О. Я. Нейланд, С. В. Беляков^а

ТОЗИЛАТ ЭТИЛ(3-АМИНО-2-ФЕНИЛИОДОНИО)КРОТОНАТА: СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ПОЛУЧЕНИЕ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ЕГО ОСНОВЕ

Этил 3-аминокротонат при взамодействии с гидрокси(тозилокси)иодбензолом образует хорошо кристаллизующийся тозилат этил(3-амино-2фенилиодонио)кротоната с выходом до 80%. Рентгеноструктурный анализ подтверждает структуру фенилиодониевой соли, выявляя внутримолекулярные и своеобразные межмолекулярные водородные связи, стабилизирующие вещество в кристаллическом состоянии. Взаимодействие с пиридином и его 4замещенными, 4,4-бипиридином дает тозилаты 2-пиридиниозамещенных этил-3-аминокротонатов. Спектры ЯМР ¹Н и ИК спектры подтверждают образование внутримолекулярной водородной связи для *Е*-изомера, а иодониевых солей в случае пиридиниевых солей для *Z*-изомера. УФ спектры пиридиниевых солей выявляют полосу внутримолекулярного переноса заряда.

Ключевые слова: аминокротоновый эфир, пиридиниевые соли, фенилиодониевые соли, кристаллическая структура.

Алкенил(фенил)- и алкинил(фенил)иодониевые соли, синтезированные и изученные в основном в последнее десятилетие, вызывают повышенный интерес синтетиков вследствие высокой реакционной способности к нуклеофильным реагентам [1, 2]. Синтезированы, главным образом, алкенил(фенил)иодониевые соли, содержащие алкенильные группы без электронодонорных (алкокси, диалкиламино) заместителей в β-положении. Эти соединения малостабильны и быстро разлагаются при хранении [2, 3].

а R = H, X = Tos; b R = H, X = ClO₄; с R = 4-пиридил, X = ClO₄; d R = N(CH₃)₂, X = Tos

Рис. 1. Пространственная модель катиона соли **За** с эллипсоидами тепловых колебаний для неводородных атомов

Рис. 2. Структура димера соли За с водородными связями и обозначениями атомов

Рис. 3. Стереоскопическое изображение димера соли За

Первые стабильные циклоалкенил(фенил)иодониевые соли, содержащие карбонильную, а также алкокси- либо аминогруппу, а именно соли 2-фенилиодонио-3-алкокси- или 3-аминоциклогекс-2-енонов (енольных эфиров и иминов димедона), были синтезированы и изучены в нашей группе [4–7]. До начала наших работ фенилиодониевые производные ациклических енаминонов не были синтезированы.

целью получения фенилиодониевых производных 3-амино-С кротонового эфира (имина ацетоуксусного эфира) 1 – простейшего представителя енаминокарбонильных соединений – было изучено взаимодействие эфира 1 с [гидрокси(тозилокси)иод]бензолом (2), который интенсивно изучается как окислитель и промежуточное вещество в синтезе фенилиодониевых солей [8]. Впервые фенилиодозилтозилат 2 был получен в 1969 г. в нашей лаборатории [5] и впоследствии подробно изучен в группах Дж. Ф. Косера и Р. М. Мориарти [8]. В нашей группе было найдено, что этиловый эфир димедона и имины димедона легко реагируют с соединением 2, образуя соответствующие фенилиодониевые 1 соли [5-7]. Оказалось, что 3-аминокротонат реагирует с фенилиодозилтозилатом в растворе ацетонитрила в присутствии 5% метанола при 40° С неожиданно легко и кристаллизуется чистый тозилат этил(3-амино-2-фенилиодонио)кротоната За с выходом до 80%. В 1997 г. независимо от нас проведена аналогичная реакция с метил-3-аминокротонатом в растворе хлористого метилена при комнатной температуре; соответствующий фенилиодониевый тозилат получен с выходом 73% [9].

Соединение **3a** образует бесцветные крупные кристаллы, после одной кристаллизации пригодные для рентгеноструктурного исследования. В пучке рентгеновских лучей оно нестабильно и постепенно разлагается. Тем не менее удалось расшифровать его полную кристаллическую структуру (рис. 1–3; табл. 1–3). Кристаллическая структура фенилиодониевой соли **3a** в основном подобна структуре этилового эфира 3-амино-2-цианокротоновой кислоты [10]. Фенилиодониевая и

Таблица 1

Атом	x	y	Z
I1	0.12623(7)	0.11375(7)	0.14306(7)
S 1	0.0306(4)	0.2448(3)	0.8112(3)
C1	0.0067(14)	0.3950(11)	0.1756(15)
C2	0.1695(13)	0.3873(14)	0.1194(13)
C3	0.2422(12)	0.2768(9)	0.1028(11)
C4	0.3982(14)	0.2677(15)	0.0571(13)
C5	0.5978(15)	0.1355(13)	0.0240(23)
N1	0.2386(13)	0.4930(11)	0.0879(12)
O4	0.4781(10)	0.3569(9)	0.0258(11)
O5	0.4436(10)	0.1492(8)	0.0563(13)
C7	0.1716(13)	0.0160(11)	0.3218(13)
C8	0.1854(15)	-0.1135(15)	0.3513(14)
С9	0.2163(17)	-0.1802(13)	0.4696(15)
C10	0.2319(18)	-0.1100(17)	0.5511(16)
C11	0.2164(20)	0.0146(21)	0.5202(15)
C12	0.1875(18)	0.0818(15)	0.4055(16)
C13	0.1732(13)	0.3091(12)	0.6599(13)
C14	0.1471(18)	0.3853(20)	0.5479(15)
C15	0.2622(29)	0.4320(15)	0.4313(18)
C16	0.4025(29)	0.3970(31)	0.4257(21)
C17	0.4220(21)	0.3206(21)	0.5357(26)
C18	0.3127(17)	0.2720(21)	0.6533(19)
C19	0.5280(40)	0.4513(38)	0.3008(26)
O1	0.0690(13)	0.2725(11)	0.9151(10)
02	-0.0981(10)	0.3074(9)	0.7906(10)
O3	0.0287(12)	0.1108(9)	0.8257(11)
C6	0.6444(17)	0.1097(10)	0.1434(16)

Координаты неводородных атомов в кристалле тозилата этил(2-фенилиодоний-3-амино)кротоната За

Таблица 2

Длины связей (*l*), валентные (ω) и торсионные углы (τ) в кристалле тозилата этил(2-фенилиодоний-3-амино)кротоната За

Связь	l, Å	Угол	ω, τ, град.
I1-C3	2.062(10)	C3-I1-C7	96.1(5)
I1-C7	2.119(13)	C2-C3-C4	124.0(10)
C1-C2	1.52(2)	C3-C4-O4	123.0(13)
C2-N1	1.29(2)	C3-C2-N1	121.3(12)
C2-C3	1.39(2)	N1-H1…O4	129
C3-C4	1.45(2)	N1-H1(O4)*	141
C4-O4	1.20(2)	C7-I1-C3-C2	-108.1(10)
N1-H1	0.86	C7-I1-C3-C4	72
O4…H1	2.05	C6-C5-O5-C4	86
O4…(H1)*	2.30	C3-I1-C7-C12	34
O2…H1	2.11	C3-I1-C7-C8	-146

* Атомы О4 и Н1 принадлежат соседней молекуле.

Таблица З

Соеди- нение	ИКспектр, v _{max}		УФ спектр	
	1500-1800 см ⁻¹	2400-3600 см ⁻¹	растворитель	λ_{max} , нм (є, л моль ⁻¹ см ⁻¹)
3 a	1600	3180, 3330		
4a	1528, 1632, 1668	3068, 3128, 3208,3380	H ₂ O CH ₃ CN CHCl ₃	221 (10370), 263 (12630), 330-335 (800) 223 (17810), 262 (20580), 338 (1260) 263 (18540), 352 (940)
4b	1501, 1629, 1677	3080, 3127, 3375, 3427		
4c	1548, 1598, 1634, 1690	3120, 3220, 3290, 3430	H ₂ O CH ₃ CN CHCl ₃	267 (27680), 361 (2100) 267 (33560), 364 (2040) 267 (19160), 372 (1250)
4d	1520, 1632, 1674	2980, 3100—3350	CH ₃ CN	220 (20580), 284 (29240)

ИК и УФ спектры соединений 3 и 4

Таблица 4

С	пектры ЯМР	¹ Н соединенй	3и4

Спектры яміг п соединени 5 и 4		
Соеди- нение	Растворитель	Химический сдвиг, м. д.
3a	ДМСО-d ₆	9.03 (1H, c, NH), 8.91 (1H, c, NH), 7.93—7.07 (9H, м, H _{аром}), 4.11 (2H, кв, CH ₂ O), 2.47 (3H, c, CH ₃), 2.27 (3H, c, CH ₃ Tos), 1.16 (3H, т,C <u>H₃</u> CH ₂)
3b	ДМСО-d ₆	8.96 (1H, c, NH), 8.77 (1H, c, NH), 7.86—7.43 (5H, м, H _{аром}), 4.00 (2H, кв, CH ₂ O), 2.41 (3H, c, CH ₃), 1.07 (3H, т, C <u>H</u> ₃ CH ₂)
	CH ₃ OH-d ₄	7.91—7.56 (5H, м, H _{аром}), 4.19 (2H, кв, CH ₂ O), 2.54 (3H, с, CH ₃), 1.23 (3H, т, C <u>H</u> ₃ CH ₂)
4a	ДМСО- d ₆	9.10—8.20 (7H, м, H _{Py} , NH ₂), 7.35—7.10 (4H, м, H _{Tos}), 4.05 (2H, кв, CH ₂ O), 2.30 (3H, с, CH ₃ -Tos), 1.73 (3H, с, CH ₃), 1.07 (3H, т, C <u>H</u> ₃ CH ₂)
4b	ДМСО-d ₆	9.04—8.18 (7H, м, H _{Py} , NH ₂), 4.04 (2H, кв, CH ₂ O), 1.73 (3H, с, CH ₃), 1.05 (3H, т, C <u>H</u> ₃ CH ₂)
	+ H ₂ O-d ₂	8.90—8.13 (5H, т, H _{Py}), 1.75(3H, с, CH ₃), 1.07 (3H, т, C <u>H</u> ₃ CH ₂)
4c	ДМСО-d ₆	9.16—8.09 (10Н, м, Н _{Ру} , NH ₂), 4.09 (2Н, кв, CH ₂ O), 1.82 (3Н, с, CH ₃), 1.07 (3Н, т, C <u>H</u> ₃ CH ₂)
4d	ДМСО-d ₆	8.23 (2H, уш. с, NH ₂), 7.79—7.16 (8H, м, H _{аром}), 4.16 (2H, кв, CH ₂ O), 3.31 (6H, с, (CH ₃) ₂ N), 2.36 (3H, с, CH ₃ -Tos), 1.93 (3H, с, CH ₃), 1.18 (3H, т, C <u>H</u> ₃ CH ₂)

аминогруппы находятся в *E*-положении и, следовательно, образуется внутримолекулярная водородная связь. Интересным структурным элементом является димер, создаваемый за счет двух водородных связей. Один из водородных атомов аминогруппы образует две водородные 774

связи – внутри- и межмолекулярную, а второй – межмолекулярную с кислородным атомом сульфонатного аниона. Все три водородные связи, судя по длинам, являются сильными, особенно внутри-молекулярная. По-видимому, это сильное межмолекулярное взаимо-действие в кристалле стабилизирует обычно малоустойчивые при хранении фенилиодониевые соли с алифатическими остатками.

Тозилат За умеренно растворим в воде, хорошо – в метаноле. Его можно кристаллизовать из воды, но кипячение водных растворов вызывает разложение с выделением иодбензола. Быстро идет разложение при кристаллизации долго хранившихся образцов. Предполагается, что разложению способствует присутствие малых количеств кислот. вызывающих гидролитическое отщепление аминогруппы. Этим объясняется и необходимость применения при синтезе тозилата совершенно безводных растворителей, в противном случае реакция приводит к тозилату аммония и выделить целевой продукт не удается. Из водных растворов тозилата добавлением бромида или иодида калия можно осадить бромид 3 и неустойчивый иодид 3с.

Тозилат За при нагревании легко реагирует с пиридинами. Продуктами реакции оказались пиридиниевые соли 4. Так, при взаимодействии с пиридином был получен тозилат этил(3-амино-2-N-пиридинио)кротоната (4а). Это соединение представляет собой желтоватые кристаллы, легко растворимые в воде и метаноле. Из водных растворов при действии перхлората натрия осаждается менее растворимый перхлорат 4b. Растворы солей 4a и 4b имеют желтоватый цвет ввиду слабого поглощения при 330-335 нм (спектр снят для 4а, табл. 3). Это поглощение, по-видимому, обусловлено внутримолекулярным переносом заряда от аминокротонатного электронодонорного остатка на электроноакцепторный пиридиниевый. Такое предположение находит подтверждение в том. что перхлорат этил[3-амино-2-N-(4,4-бипиридинио)]кротоната 4с, содержащий в молекуле более сильный электроноакцепторный остаток – катион бипиридиния, имеет более глубокую желтую окраску и в водном растворе поглощает в области 360 нм (табл.3). Если в молекуле имеется более слабый электроноакцептор 4-диметил-аминопиридиниевый остаток (соединение 4d), то полоса переноса заряда сдвигается гипсохромно и скрывается под сильной полосой поглощения при 284 нм. Наблюдается также батохромный сдвиг полосы переноса заряда при переходе от полярного растворителя (воды) к менее полярным (ацетонитрилу и хлороформу). Соединение 4с получено аналогично 4а при действии 4.4 - бипиридина на иодониевый тозилат 3а с последующим осаждением желтого перхлората из водных растворов. Легко осуществляется реакция иодониевого тозилата с 4-диметиламинопиридином – получается почти бесцветный тозилат этил [3-амино-2-N-4'-(диметиламино)пиридинио]кротоната (4d). Спектры ЯМР ¹Н и ИК соединений 4 выявляют значительные отличия по сравнению со спектрами фенилиодониевых производных 3. Так, химические сдвиги протонов аминогруппы испытывают смещения от 9 до 8.2 м. д. и перекрываются с сигналами протонов в положениях 3 и 5 пиридиниевого остатка, что обнаруживается в процессе дейтерирования. Положение сигналов метильной группы кротонатного остатка изменяется от 2.41–2.47 до 1.73–

1.93 м. д. (табл. 4). В ИК спектре соединения **За** наблюдается широкое поглощение с максимумом при 1600 см⁻¹; соединение **4** в этой области имеет 3 максимума (табл. 3).

Приведенные данные свидетельствуют об изменении конфигурации молекул: в солях **4** пиридиниевый остаток и аминогруппа находятся в *Z*-положении, где внутримолекулярная водородная связь отсутствует.

С целью получения соответствующих пиразолонов на основе пиридиниевых производных 4 мы провели взаимодействие перхлората 4b с гидразингидратом в растворе метанола или уксусной кислоты. После обработки продуктов реакции удалось выделить новое вещество, соответствие которого перхлорату N-[3(2H)-оксо-5-метилпиразол-4-ил]пиридиния (5) изучается.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе Specord M-80 в суспензии в вазелиновом масле (1500–1800 см⁻¹) и гексахлорбутадиене (2400–3600 см⁻¹). Спектры ЯМР ¹Н записаны на приборе Bruker WH-90/DS, внутренний стандарт ТМС, УФ спектры – на приборе Specord M-40.

Рентгеноструктурный анализ. Монокристаллы соединения За выращены из ацетонитрильного раствора при медленном охлаждении. Кристаллы За принадлежат триклинной сингонии, пространственная группа P1, Z = 2. Монокристалл (0.10 × 0.15 × 0.25) использован для измерения интенсивностей 2791 независимого рефлекса на автоматическом четырехкружном дифрактометре Syntex-P2₁. Параметры кристаллической решетки: a = 9.835(1), b = 11.042(2), c = 11.038(2) Å, $\alpha = 72.63(1)^{\circ}$, $\beta = 70.65(1)^{\circ}$, $\gamma = 85.42(1)^{\circ}$; объем элементарной ячейки V = 1079.2(3) Å³; F(000) = 504; $\mu = 1.608$ мм⁻¹; $D_x = 1.549(1)$ г/см³. Положение атомов иода определено из трехмерной функции Паттерсона. Другие неводородные атоми найдены последующими двумя синтезами Фурье. Структура уточнена МНК в полноматричном анизотропном приближении. Координаты водородных атомов рассчитаны геометрически. Окончательный *R*-фактор равен 0.0747. Все расчеты проведены с использованием программ SHELXL-93 [11].

Тозилат этил(3-амино-2-фенилиодонио)кротоната (3а). Растворяют 4 г (10.2 ммоль) фенилиодозотозилата **2** в смеси безводных ацетонитрила (50 мл) и метанола (2.5 мл) при подогревании до 50–60 °C. Раствор немедленно отфильтровывают и при 40–45 °C добавляют к нему 1.5 г (10.8 ммоль) этил-3-аминокротоната. Вещество растворяется, и через некоторое время начинается кристаллизация продукта. Смесь выдерживают в холодильнике сутки, крупные блестящие кристаллы отсасывают и промывают эфиром. Выход 4 г (78%), т. пл. 109–111 °C (разл.). Вещество не требует очистки для всех дальнейших операций. Перекристаллизовывают из ацетонитрила или воды. При кристаллизации из воды температура не выше 80–90 °C, выход кристаллизата 50%, т. разл. 112–114 °C. Найдено, %: С 45.73; Н 4.90; I 25.4; N 3.23; S 6.70. $C_{19}H_{22}INO_5S$. Вычислено, %: C 45.34; H 4.41; I 25.21; N 2.78; S 6.37.

Бромид этил(3-амино-2-фенилиодонио)кротоната (3b). Растворяют 0.2 г тозилата **3а** в 15 мл волы при 50 °С, фильтруют и добавляют раствор 1 г бромистого натрия в 3 мл воды. Выдерживают в холодильнике. Бесцветные кристаллы при хранении постепенно разлагаются. Найдено, %: С 35.00; Н 3.63; I 30.68 N 3.60. С₁₂H₁₅BrINO₂. Вычислено, %: С 34.98; Н 3.67; I 30.80; N 3.40.

Тозилат этил(3-амино-2-N-пиридинио)кротоната (4а) и перхлорат (4b). Кипятят 0.5 г (1 ммоль) тозилата фенилиодония **3a** и 0.2 мл пиридина в 5 мл ацетонитрила 30 мин. Часть ацетонитрила (3 мл) отогняют, остаток разбавляют 10 мл абс. эфира. Выделившееся масло при охлаждении медленно кристаллизуется. Перекристаллизовывают из смеси этилацетат—этанол, 5 : 1, сушат при 80—90 °C. Слегка желтоватые блестящие кристаллы тозилата **4a**, т. пл. 161–162 °C, выход 56%. Найдено, %: С 57.06; Н 5.75; N 7.39. С₁₈H₂₂N₂O₅S. Вычислено, %: С 57.13; Н 5.86; N 7.40.

Для получения перхлората масло, которое выделяется после добавления эфира, растворяют в малом количестве воды и добавляют перхлорат натрия. Почти бесцветные крупные кристаллы, вещество можно перекристаллизовывать из воды, т. пл. 147 °С. Судя по ИК спектрам и содержанию хлора, перхлорат **4b** образует кристаллогидрат. Найдено, %: Cl 11.65. C₁₁H₁₇ClNO₇. Вычислено, %: Cl 11.41.

Перхлорат этил[3-амино-2-N-(4,4'-бипиридинио)]кротоната (4с·2H₂O). Кипятят 10–15 мин 0.5 г (1 ммоль) тозилата фенилиодония **3а**, 0.16 г (1 ммоль) 4,4'-бипиридина и 2 мл ацетонитрила. Охлаждают, разбавляют 20 мл эфира. Образуется желтое масло, которое растворяют в 2 мл воды, фильтруют; к фильтрату добавляют перхлорат натрия. Полученное желтое масло при охлаждении медленно кристаллизуется, выход 0.15 г (36%). Вещество кристаллизуют из воды, желтые кристаллы, т. пл. 168–170 °C. Найдено, %: С 46.15; Н 4.85; N 9.95. С₁₆H₂₂ClN₃O₈. Вычислено, %: С 45.78; Н 5.28; N 10.01.

Тозилат этил[3-амино-2-(4'-диметиламино)пиридинио]кротоната (4d·H₂O). Кипятят 0.5 г (1 ммоль) тозилата фенилиодония **3a**, 0.15 г (1.2 ммоль) 4-диметиламинопиридина в 2 мл ацетонитрила 5–10 мин, после охлаждения добавляют 10 мл эфира. Образовавшееся масло медленно кристаллизуется. Выход сырого продукта 0.32 г. Очищают кристаллизацией из смеси этилацетат—этанол, 20 : 1. Вещество в холодильнике кристаллизуетя очень медленно, слегка бежевые кристаллы, выход 0.15 г, т. пл. 92–94 °С. Найдено, %: С 55.00; Н 6.60; N 9.58. С₂₀H₂₉N₃O₆S. Вычислено, %: С 54.65; Н 6.65; N 9.56.

СПИСОК ЛИТЕРАТУРЫ

- 1. P. J. Stang, Angew. Chem. Int. Ed. Engl., 31, 274 (1992).
- 2. P. J. Stang, V. V. Zhdankin, Chem. Rev., 96, 1123 (1996).
- 3. M. Ochia, M. Kunishima, K. Fuji, M. Shiro, Y. Nagao, J. Chem. Soc. Chem. Commun., 1076 (1988).
- 4. О. Я. Нейланд, Изв. АН ЛатвССР. Сер. хим., № 5, 589 (1964); Chem. Abstr., 62, 7661 (1965).
- 5. О. Я. Нейланд, Б. Я. Кареле, *ЖОрХ*, **6**, 885 (1970).
- 6. Б. Э. Арена, О. Я. Нейланд, *ЖОрХ*, **17**, 2114 (1981).
- 7. Б. Э. Арена, О. Я. Нейланд, Р. Б. Кампаре, *ЖОрХ*, **18**, 995 (1982).
- 8. R. M. Moriarty, R. K. Vaid, G. F. Koser, *Synlett*, 365 (1990).
- 9. I. Papoutsis, S. Spyroudis, A. Varvoglis, Tetrahedron, 54, 1005 (1998).
- 10. K. Szulzevsky, B. Schulz, S. Kulpe, J. Kreutzmann, Acta crystallogr., C, 40, 280 (1984).
- 11. G. M. Sheldrick, *SHELXL-93*, Program for the Refinement of Crystal Structures, 1993, University of Göttingen, Germany.

Рижский технический университет, Рига LV-1048, Латвия e-mail: neilands@ktf.rtu.lv Поступило в редакцию 09.02.2000

^аЛатвийский институт органического синтеза, Рига LV-1006