

Новый способ домино-синтеза 6-имино-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрилов и изучение стереохимических особенностей их формирования и строения

Михаил Ю. Иевлев¹*, Олег В. Ершов¹, Ангелина Г. Миловидова¹, Михаил Ю. Беликов¹, Олег Е. Насакин¹

¹ Чувашский государственный университет, Московский пр., 15, Чебоксары 428015, Россия; e-mail: hiliam@bk.ru

Поступило 27.03.2015 Принято после доработки 28.04.2015

Разработан новый универсальный метод препаративного синтеза 6-имино-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрилов, синтезированы ранее неизвестные 1- и 8-арилзамещенные производные, исследованы стереохимические особенности протекания данного взаимодействия, выявлены причины диастереоселективности.

Ключевые слова: 2,7-диоксабицикло[3.2.1]октан, 4-оксоалкан-1,1,2,2-тетракарбонитрилы, диастереоселективность, доминореакции, иминолактонный цикл, цитотоксичность.

Поиск новых препаративных методов синтеза биологически активных соединений является важной задачей современной синтетической органической химии. Одним из подходов к решению этой задачи является подбор и использование для направленного синтеза специальных функционально предорганизованных субстратов, к которым относятся, в частности, 4-оксоалкан-1,1,2,2-тетракарбонитрилы 1.^{1–6}

Ранее сообщалось, что в качестве продуктов взаимодействия тетрацианоэтилированных кетонов 1 с альдегидами образуются замещенные 3-имино-2,6-диоксабицикло[2.2.2]октан-4,8,8-трикарбонитрилы⁶ 2' (схема 1). Однако позже методом рентгеноструктурного анализа монокристалла структура была уточнена, и установлено, что в результате данного взаимодействия происходит формирование 6-имино-2,7-диоксабицикло-[3.2.1]октан-4,4,5-трикарбонитрилов 2.⁷

Практический интерес к этой группе соединений обусловлен их способностью подавлять рост опухолевых клеток.⁸ В работе⁸ отмечается значительное влияние ароматического заместителя R^3 , увеличивающее цитотоксическую активность молекулы. Тем не менее изучение влияния активности соединений в зависимости от природы заместителей R^1 и R^2 не проводилось.

С целью более детального изучения стереохимических особенностей протекания данного взаимодейСхема 1

ствия, а также для получения новых производных **2** нами был разработан модифицированный способ синтеза ранее неизвестных 1- и 8-арилзамещенных диоксабициклов **2**, синтез которых по известной методике⁶ оказался невозможным. Кроме того исходные реагенты были подобраны таким образом, чтобы при дальнейшем исследовании биологической активности можно было установить ее корреляцию со структурой соединения, в частности изучить степень влияния арильного заместителя в конкретном положении \mathbb{R}^1 или \mathbb{R}^2 в присутствии алкильного заместителя

R³, а также исследовать ожидаемый синергический эффект, когда заместитель R³ также является ароматическим.

Ранее мы показали, что соединения 2 гладко образуются в результате взаимодействия тетрацианоэтилированных кетонов 1 и 1,3,5-тризамещенных 2,4-диазапента-1,4-диенов в среде разбавленной уксусной кислоты. Этот подход позволил синтезировать 8-арилзамещенные диоксабициклы 2g,h.⁹ Для сокращения количества стадий нами была предпринята попытка заменить 1,3,5-тризамещенные 2,4-диазапента-1,4-диены на соответствующий альдегид и ацетат аммония, образующиеся *in situ* в результате их гидролиза в водной уксусной кислоте.¹⁰ На основе такого подхода нам удалось синтезировать соединения **2а–ј** с арильными заместителем R¹ или R² (схема 2, табл. 1).

Для проверки синтетических возможностей разработанного метода нами была исследована реакция некоторых алифатических, гетероциклических и ароматических альдегидов с разнообразными циклическими и ациклическими кетонами 1, приводящая к ранее

Таблица 1. Синтез 6-имино-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрилов **2а–р**

Соеди- нение	\mathbb{R}^1	\mathbb{R}^2	R ³	Время, ч	Выход, %
2a	Ph	Me	Ph	1.5	64
2b	Ph	Me	<i>i</i> -Pr	1	71
2c	Ph	Et	Ph	1.5	67
2d	Ph	Et	<i>i</i> -Pr	1	72
2e	$4\text{-}ClC_6H_4$	Me	Ph	2	69
2f	$4\text{-}ClC_6H_4$	Me	<i>i</i> -Pr	1.5	78
2g	Me	Ph	Ph	1.5	93
2h	Me	Ph	<i>i</i> -Pr	1	91
2i	Me	4-MeOC ₆ H ₄	Ph	2.5	86
2j	Me	4-MeOC ₆ H ₄	<i>i</i> -Pr	1.5	59
2k	Me	Et	-5	1.5	79
			s-(
			Br		
21	Me	Pr	$3-Br-4-FC_6H_3$	3	81
2m			$C_{7}H_{15}$	1 (4)*	93 (89)*
	Ĺ	~			
2n	Pr∖	\sim	2,5-(MeO) ₂ C ₆ H ₃	1.5 (7)*	86 (85)*
20	<i>t-</i> Bu	\sim	3-MeO-4-HOC ₆ H ₃	3 (8)*	83 (81)*
2p	/		Ph	1	91

* Экспериментальные данные синтеза, осуществленного по методике (R^{3} CHO, *i*-PrOH, N_{2} , комн. т.).⁶

неизвестным диоксабициклам 2a-p (табл. 1). В ходе экспериментальной работы было обнаружено, что инертная атмосфера, используемая в известной методике,⁶ не является необходимым условием, а применение системы уксусная кислота – ацетат аммония значительно повышает скорость протекания реакции и в случае получения соединений 2m-o, которые могут быть синтезированы и по методике,⁶ однако, как показал эксперимент, за более длительный промежуток времени. Используемая система не только ускоряет процесс взаимодействия, но и делает его возможным даже для тех примеров алифатических тетрацианоэтилированных кетонов **1**, которые не образуют с альдегидами продуктов **2k,l,p** в условиях известной методики.⁶

Структура всех полученных соединений подтверждена ИК и ЯМР ¹Н спектроскопией, масс-спектрометрией и данными элементного анализа. Для соединений **2d,m,n** также зарегистрированы спектры ЯМР ¹³С.

Кроме биологической активности диоксабициклических производных **2**, важным для фундаментальной теоретической органической химии является тот факт, что, несмотря на наличие стереогенных центров как в исходном соединении, так и в интермедиатах, результатом взаимодействия 4-оксоалкан-1,1,2,2-тетракарбонитрилов **1** с альдегидами является только один из возможных диастереомеров соединения **2**. Такой вывод был сделан на основе отсутствия дублирующихся сигналов в спектрах ЯМР ¹Н и ¹³С. Для объяснения такой диастереоселективности нами были проанализированы вероятные стереохимические особенности процесса превращения.

Формирование диоксабициклов 2 судя по всему начинается с присоединения соответствующего карбаниона i1 по карбонильной группе альдегида с последующей тандемной гетероциклизацией, включающей последовательное замыкание пиранового и иминолактонного циклов (схема 2). Вероятно, эта реакция чувствительна к стерическим затруднениям, вызванным отталкиванием объемных заместителей, и приводит только к одному из пространственных изомеров іЗ, в котором все заместители (R) находятся в экваториальном положении. Если рассматривать проекции Ньюмана переходного состояния 1+А, то видно, что в состояниях 1+А¹ и 1+А³ присутствуют значительные факторы стерического затруднения, в то время как в случае $1+A^4$ они минимальны (схема 3). Кроме того, для образования конечного диоксабицикла 2 необходимо чтобы гидрокси- и цианогруппы занимали цис-1,3-диаксиальное положение, так как в случае трансрасположения интермедиатов i3^{t-e} и i3^{t-a} взаимодействие между ними невозможно. Для интермедиата i3^{c-a} образование диоксабицикла 2" возможно, но в этом случае возникает дополнительное трансаннулярное

напряжение, стремление системы избежать его также может обусловливать диастереоселективность синтеза. Предполагаемая кольчато-цепная таутомерия $i2 \leftrightarrow i3$ (схема 2) также может приводить к наиболее энергетически выгодному состоянию $i3^{ce}$ (схема 3), где 1,3-трансаннулярное напряжение минимально. Кроме того, преобладание формы i3 с аксиальным расположением гидроксигруппы, по-видимому, связано с аномерным эффектом, характерным для α -гидроксипиранов.¹¹ По-видимому, перечисленные выше факторы и обеспечивают 100% диастереоселективность образования диоксабициклов 2.

Интересная стереохимическая особенность также наблюдается в спектрах ЯМР ¹Н соединений **2g–j**, в которых *орто*-протоны (H¹) арильного фрагмента R² всегда проявляются в виде сильно уширенного сигнала (рис. 1). Такое уширение может свидетельствовать об отсутствии свободного вращения арильного заместителя, что говорит о его пространственной сближенности с иминолактонным циклом.

Таким образом, в результате исследования был разработан новый способ диастереоселективного домино-синтеза 6-имино-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрилов. На основе данного подхода получены ранее неизвестные 1- и 8-арилзамещенные производные 6-имино-2,7-диоксабицикло[3.2.1]октан-

4,4,5-трикарбонитрила с целью дальнейшего изучения влияния ароматического фрагмента на биологическую активность молекулы. Разработанный способ является универсальным, что продемонстрировано на выборке представителей 4-оксоалкан-1,1,2,2-тетракарбонитрилов и альдегидов различной природы, некоторые из которых не взаимодействовали между собой в ранее описанных в литературе условиях. В рамках исследования также проведен конформационный анализ взаимодействия, объясняющий стереоселективность процесса формирования 6-имино-2,7-диоксабицикло-[3.2.1]октан-4,4,5-трикарбонитрилов, а также выявлены некоторые стереохимические особенности их строения.

Экспериментальная часть

ИК спектры зарегистрированы на фурье-спектрометре Φ CM-1202 в тонком слое (суспензия в вазелиновом масле). Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker DRX-500 (500 и 125 МГц соответственно) в ДМСО- d_6 , внутренний стандарт ТМС. Масс-спектры записаны на приборе Finnigan MATINCOS-50 (прямой ввод, ионизация ЭУ, 70 эВ). Элементный анализ выполнен на CHN-анализаторе varioMicrocube. Температуры плавления определены на приборе M-560. Контроль за ходом реакций и чистотой синтезированных соединений осуществлен методом TCX на пластинах Sorbfil ПТСХ-АФ-А-УФ (элюент EtOAc, проявление в УФ свете, парами иода или термическим разложением).

Исходные 4-оксоалкан-1,1,2,2-тетракарбонитрилы 1 получены согласно общей методике синтеза β , β , γ , γ -тетрацианоалканонов.^{12,13} Жидкие альдегиды перед синтезом очищены перегонкой, твердые – использованы без дополнительной очистки.

Получение соединений 2а-р (общая методика). К суспензии 1.0 ммоль 4-оксоалкан-1,1,2,2-тетракарбонитрила 1 в 3 мл 70% раствора водной уксусной кислоты добавляют 1.0 ммоль соответствующего альдегида и 8 мг (0.1 ммоль) ацетата аммония, после чего в течение 2–3 мин происходит образование гомогенного раствора. Реакционную смесь перемешивают при комнатной температуре. В зависимости от альдегида осадок формируется в течение 1–3 ч, полноту протекания реакции контролируют с помощью TCX. После исчезновения в реакционной смеси исходного соединения выпавшие кристаллы отфильтровывают, промывают небольшим количеством 70% раствора уксусной кислоты, затем охлажденной смесью *i*-PrOH–H₂O, 1:1.

6-Имино-8-метил-1,3-дифенил-2,7-диоксабицикло-[3.2.1]октан-4,4,5-трикарбонитрил (2а). Выход 64%. Бесцветные кристаллы. Т. пл. 142–143 °С (с разл.). ИК спектр, v, см⁻¹: 3284 (N–H), 2257 (С=N), 1715 (С=N). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 0.97 (3H, д, *J* = 6.9, CH₃); 3.57 (1H, к, *J* = 6.9, 8-CH); 5.88 (1H, с, 3-CH); 7.51–7.57 (6H, м, H Ar); 7.65–7.68 (2H, м, H Ar); 7.74–7.77 (2H, м, H Ar); 10.15 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 368 [M]⁺ (3.6), 105 (100). Найдено, %: С 71.90; H 4.21; N 15.33. С₂₂H₁₆N₄O₂. Вычислено, %: С 71.73; H 4.38; N 15.21.

3-Изопропил-6-имино-8-метил-1-фенил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2b). Выход 71%. Бесцветные кристаллы. Т. пл. 140–141 °С (с разл.). ИК спектр, v, см⁻¹: 3289 (N–H), 2252 (С≡N), 1717 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.90 (3H, д, *J* = 6.9, 8-CH₃); 1.04 (3H, д, *J* = 6.5) и 1.19 (3H, д, *J* = 6.9, (С<u>Н</u>₃)₂CH); 2.15–2.20 (1H, м, (CH₃)₂C<u>H</u>); 3.25 (1H, к, *J* = 6.9, 8-CH); 4.27 (1H, д, *J* = 8.4, 3-CH); 7.50 (5H, с, H Ar); 10.01 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 334 [M]⁺ (4.1), 105 (100). Найдено, %: С 68.33; H 5.37; N 16.89. С₁₉Н₁₈N₄O₂. Вычислено, %: С 68.25; H 5.43; N 16.76.

6-Имино-1,3-дифенил-8-этил-2,7-диоксабицикло-[3.2.1]октан-4,4,5-трикарбонитрил (2с). Выход 67%. Бесцветные кристаллы. Т. пл. 141–142 °С (с разл.). ИК спектр, v, см⁻¹: 3284 (N–H), 2257 (С \equiv N), 1713 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.68 (3H, т, *J* = 7.5, С<u>Н</u>₃CH₂); 1.38–1.51 (2H, м, CH₃C<u>H</u>₂); 3.29 (1H, т, *J* = 5.7, 8-CH); 5.85 (1H, с, 3-CH); 7.51–7.57 (6H, м, H Ar); 7.70–7.73 (2H, м, H Ar); 7.77–7.80 (2H, м, H Ar); 10.13 (1H, с, NH). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): 383 [M+H]⁺ (0.2), 382 [M]⁺ (0.2), 105 (100). Найдено, %: С 72.33; H 4.66; N 14.73. С₂₃H₁₈N₄O₂. Вычислено, %: С 72.24; H 4.74; N 14.65.

3-Изопропил-1-фенил-8-этил-2,7-диоксабицикло-[**3.2.1**]октан-4,4,5-трикарбонитрил (**2d**). Выход 72%. Бесцветные кристаллы. Т. пл. 130–131 °С (с разл.). ИК спектр, v, см⁻¹: 3301 (N–H), 2255 (С=N), 1714 (С=N). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.61 (3H, т, *J* = 7.5, С<u>H</u>₃CH₂); 1.04 (3H, д, *J* = 6.5, (С<u>H</u>₃)₂CH); 1.19 (3H, д, *J* = 6.9, (С<u>H</u>₃)₂CH); 1.30–1.46 (2H, м, CH₃C<u>H</u>₂); 2.14–2.21 (1H, м, (CH₃)₂C<u>H</u>); 2.93 (1H, т, *J* = 5.7, 8-CH), 4.25 (1H, д, *J* = 8.3, 3-CH), 7.48–7.55 (5H, м, H Ar), 10.00 (1H, с, NH). Спектр ЯМР ¹³С, δ , м. д.: 10.6; 18.3; 18.5; 20.7; 32.5; 43.7; 52.6; 54.3; 77.4; 108.0; 110.6 (2C); 112.9; 125.5 (2C); 128.7 (2C); 130.0; 133.0; 154.8. Масс-спектр, *m/z* (*I*_{отн}, %): 305 [M–(CH₃)₂CH]⁺ (7), 105 (100). Найдено, %: C 69.08; H 5.67; N 16.21. C₂₀H₂₀N₄O₂. Вычислено, %: C 68.95; H 5.79; N 16.08.

6-Имино-8-метил-3-фенил-1-(4-хлорфенил)-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2е). Выход 69%. Бесцветные кристаллы. Т. пл. 139–140 °С (с разл.). ИК спектр, v, см⁻¹: 3192 (N–H), 2255 (С≡N). 1714 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.97 (3Н, д, *J* = 6.9, CH₃); 3.60 (1Н, к, *J* = 6.9, 8-CH); 5.89 (1Н, с, 3-СН); 7.54–7.57 (3H, м, H Ar); 7.61 (2H, д, J = 8.6, H Ar); 7.70 (2H, д, J = 8.6, H Ar); 7.74–7.77 (2H, м, H Ar); 10.17 (1H, с, NH). Масс-спектр, m/z (I_{0TH} , %): 404 [M(³⁷Cl)]⁺ (1), 402 [M(³⁵Cl)]⁺ (2), 77 (100). Найдено, %: C 65.71; H 3.63; N 14.03. C₂₂H₁₅ClN₄O₂. Вычислено, %: C 65.59; H 3.75; N 13.91.

3-Изопропил-6-имино-8-метил-1-(4-хлорфенил)-2,7диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2f). Выход 78%. Бесцветные кристаллы. Т. пл. 154–156 °С (с разл.). ИК спектр, v, см⁻¹: 3289 (N–H), 2252 (С \equiv N), 1717 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 0.91 (3H, д, *J* = 6.9, 8-СН₃); 1.04 (3H, д, *J* = 6.5) и 1.19 (3H, д, *J* = 6.8, (С<u>H</u>₃)₂CH); 2.14–2.21 (1H, м, (СН₃)₂C<u>H</u>); 3.29 (1H, к, *J* = 6.9, 8-CH); 4.28 (1H, д, *J* = 8.4, 3-CH); 7.54 (2H, д, *J* = 8.7, H Ar); 7.59 (2H, д, *J* = 8.7, H Ar); 10.04 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 370 [M(³⁷Cl)]⁺ (1); 368 [M(³⁵Cl)]⁺ (2), 139 (100). Найдено, %: С 61.99; H 4.51; N 15.31. С₁₉H₁₇CIN₄O₂. Вычислено, %: С 61.87; H 4.65; N 15.19.

3,8-Дифенил-6-имино-1-метил-2,7-диоксабицикло-[**3.2.1**]октан-4,4,5-трикарбонитрил (**2g**). Выход 93%. Бесцветные кристаллы. Т. пл. 145–146 °С (с разл.). ИК спектр, v, см⁻¹: 3289 (N–H), 2255 (С≡N), 1717 (С=N). Спектр ЯМР ¹Н, δ, м. д.: 1.49 (3H, с, CH₃); 4.30 (1H, с, 8-CH); 5.64 (1H, с, 3-CH); 7.38–7.72 (10H, м, H Ar); 9.84 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 368 [M]⁺ (3), 105 (100). Найдено, %: С 71.95; H 4.17; N 15.37. С₂₂Н₁₆N₄O₂. Вычислено, %: С 71.73; H 4.38; N 15.21.

3-Изопропил-6-имино-1-метил-8-фенил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2h). Выход 91%. Бесцветные кристаллы. Т. пл. 159–160 °С (с разл.). ИК спектр, v, см⁻¹: 3295 (N–H), 2249 (С≡N), 1711 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.17 (3H, д, *J* = 6.9) и 1.25 (3H, д, *J* = 6.5, (С<u>Н</u>₃)₂CH); 1.40 (3H, с, 1-CH₃); 2.11–2.25 (1H, м, (CH₃)₂C<u>H</u>); 3.98 (1H, с, 8-CH); 4.12 (1H, д, *J* = 8.4, 3-CH); 7.32–7.51 (5H, м, H Ar); 9.72 (1H, с, NH). Масс-спектр, *m/z* (I_{0TH} , %): 334 [M]⁺ (3), 105 (100). Найдено, %: C 68.25; H 5.43; N 16.95. C₁₉H₁₈N₄O₂.

6-Имино-1-метил-8-(4-метоксифенил)-3-фенил-2,7диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2i). Выход 86%. Бесцветные кристаллы. Т. пл. 195–197 °С (с разл.). ИК спектр, v, см⁻¹: 3285 (N–H), 2252 (С≡N), 1717 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.44 (3H, с, 1-CH₃); 3.81 (3H, с, OCH₃); 4.36 (1H, с, 8-CH); 5.78 (1H, с, 3-CH); 7.09 (2H, д. д. *J* = 7.7, *J* = 1.5, H Ar); 7.11–7.63 (5H, м, H Ar); 7.72–7.76 (2H, м, H Ar); 10.02 (1H, с, NH). Массспектр, *m/z* (*I*_{отн}, %): 399 [M+H]⁺ (1), 398 [M]⁺ (6), 43 (100). Найдено, %: С 69.49; H 4.46; N 14.17. С₂₃H₁₈N₄O₃. Вычислено, %: С 69.34; H 4.55; N 14.06.

3-Изопропил-6-имино-1-метил-8-(4-метоксифенил)-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2j). Выход 59%. Бесцветные кристаллы. Т. пл. 201–202 °С (с разл.). ИК спектр, v, см⁻¹: 3295 (N–H), 2251 (С \equiv N), 1715 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.09 (3H, д, *J* = 6.8, (С<u>H</u>₃)₂CH); 1.19 (3H, д, *J* = 6.9, (С<u>H</u>₃)₂CH); 1.47 (3H, с, 1-CH₃); 2.15–2.23 (1H, м, (CH₃)₂C<u>H</u>); 3.82 (3H, с, OCH₃); 4.15 (1H, д, *J* = 8.3, 3-CH); 4.31 (1H, с, 8-CH); 7.05–7.09 (2H, м, H Ar); 7.09–7.57 (2H, м, H Ar); 9.98 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 365 [M+H]⁺ (1), 364 [M]⁺ (1), 43 (100). Найдено, %: С 66.04; H 5.41; N 15.51. С₂₀Н₂₀N₄O₃. Вычислено, %: C 65.92; H 5.53; N 15.37. **3-(5-Бромтиофен-2-ил)-6-имино-1-метил-8-этил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (2k)**. Выход 79%. Бесцветные кристаллы. Т. пл. 183–184 °C (с разл.). ИК спектр, v, см⁻¹: 3263 (N–H), 2255 (С \equiv N), 1710 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.11 (3H, т, *J* = 7.5, С<u>H</u>₃CH₂); 1.61–1.68 (1H, м, CH₃C<u>H</u>₂); 1.67 (3H, с, 1-CH₃); 1.77–1.83 (1H, м, CH₃C<u>H</u>₂); 2.89 (1H, т, *J* = 5.4, 8-CH); 6.08 (1H, с, 3-CH); 7.31 (1H, д, *J* = 3.9, H тиофен); 7.33 (1H, д, *J* = 3.9, H тиофен); 9.83 (1H, с, NH). Массспектр, *m/z* (*I*_{отн}, %): 406 [M(⁸¹Br)]⁺ (1), 404 [M(⁷⁹Br)]⁺ (1), 191 (100). Найдено, %: С 47.71; Н 3.09; N 13.95. С₁₆H₁₃BrN₄O₂S Вычислено, %: С 47.42; H 3.23; N 13.82.

3-(3-Бром-4-фторфенил)-6-имино-1-метил-8-пропил-2,7-диоксабицикло[3.2.1]октан-4,4,5-трикарбонитрил (21). Выход 81%. Бесцветные кристаллы. Т. пл. 172–173 °С (с разл.). ИК спектр, v, см⁻¹: 3282 (N–H), 2253 (С=N); 1717 (С=N). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.98 (3H, т, J = 7.2, С<u>Н</u>₃СН₂); 1.46–1.53 (1H, м, С<u>Н</u>₂СН); 1.53–1.63 (2H, м, CH₃C<u>H</u>₂); 1.69 (3H, с, 1-CH₃); 1.70–1.78 (1H, м, С<u>Н</u>₂CH); 3.04 (1H, т, J = 5.1, 8-CH); 5.78 (1H, с, 3-CH); 7.59 (1H, т, J = 8.6, H Ar); 7.74 (1H, д. д. д. J = 8.6; J = 4.6, J = 2.2, H Ar); 8.08 (1H, д. д., J = 6.6, J = 2.2, H Ar); 9.82 (1H, с, NH). Масс-спектр, m/z (I_{orn} , %): 432 [M(⁸¹Br)]⁺ (1), 430 [M(⁷⁹Br)]⁺ (1), 203 (100). Найдено, %: С 53.03; H 3.61; N 13.09. С₁₉H₁₆BrFN₄O₂. Вычислено, %: С 52.92; H 3.74; N 12.99.

9-Гептил-12-имино-10,11-диоксатрицикло[5.3.2.0^{1,6}]додекан-7,8,8-трикарбонитрил (2m). Выход 93%. Бесцветные кристаллы. Т. пл. 105-106 °С. ИК спектр, v, см⁻¹: 3294 (N-H), 2256 (C≡N), 1713 (C=N). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.86 (3Н, т, *J* = 6.8, CH₃CH₂); 0.99– 1.07 (1Н, м, СН₂); 1.25–1.40 (9Н, м, 5СН₂); 1.42–1.52 (3Н, м, 2СН₂); 1.68–1.73 (3Н, м, 2СН₂); 1.73–1.87 (2Н, м, СН₂); 1.98–2.06 (2Н, м, СН₂); 2.77 (1Н, д. д, J = 11.3, J = 11.8, 6-CH); 4.32 (1H, \exists , \exists , J = 9.1, J = 9.0, 9-CH); 9.75 (1H, c, NH). Chektry SMP ¹³C, δ , M. \exists .: 13.8; 20.6; 21.7; 21.9; 24.2; 25.2; 28.2 (2C); 29.5; 30.9; 31.8; 44.2; 45.9; 52.8; 73.0; 106.9; 110.09; 110.36; 112.39; 155.80. Масс-спектр, m/z ($I_{\text{отн}}$, %): 355 [M+H]⁺ (1), 354 [M]⁺ (3), 43 (100). Найдено, %: С 67.89; Н 7.26; N 15.97. С₂₀Н₂₆N₄O₂. Вычислено, %: С 67.77; Н 7.39; N 15.81.

9-(2,5-Диметоксифенил)-12-имино-4-пропил-10,11диоксатрицикло[5.3.2.0^{1,6}]додекан-7,8,8-трикарбонитрил (2n). Выход 86%. Бесцветные кристаллы. Т. пл. 191-192 °С (с разл.). ИК спектр, v, см⁻¹: 3286 (N–H), 2259 (C≡N), 1711 (C=N). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.78–0.83 (1H, м, CH₂); 0.89 (3H, т, J = 7.3, CH₃CH₂); 1.00–1.05 (1H, м, CH₂); 1.33 (2H, к, J = 7.3 CH₃CH₂); 1.22–1.27 (2H, м, СН₂); 1.68–1.77 (2Н, м, СН₂); 1.89–1.96 (1Н, м, СН); 2.04– 2.11 (2Н, м, СН₂); 3.10 (1Н, д. д, J = 11.2, J = 12.2, 6-СН); 3.81 (3H, c, OCH₃); 3.83 (3H, c, OCH₃); 5.61 (1H, c, 9-CH); 6.70 (1H, с, H Ar); 6.71 (1H, д, J = 7.9, H Ar); 7.49 (1H, д, J = 8.3, H Ar); 9.94 (1H, c, NH). Спектр ЯМР¹³С, δ , м. д.: 14.4; 19.8; 27.5; 30.6; 32.6; 33.4; 37.8; 46.1; 46.3; 53.9; 55.9; 56.1; 69.2; 98.6; 106.4; 108.4; 110.1; 111.2; 112.1; 112.8; 130.3; 156.4; 157.7; 162.8. Масс-спектр, *m/z* (*I*_{отн}, %): 434 [M]⁺ (3.5), 167 (100). Найдено, %: С 66.42; Н 5.91; N 13.02. С₂₄Н₂₆N₄O₄. Вычислено, %: С 66.34; Н 6.03; N 12.89.

4-*трет*-Бутил-9-(4-гидрокси-3-метоксифенил)-12-имино-10,11-диоксатрицикло[5.3.2.0^{1,6}]додекан-7,8,8**трикарбонитрил (20)**. Выход 83%. Бесцветные кристаллы. Т. пл. 249–250 °С (с разл.). ИК спектр, v, см⁻¹: 3294 (N–H), 2256 (С \equiv N), 1713 (С=N). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.82–0.92 (1H, м, CH₂); 0.89 (9H, с, (CH₃)₃C); 1.06–1.10 (1H, м, CH₂); 1.47–1.51 (1H, м, CH₂); 1.80–1.84 (1H, м, CH₂); 1.93–1.97 (1H, м, CH); 2.11–2.15 (2H, м, CH₂); 3.08 (1H, д. д. *J* = 11.7, *J* = 11.7, 6-CH); 3.78 (3H, с, OCH₃); 5.48 (1H, с, 9-CH); 6.87 (1H, д. *J* = 8.2, H Ar); 7.04 (1H, д. *J* = 8.2, H Ar); 7.21 (1H, с, H Ar); 9.50 (1H, с, OH), 9.82 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 434 [M]⁺ (1), 57 (100). Найдено, %: С 66.39; H 5.95; N 13.07. C₂₄H₂₆N₄O₄. Вычислено, %: С 66.34; H 6.03; N 12.89.

14-Имино-11-фенил-12,13-диоксатрицикло[7.3.2.0^{1,8}]тетрадекан-9,10,10-трикарбонитрил (2р). Выход 91%. Бесцветные кристаллы. Т. пл. 210–211 °С (с разл.). ИК спектр, v, см⁻¹: 3286 (N–H), 2252 (С≡N), 1711 (С=N). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.42–1.49 (2H, м, CH₂); 1.52–1.64 (2H, м, CH₂); 1.65–1.75 (2H, м, CH₂); 1.78–1.87 (3H, м, CH₂); 1.89–1.97 (1H, м, CH₂); 1.99–2.05 (1H, м, CH₂); 2.23–2.29 (1H, м, CH₂); 2.89 (1H, д. *J* = 9.3, 8-CH); 5.69 (1H, с, 11-CH); 7.53–7.56 (3H, м, H Ar); 7.61–7.65 (2H, м, H Ar); 9.79 (1H, с, NH). Масс-спектр, *m/z* (*I*_{отн}, %): 361 [M+H]⁺ (7), 360 [M]⁺ (1), 107 (100). Найдено, %: С 70.13; H 5.45; N 15.71. С₂₁Н₂₀N₄O₂. Вычислено, %: С 69.98; H 5.59; N 15.55.

Исследование выполнено в рамках базовой части государственного задания Минобрнауки России № 872.

Список литературы

- Fedoseev, S. V.; Ershov, O. V.; Belikov, M. Yu.; Lipin, K. V.; Bardasov, I. N.; Nasakin, O. E.; Tafeenko, V. A. *Tetrahedron Lett.* 2013, 54, 2143.
- Fedoseev, S. V.; Ershov, O. V.; Belikov, M. Y.; Lipin, K. V.; Nasakin, O. E.; Tafeenko, V. A. Russ. J. Org. Chem. 2013, 49, 1661. [*Журн. орган. химии* 2013, 49, 1679.]
- Belikov, M. Yu.; Ershov, O. V.; Eremkin, A. V.; Nasakin, O. E.; Tafeenko, V. A.; Nurieva, E. V. *Tetrahedron Lett.* 2011, 52, 6407.
- Belikov, M. Yu.; Ershov, O. V.; Eremkin, A. V.; Kayukov, Ya. S.; Nasakin, O. E. Russ J. Gen. Chem. 2010, 80, 2078. [Журн. общ. химии 2010, 80, 1757.]
- Ershov, O. V.; Lipin, K. V.; Maksimova, V. N.; Eremkin, A. V.; Kayukov, Ya. S.; Nasakin, O. E. Russ. J. Org. Chem. 2009, 45, 475. [*Журн. орган. химии* 2009, 45, 484.]
- Nasakin, O. E.; Nikolaev, E. G.; Terent'ev, P. B.; Bulai, A. Kh.; Khaskin, B. A.; Dager, K. Chem. Heterocycl. Compd. 1984, 20, 1206. [Химия гетероцикл. соединений 1984, 1462.]
- Kayukov, Ya. S.; Lukin P. M.; Nasakin, O. E.; Chrustalev, V. N.; Nesterov, V. N.; Antipin, M. Yu., Sheverdov, V. P. Chem. Heterocycl. Compd. 1997, 33, 423. [Химия гетероцикл. соединений 1997, 497.]
- Nasakin, O. E.; Lyshchikov, A. N.; Kayukov, Ya. S.; Sheverdov, V. P. *Pharm. Chem. J.* 2000, 34, 170. [Хим.фарм. журн. 2000, 34(4), 11.]
- Иевлев, М. Ю.; Ершов, О. В.; Каюков, Я. С.; Беликов, М. Ю.; Федосеев, С. В.; Насакин, О. Е. Патент РФ 2545459 С1.
- 10. Strain, H. H. J. Am. Chem. Soc. 1927, 49, 1558.
- 11. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019.
- Sheverdov, V. P.; Ershov, O. V.; Nasakin, O. E.; Chernushkin, A. N.; Tafeenko, V. A. *Russ. J. Org. Chem.* **2002**, *38*, 1001. [Журн. орган. химии **2002**, *38*, 1043.]
- Sheverdov, V. P.; Ershov, O. V.; Eremkin, A. V.; Nasakin, O. E.; Bardasov, I. N.; Tafeenko, V. A. *Russ. J. Org. Chem.* 2005, 41, 1757. [Журн. орган. химии 2005, 41, 1795.]