 н. NaOH до имидазолона **1bb** с выходом 80% (схема 84).

Схема 84

Действие на соединение **33c** HCl в метаноле приводит к метанолизу только одной из нитрильных групп и образованию продукта **1bc**¹⁰⁸ (схема 85). В то же время обработка соединения **33c** избытком MeONa и MeI дает иминоэфир **33d**. В кислой среде иминоэфир **33d** превращается в соединение **1bc**.

Схема 85

Интересный факт обнаружен в реакциях бетаинов 77 с трифенилфосфином¹⁰⁹ (схема 86). В зависимости от характера используемой кислоты либо наблюдается атака трифенилфосфина по формильной группе с последующей сигматропной перегруппировкой, приводящей к бициклическому соединению 78, либо образуется фосфониевая соль 1bd.

Другой способ синтеза имидазолонов 1 основан на взаимодействии 2*H*-азиринов **79** с NH-тиадиазолонами **80** (схема 87).¹¹⁰ Реакцию проводят при комнатной температуре в *i*-PrOH в течение 1 ч, выходы соединений 1 составили 71-96%.

Механизм этого превращения представлен на схеме 88: нуклеофильная атака NH-тиадиазолона **80** по атому

Схема 88

С(3) азирина **79** дает интермедиат **AX**, который претерпевает раскрытие азиридинового цикла по связи N(1)–C(3) с образованием цвиттер-ионного интермедиата **AY**. Последний в результате раскрытия 1,3,4-тиадиазольного цикла (интермедиат **AZ**) и последующей таутомеризации превращается в имидазолон **1**.

1-Метил-5-гидроксиурацил (81а) претерпевает бензиловую перегруппировку и дегидратацию в 0.1 н. NaOH при 100 °C, приводя к 1-метил-2-оксо-2,3-дигидро-1*H*имидазол-4-карбоновой кислоте (1be)¹¹¹ (схема 89). Протекание этой перегруппировки обусловлено тем, что 5-гидроксиурацил 81а в щелочной среде может существовать в таутомерной 5-кетоформе (BA и BA'). Атака гидроксид-иона по атому C-4 интермедиата BA, образующегося при взаимодействии с водой аниона BA', и последующее сужение цикла в интермедиате BB приводит к аниону BC, который посредством миграции протона образует карбоксилатную форму BD. Катализируемая основанием дегидратация интермедиата BD приводит к 2-оксоизоимидазолону BE, который таутомеризуется в 1-замещенный имидазолон 1be.

Обработкой 1-метил-5-ацетокси-6-(ацетоксиметил)урацила (**81b**) раствором NaOH была получена натриевая соль 4-гидрокси-1-метил-5-метилиден-2-оксоимидазолидин-4-карбоксилата (**82**). Дальнейшая обработка щелочным раствором и последующее подкисление реакционой массы приводит к смеси 1*H*-имидазол-4-карбоновой кислоты **1bf** и бис-имидазолона **1bg** (схема 90).¹¹²

Перегруппировки хинолиновых систем в имидазолидин-2-оны описал Класек и сотр.^{113,114} На основе

Схема 89

Схема 90

тетрагидрохинолинилмочевин **83** и имидазохинолин-2,4-дионов **84** в различных условиях были получены имидазолоны **1bh,bi**, бис(имидазолилфенил)мочевины **1bj,bk** и индолилмочевины **85a,b** (схема 91, табл. 6).

Схема 91

1bh,bj, 83–85a R¹ = R² = Bu; **1bi,bk, 83–85b** R¹ = Bu, R² = Ph

Авторы предлагают механизм реакции (схема 92), согласно которому соединение 83 может циклизоваться с образованием изомерного карбинола 84. Дегидратация соединения 84 приводит к интермедиату BG, который также может быть получен через катион BF, а далее в кислой среде протекает гидролиз изоцианата BG в имидазолоны 1bh,bi. Продукты 1bj,bk образуются через присоединение имидазолонов 1bh,bi к непрореагировавшему изоцианатному интермедиату BG.

Таблица 6. Условия синтеза и выходы имидазолонов 1bh-bj

Исходное соединение	Продукт	Условия реакции	Выход, %	Ссылка
83a	1bj	<i>і</i> : AcOH, кип., 1 ч	36	104
83a	85a+1bj	<i>іі</i> : 70% водн. AcOH, кип., 1.5 ч	18 (85 a); 67 (1bj)	105
84a	1bj	<i>ііі</i> : AcOH, кип., 1 ч	34	104
84a	85a+1bj	<i>iv</i> : 70% водн. АсОН, кип., 1.5 ч	18 (85 a); 53 (1bj)	105
1bg	1bj	<i>v:</i> 1) (Cl ₃ CO) ₂ CO, комн. т., 1 ч 2) кип., 2.5 ч	6	104
84b	1bi	<i>vi</i> : AcOH, кип., 1 ч	52	104
85a	1bh	<i>vіі</i> : конц. HCl, кип., 1 ч	74	104
84a	1bh	<i>vііі</i> : конц. HCl, кип., 2 ч	80	105
84a	1bh	<i>ix</i> : конц. HCl, кип., 1 ч	54	105
85b	1bi	<i>х</i> : конц. HCl, кип., 1 ч	94	104
85b	1bi	<i>хі</i> : конц. HCl, кип., 1 ч	74	105

6.3. Фотохимические методы синтеза имидазолонов

Известны оригинальные примеры синтеза имидазолонов, осуществляемые посредством фотохимических перегруппировок.^{23,115,116} Установлено,²³ что при облучении ртутной лампой высокого давления 2,3,4-трифенилизоксазол-5(2*H*)-имин (**86**) перегруппировывается в 1,4,5-трифенилимидазол-2(3*H*)-он (**1b**) и 3-[(α -фениламино)бензилиден]индолин-2-он (**87**) с суммарным выходом 61% (схема 93). Реакцию проводят в ЕtOH или C₆H₆, при этом в бензоле преимущественно образуется соединение **87**, а в этаноле – имидазолон **1b**. Предполагается, что образование соединения **1b** протекает через азиридиноновый интермедиат **BH**.

Схема 93

Также были изучены фотохимические реакции хлоридов 1-(1-R³-2-оксо-1,2-дигидропиримидин-4-ил)пиридиния 88а. в деоксигенированных водных растворах при различных значениях pH¹¹⁵ (схема 94). В этих условиях путем сужения пиримидинового цикла образуются 1-замещенные 1Н-имидазол-2(3Н)-оны 3-замещенные 2-оксо-2,3-дигидро-1*H*-1bl.bm И имидазол-4-карбальдегиды 1bn,bo, выход которых зависит от рН реакционной смеси (табл. 7). При облучении в водном растворе при рН 6.5 основными продуктами являются альдегиды 1bn,bo. В кислой среде наблюдается преимущественно образование соединений 1bl,bm (табл. 7, строки 1, 5), тогда как в щелочной среде повышается выход структур 1bn,bo (табл. 7, строки 2-4, 6). Авторами¹¹⁵ было отмечено, что при проведении реакции в водно-аммиачном растворе из соответствующих ацилированных про-

Схема 94

изводных **1bm,bo** образуются продукты деацилирования **1bp,bq**.

Для синтеза 1-(*трет*-бутил)-1*H*-имидазол-2(3*H*)-она (**1br**) использовали 1-*трет*-бутил-4-винилтетразолон (**90**)¹¹⁶ (схема 95). Процесс протекает через отщепление молекулы азота и образование интермедиата **BI**. Имидазолон **1br** был также получен гидролизом уреидоацеталя **6g**, синтезированного из соединений **9a** и **10b**.

Схема 95

Таблица 7. Условия синтеза и выходы имидазолонов 1bl-bo и соединения 85

Исходное соединение	Растворитель (рН)	Конверсия, %	Выход соединения, %	Выход соединения, %	Выход соединения 85, %
88a	0.002 M HClO ₄ (2.6)	69	1bl , 42	1bn , 20	95
88a	Вода (6.5)	80	1bl , 20	1bn , 43	100
88a	Фосфатный буфер (6.5)	86	1bl , 25	1bn , 31	100
88a	0.002 M NaHCO ₃ (8.2)	60	1bl , следы	1bn , 71	70
88b	Вода (6.5)	61	1bm , 38	1bo , 34	100
88b	0.002 M NaHCO ₃ (8.2)	90	1bm , следы	1bo , 59	65

6.4. Синтез имидазолонов из 1,3-дизамещенных 1*H*-имидазол-2(3*H*)-онов

При попытке циклизации 3-(2-бромбензил)имидазолона **20с** в имидазоизоиндолон в присутствии Pd(OTf)₂, dppe и Cs₂CO₃ в ДМФА/ЕtOH (через стадии окислительного присоединения Pd(0) к связи C-Br и последующего внедрения арилпалладиевого интермедиата в связь С(4)-Н имидазолона) авторы¹¹⁷ наблюдали лишь снятие Вос-защиты и образование имидазолона 1bs (схема 96, табл. 8, строка 1). Попытка С-Н-внедрения в системе Pd(OAc)₂/dppe/Cs₂CO₃/EtOH также привела к снятию Вос-группы и образованию 2-бромбензилимидазолона 1bs с высоким выходом (табл. 8, строка 2). В продолжение этих исследований были найдены простые и эффективные методы снятия Вос-защиты с использованием К₃РО₄ в метаноле при кратковременном микроволновом облучении (табл. 8, строка 3) или 30-минутном кипячении соединения 20с в метаноле в присутствии К₃РО₄ (табл. 8, строка 4). Было показано, что в отсутствие фосфата калия выход продукта реакции составляет лишь 25% (табл. 8, строка 5).

Схема 96

Таблица 8. Условия синтеза и выходы имидазолона 1bs

Условия реакции	Выход, %
Рd(OTf) ₂ , dppe, Cs ₂ CO ₃ , ДМФА/ЕtOH (1:1), 80 °C, 3 ч	51
Pd(OAc) ₂ , dppe, Cs ₂ CO ₃ , EtOH, 80 °C, 3 ч	78
20 мол % К ₃ РО ₄ , MeOH, MW, 3 мин	96
20 мол % К ₃ РО _{4,} МеОН, кип., 30 мин	97
MeOH, MW, 10 мин	25

В литературе упоминается, что снятие [2-(триметилсилил)этокси]метильной защитной группы (SEM) достигается кипячением соединения **20d** с TFA в хлороформе в течение 3.5 ч, приводя к имидазолону **1bt** с выходом $84\%^{118}$ (схема 97).

Схема 97

Щелочной или кислотный гидролиз *N*-этоксикарбонильного производного имидазол-2-она **20e** позволяет получить имидазолон **1bu** с выходом 70 или 58% соответственно¹⁴ (схема 98).

Таким образом, проведенный анализ литературных источников показал, что способы получения 1-замещенных 1*H*-имидазол-2(3*H*)-онов непрерывно совершенствуются. Этот тип соединений привлекает внимание исследователей благодаря широкому спектру проявляемой биологической активности. Большое количество работ, в том числе и опубликованных в последнее десятилетие, говорит о перспективности исследований в этом направлении.

Работа выполнена при финансовой поддержке РФФИ (грант 14-03-31676).

Список литературы

- Kitazaki, T.; Ichikawa, T.; Tasaka, A.; Hosono, H.; Matsushita, Y.; Hayashi, R.; Okonogi, K.; Itoh, K. *Chem. Pharm. Bull.* 2000, 48, 1935.
- Siamaki, A. R.; Black, D. A.; Arndtsen, B. A. J. Org. Chem. 2008, 73, 1135, and references therein.
- Watanabe, K.; Morinaka, Y.; Hayashi, Y.; Shinoda, M.; Nishi, H.; Fukushima, N.; Watanabe, T.; Ishibashi, A.; Yuki, S.; Tanaka, M. *Bioorg. Med. Chem. Lett.* 2008, *18*, 1478.
- 4. Palacios, F.; Ochoa de Retana, A. M.; Oyarzabal, J.; Ezpeleta, J. M. *Tetrahedron* **1998**, *54*, 2281.
- 5. Kwok, L.; Lam, B.; Li, Z.; Zhang, Z. US Patent 8148367; *Chem. Abstr.* 2008, 149, 200922.
- Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.; Yang B.; Lu, X.; Hu, Y. *Bioorg. Med. Chem.* 2008, 16, 2550.
- De Kimpe, N.; Stanoeva, E. Bull. Soc. Chim. Belg. 1991, 100, 195.
- 8. De Kimpe, N.; De Smaele, D.; Stanoeva, E.; Tinant, B.; Declercq, J. P. *Recl. Trav. Chim. Pays-Bas* **1994**, *113*, 283.
- Shaw, K. J.; Erhardt, P. W.; Hagedom, III, A. A.; Pease, C. A.; Ingebretsen, W. R.; Wiggins, J. R. J. Med. Chem. 1992, 35, 1267.
- Carling, W. R.; Moore, K. W. US Patent 5698573; Chem. Abstr. 1995, 123, 55879
- 11. Diness, F.; Meldal, M. Chem.-Eur. J. 2009, 15, 7044.
- 12. Diness, F.; Meldal, M. Biopolymers 2010, 94, 236.
- Shaw, A. W.; Paone, D. V.; Nguen, D. N.; Stump, C. A.; Burgey, C. S.; Mosser, S. D.; Salvatore, C. A.; Rutledge, R. Z.; Kane, S. A.; Koblan, K. S.; Graham, S. L.; Vacca, J. P.; Williams, T. M. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4795.
- Cheruvallath, Z.; Semple, J.; Rajappan, V.; Rideout, D.; Yalamoori, V.; Tsai, C.; Wu, F.; Thoresen, L.; Shenderovich, M. US Patent 20080070867; *Chem. Abstr.* 2006, *145*, 167408.
- Han, S.; Siegel, D. S.; Morrison, K. C.; Hergenrother, P. J.; Movassaghi, M. J. Org. Chem. 2013, 78, 11970.

- 17. Das, S.; Fröhlich, R.; Pramanik, A. Org. Lett. 2006, 8, 4263.
- Grimmet, M. R. In *Comprehensive Heterocyclic Chemistry II*; Katritzky, A.; Rees, C. W.; Scriven, E. F. V.; Eds.; Elsevier, 1996, vol. 3, p. 77.
- Xi, N.; Huang, Q.; Liu, L. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.; Elsevier, 2008, vol. 4, p. 143.
- 20. Kim, Y. B.; Kim, C. S.; Lee, C. K. J. Heterocycl. Chem. 1994, 31, 1653.
- Plummer, C. W.; Finke, P. E.; Mills, S. G.; Wang, J.; Tong, X.; Doss, G. A.; Fong, T. M.; Lao, J. Z.; Schaeffer, M.-T.; Chen, J.; Shen, C.-P.; Sloan Stribling, D.; Shearman, L. P.;, Strack, A. M.; Van der Ploeg, L. H. *Bioorg. Med. Chem. Lett.* 2005, *15*, 1441.
- 22. Mohindra Chawla, H.; Pathak, M. Tetrahedron 1990, 46, 1331.
- 23. Aurich, H. G. Justus Liebigs Ann. Chem. 1970, 732, 195.
- Baranov, V. V.; Antonova, M. M.; Nelyubina, Yu. V.; Kolotyrkina, N. G.; Zanin, I. E.; Kravchenko, A. N.; Makhova, N. N. *Mendeleev Commun.* 2014, 24, 173.
- Fujimoto, T.; Imaeda, Y.; Konishi, N.; Hiroe, K.; Kawamura, M.; Textor, G. P.; Aertgeerts, K.; Kubo, K. A. *J. Med. Chem.* 2010, *53*, 3517.
- Pevarello, P.; Brasca, M. G.; Orsini, P.; Traquandi, G.; Longo, A.; Nesi, M.; Orzi, F.; Piutti C.; Sansonna, P.; Varasi, M.; Cameron, A.; Vulpetti, A.; Roletto, F.; Alzani, R.; Ciomei, M.; Albanese, C.; Pastori, W.; Marsiglio, A.; Pesenti, E.; Fiorentini, F.; Bischoff, J. R.; Mercurio, C. J. Med. Chem. 2005, 48, 2944.
- 27. Cantos Llopart, C.; Ferrer, C.; Joule, J. A. Can. J. Chem. 2004, 82, 1649.
- 28. Hu, Y. C.; Liang, C. F.; Tsai, J. H.; Yap, G. P.; Chang, Y. T.; Ong, T. G. Organometallics 2010, 29, 3357.
- Ignar, D. M. US Patent 20100113512; Chem. Abstr. 2010, 152, 547899.
- Wong, O.; Tsuzuki, N.; Richardson, M.; Rytting, H.; Konishi, R.; Higuchi, T. *Heterocycles* 1987, 26, 3153.
- 31. Golovko, V. V.; Statsenskaya, A. I.; Baskakov, Y. A.; Putsykin, Y. G. Chem. Heterocycl. Compd. **1986**, 22, 1084. [Химия гетероцикл. соединений **1986**, 1339.]
- 32. Coe, D. M.; Monteith, M. J.; Procopiou, P. A. US Patent 7144908; *Chem. Abstr.* **2002**, *137*, 216952.
- 33. LaChance, N.; Leclerc, J. P.; Li, C. S.; Moradei, O. M. US Patent 20110312952; *Chem. Abstr.* 2010, 153, 359035.
- 34. Zhong, H.; Dubberke, S.; Müller, S.; Rossler, A.; Schultz, T. W.; Korey, D. J.; Otten, T.; Walker, T.; Abdel-Magid, A. US Patent 7132544; *Chem. Abstr.* **2002**, *137*, 263034.
- 35. Cumming, J.; Faull, A. US Patent 7294636; *Chem. Abstr.* 2004, *141*, 424115.
- 36. Kubo, K.; Imaeda, Y. US Patent 7745623; Chem. Abstr. 2005, 144, 22941.
- 37. Flosi, W. J.; DeGoey, D. A.; Grampovnik, D. J.; Chen, H. J.; Klein, L. L.; Dekhtyar, T.; Masse, S.; Marsh, K. C.; Mo, H. M.; Kempf, D. *Bioorg. Med. Chem.* **2006**, *14*, 6695.
- 38. Pugh, D. L.; Olivard, J.; Snyder, H. R., Jr.; Heotis, J. P. J. Med. Chem. 1972, 15, 270.
- 39. Boruah, A.; Hosahalli, S.; Panigrahi, S. K. WO Patent 2014108820; *Chem. Abstr.* 2014, 161, 239764.
- Fabio, R. D.; St-Denis, Y.; Sabbatini, F. M.; Andreotti, D.; Arban, R.; Bernasconi, G.; Braggio, S.; Blaney, F. E.; Capelli, A. M.; Castiglioni, E.; Di Modugno, E.; Donati, D.; Fazzolari, E.; Ratti, E.; Feriani, A.; Contini, S.; Gentile, G; Ghirlanda, D.; Provera, S.; Marchioro, C.; Roberts, K. L.; Mingardi, A.; Mattioli, M; Nalin, A.; Pavone, F.; Spada, S.; Trist, D. G.; Worby, A. J. Med. Chem. 2008, 51, 7370.

- 41. Martin, J. A.; Redshaw, S.; Swallow, S.; Thomas, G. J. US Patent 6472404; *Chem. Abstr.* **2002**, *136*, 402024.
- 42. Webber, S. E.; Dragovich, P. S.; Prins, T. J.; Reich, S. H.; Little, T. L., Jr.; Littlefield, E. S.; Marakovits, J. T.; Babine, R. E; Bleckman, T. M. US Patent 5856530; *Chem. Abstr.* 1997, *128*, 13442.
- 43. Andreotti, D.; Bernasconi, G.; Castiglioni, E.; Contini, S. A.; Di Fabio, R.; Fazzolari, E.; Feriani, A.; Gentile, G.; Mattioli, M.; Mingardi, A.; Sabbatini, F. M.; St-Denis, Y. US Patent 7427630; *Chem. Abstr.* 2004, 141, 395557.
- 44. Kim, B. T.; Min, Y. K.; Lee, Y. S.; Park, N. K.; Kim, W. J. US Patent 20080027117; *Chem. Abstr.* 2005, 142, 240437.
- 45. Lang, H. J.; Heinelt, U.; Wirth, K.; Licher, T.; Hofmeister, A. US Patent 7790742; *Chem. Abstr.* **2006**, *144*, 350556.
- 46. Zhang, W.; Su, W.-G.; Yang, H.; Cui, Y.; Ren, Y.; Yan, X. US Patent 20130217661; *Chem. Abstr.* 2010, 152, 144710.
- 47. Chaturvedula, P. V.; Mercer, S. E.; Fang, H.; Han, X.; Luo, G.; Dubowchik, G. M.; Poindexter, G. S. US Patent 7470680; *Chem. Abstr.* 2007, 147, 522239.
- Popovici-Muller, J.; Salituro, F. G.; Saunders, J.; Travins, J.; Yan, S. US Patent 20130184222; *Chem. Abstr.* 2012, 156, 175244.
- Berglund, S.; Egner, B. J.; Gradén, H.; Gradén, J.; Morgan, D. G.; Inghardt, T.; Giordanetto, F. *Bioorg. Med. Chem. Lett.* 2008, *18*, 4859.
- 50. Makarova, N. V.; Zemtsova, M. N.; Moiseev, I. K. Chem. Heterocycl. Compd. **1995**, 31, 116. [Химия гетероцикл. соединений **1995**, 130.]
- 51. Lee, S. H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. *Org. Lett.* **2003**, *5*, 511.
- 52. Lee, S. H.; Yoshida, K., Matsushita, H.; Clapham, B.; Koch, G.; Zimmermann, J.; Janda, K. D. *J. Org. Chem.* **2004**, *69*, 8829.
- 53. Yamashita, M.; Lee, S. H.; Koch, G.; Zimmermann, J.; Clapham, B.; Janda, K. D. *Tetrahedron Lett.* **2005**, *46*, 5495.
- 54. Han, S.; Siegel, D. S.; Movassaghi, M. Tetrahedron Lett. 2012, 53, 3722.
- Congiu, C.; Onnis, V.; Balboni, G.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2014, 24, 1776.
- Lee, J. T.; Mah, H.; Nam, K. D.; Shin, D.; Ha, D.-C.; Hahn, H.-G. J. Comb. Chem. 2008, 10, 803.
- 57. Wilk, I. J.; Close, W. J. J. Org. Chem. 1950, 15, 1020.
- 58. Cortes, S.; Kohn, H. J. Org. Chem. 1983, 48, 2246.
- 59. Smith, A. L.; Brennan, P. E.; DeMorin, F. F.; Liu, G.; Paras, N. A.; Retz, D. M.; Rainbeau, E. US Patent 7858785; *Chem. Abstr.* 2006, 145, 83372.
- Pesquet, A; Daïch, A.; Decroix, B.; Van Hijfte, L. Org. Biomol. Chem. 2005, 3, 3937.
- 61. Liao, Z. K.; Kohn, H. J. Org. Chem. 1985, 50, 1884.
- 62. Dandepally, S. R.; Elgoummadi, R.; Williams, A. L. *Tetrahedron Lett.* **2013**, *54*, 925.
- 63. Shalaby, A. F. A.; Aziz, M. A. A.; Allah, M. A. A. Croat. Chem. Acta. 1979, 52, 353.
- Labinger, J. A. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991, vol. 8, p. 667.
- 65. Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333.
- 66. Cesarotti, E.; Chiesa, A.; Maffi, S.; Ugo, R. Inorg. Chim. Acta. 1982, 64, 207.
- Majoral, J. P.; Zablocka, M.; Igau, A.; Cénac, N. Chem. Ber. 1996, 129, 879.
- 68. Bartnik, R.; Hahn, W. E.; Mlostoñ, G. Rocz. Chem. 1977, 51, 48.
- Mlostoń, G.; Jasiński, M. Collect. Czech. Chem. Commun. 2010, 75, 871.
- Jasiński, M.; Mlostoń, G.; Mucha, P.; Linden, A.; Heimgartner, H. *Helv. Chim. Acta* 2007, 90, 1765.

- 71. Mlostoń, G.; Celeda, M.; Surya Prakash, G. K.; Olah, G. A.; Heimgartner, H. *Helv. Chim. Acta* **2000**, *83*, 728.
- Antonova, M. M.; Baranov, V. V.; Nelyubina, Yu. V.; Kravchenko, A. N. *Chem. Heterocycl. Compd.* 2014, 50, 1203. [Химия гетероцикл. соединений 2014, 1300.]
- Mlostoń, G.; Jasiński, M.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 2006, 89, 1304.
- 74. Mlostoń, G.; Jasiński, M. ARKIVOC 2011, (vi), 162.
- Jasiński, M.; Mlostoń, G.; Linden, A.; Heimgartner, H. *Helv. Chim. Acta* 2008, 91, 1916.
- Yoshinaga, M.; Kuwada, T.; Miyakoshi, N.; Ishizaka, T.; Wakasugi, D.; Shirokawa, S.-I.; Hattori, N.; Shimazaki, Y. EP Patent 2772482; *Chem. Abstr.* 2013, *158*, 651164.
- 77. Bartnik, R.; Mlostoñ, G. Rocz. Chem. 1977, 51, 1747.
- 78. Kohn, H.; Liao, Z. K. N. J. Org. Chem. 1982, 47, 2787.
- Huisgen, R.; Langhals, E.;Mlostoñ, G.; Oshima, T.; Rapp, J. Lectures in Heterocyclic Chemistry. Suppl. of J. Heterocycl. Chem. 1987, 24, 1.
- Kaneko, C.; Yamada, S.; Yokoe, I.; Kubota, T. *Tetrahedron Lett.* **1970**, *11*, 2333.
- Kobayashi, Y.; Kumadaki, I.; Sato, H. Tetrahedron Lett. 1970, 11, 2337.
- Mityanov, V. S.; Kuz'mina, L. G.; Perevalov, V. P.; Tkach, I. I. *Tetrahedron* 2014, 70, 3545.
- Skvortsova, G. G.; Andriyankova, L. V.; Abramova, N. D. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 35, 129. [Изв. AH, Cep. хим. 1986, 143.]
- Loksha, Y. M.; Jurgensen, P. T.; Pedersen, E. B.; El-Badawi, M. A.; El-Barbary, A. A.; Nielsen, C. J. Heterocycl. Chem. 2002, 39, 375.
- 85. Hirao, I.; Harada, Y.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Yokoyama, S. A. *J. Am. Chem. Soc.* **2004**, *126*, 13298.
- Dominguez, C.; Toledo-Sherman, L. M.; Courtney, S. M.; Prime, M.; Mitchell, W.; Brown, C. J.; De Aguiar Pena, P. C.; Johnson, P. WO Patent 2013016488; *Chem. Abstr.* 2013, 158, 243936.
- Dominguez, C.; Toledo-Sherman, L. M.; Winkler, D.; Brookfield, F.; De Aguiar Pena, P. C. US Patent 20130029988; *Chem. Abstr.* 2011, 155, 261132.
- Bergauer, M.; Bertani, B.; Biagetti, M.; Bromidge, S. M.; Falchi, A.; Leslie, C. P.; Merlo, G.; Pizzi, D. A.; Rinaldi, M.; Stasi, L. P.; Tibasco, J.; Kuok, A.; Vong, K.; Ward, S. E. US Patent 7732600; *Chem. Abstr.* 2005, *142*, 240449.
- Flinn, D. L.; Kaufman, M. D. WO Patent 2014/145023; Chem. Abstr. 2014, 161, 520604.
- Ackermann, J.; Amrein, K.; Hunziker, D.; Kuhn, B.; Mayweg, A. V.; Neidhart, W.; Takahashi, T. US Patent 20080103183; *Chem. Abstr.* 2008, *148*, 495950.
- 91. Parcher, B. W.; Erion, D. M.; Dang, Q. *Tetrahedron Lett.* **2004**, *45*, 2677.
- 92. De Kimpe, N. In *e-EROS Encyclopedia of Reagents for* Organic Synthesis, 2001, DOI: 10.1002/047084289X.rc125

- Hirota, K.; Kazaoka, K.; Niimoto, I.; Sajiki, H. Org. Biomol. Chem. 2003, 1, 1354.
- 94. Hirota, K.; Kazaoka, K.; Niimoto, I.; Sajiki, H. *Heterocycles* **2001**, *55*, 2279.
- Chumachenko, S. A.; Shablykin, O. V.; Kozachenko, A. P.; Osadchuk, T. V.; Brovarets, V. S. Chem. Heterocycl. Compd. 2011, 47, 336. [Химия гетероцикл. соединений 2011, 410.]
- Bezenšek, J.; Grošelj, U.; Stare, K.; Svete, J.; Stanovnik, B. ARKIVOC 2014, (ii), 294.
- 97. Gnichtel, H.; Schuster, K. E. Chem. Ber. 1978, 111, 1171.
- 98. Reyes, J. C. P.; Romo, D. Angew. Chem. 2012, 124, 6976.
- 99. Moody, C. J.; Hunt, P. A.; Smith, C. ARKIVOC 2000, (v), 698.
- 100. Kalcheva, V. B.; Tsvetanska, L. I. Chem. Heterocycl. Compd. 1981, 17, 756. [Химия гетероцикл. соединений 1981, 1028.]
- Chumachenko, S. A.; Shablykin, O. V.; Vasilenko, A. N.; Brovarets, V. S. *Russ. J. Gen. Chem.* 2013, *83*, 1710. [Журн. общ. химии 2013, *83*, 1490.]
- 102. Lozanova, C.; Kalcheva, V.; Simov, D. J. Prakt. Chem. 1989, 331, 1007.
- 103. Romine, J. L.; Martin, S. W.; Meanwell, N. A.; Gribkoff, V. K.; Boissard, C. G.; Dworetzky, S. I.; Natale, J.; Moon, S.; Ortiz, A.; Yeleswaram, S.; Pajor, L.; Gao, Q.; Starrett, J. *J. Med. Chem.* **2007**, *50*, 528.
- 104. Itaya, T.; Harada, T. Chem. Pharm. Bull. 1990, 38, 2971.
- 105. Corbett, D. F.; Kaura, A. C.; Maycock, C. D.; Stoodley, R. J. *J. Chem. Soc.*, *Perkin Trans. 1* **1987**, 2009.
- 106. Itaya, T.; Kanai, T.; Shimada, M.; Nishikawa, T.; Takada, Y.; Hozumi, Y.; Mory, S.; Saito, T.; Fujii, T. *Chem. Pharm. Bull.* **1997**, *45*, 1601.
- 107. Gatewood, E. S. J. Am. Chem. Soc. 1923, 45, 3056.
- 108. Anderson, W. K.; Bhattacharjee, D.; Houston, D. M. J. Med. Chem. 1989, 32, 119.
- Kochkanyan, R. O.; Dmitruk, T. A.; Korzhenevskaya, N. G.; Lukanyuk, S. S. J. Gen. Chem. USSR 1985, 55, 195. [Журн. общ. химии 1985, 195].
- 110. Villalgordo, J. M.; Linden, A.; Heimgartner, H. Helv. Chim. Acta **1992**, *75*, 2270.
- 111. Otter, B. A.; Falco, E. A.; Fox, J. J. J. Org. Chem. 1969, 34, 2636.
- 112. Otter, B. A.; Sasson, I. M.; Gagnier, R. P. J. Org. Chem. 1982, 47, 508.
- 113. Klįsek, A.; Lyčka, A.; Holčapek, M. Tetrahedron 2007, 63, 7059.
- 114. Klįsek, A.; Lyčka, A.; Holčapek, M.; Hoza, I. Helv. Chim. Acta 2008, 91, 354.
- 115. Wenska, G.; Skalski, B.; Paszyc, S.; Gdaniec, Z. Can. J. Chem. 1995, 73, 2178.
- 116. Quast, H.; Nahr, U. Chem. Ber. 1984, 117, 2761.
- 117. Dandepally, S. R.; Williams, A. L. *Tetrahedron Lett.* **2009**, *50*, 1071.
- 118. Lipshutz, B. H.; Huff, B.; Hagen, W. Tetrahedron Lett. 1988, 29, 3411.