И. Иовель, Л. Голомба, С. Беляков, Э. Лукевиц

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ОСНОВАНИЙ ШИФФА, ПОЛУЧЕННЫХ КОНДЕНСАЦИЕЙ 2-АМИНОПИРИДИНОВ С АКРИЛОВЫМИ АЛЬДЕГИДАМИ

Реакциями 2-амино-4-метилпиридина с (гетеро)ароматическими производными акролеина в присутствии молекулярных сит (в качестве дегидратирующего и кислотно-катализирующего агента) синтезирован ряд новых иминов. Методом рентгеноструктурного анализа определена молекулярная и кристаллическая структура двух 2-пиридилазометинов, содержащих группу CH=CH-CH=N.

Ключевые слова: 2-пиридилазометины, моноазабутадиены, рентгеноструктурный анализ.

В нашей предыдущей работе [1] коденсациями (гетеро)ароматических акриловых альдегидов с 2-аминопиридином и его 2- и 6-метилпроизводными был получен ряд оснований Шиффа, что удалось благодаря применению цеолитов, проявляющих в этих процессах не только дегидратирующие, но и каталитические свойства. В продолжение этого исследования, применив разработанный метод [1], в настоящей работе взаимодействием 2-амино-4-метилпиридина с 2-фурил- и 5-метил-2-фурилакролеинами, а также их ароматическим аналогом – коричным альдегидом в присутствии цеолита 4А синтезированы альдимины **2а–с**.

Ar-CH=CH-CHO +

$$H_2N$$
 N H_2O $PhH, 20 °C$ $Ar-CH=CH-CH=N$ N
 $Ar=2 dumur (1a, 2a): 5 ucrum 2 dumur (1b, 2b): Ph (1a, 2a)$

Ar = 2-фурил (1a, 2a); 5-метил-2-фурил (1b, 2b); Ph (1c, 2c).

Реакции альдегидов **1а-с** с амином, взятыми в эквимолярных количествах, проводили в сухом бензоле без нагревания (продукты термически неустойчивы), периодически отбирая пробы и анализируя их методами ГЖХ и ГЖХ-МС. По завершении реакции сита отфильтровывали, бензол отгоняли на роторном испарителе, остатки субстратов удаляли в вакууме. Твердые продукты (**2a**, **2b**) перекристаллизовывали из гексана. Имин **2с** представлял собой маслянистую жидкость. Спектры ЯМР ¹Н, масс-спектры и элементный анализ соединений **2а-с** соответствовали их структуре. В табл. 1 приведены характеристики реакций и полученных продуктов.

В литературе описана структура достаточно большого количества моноазадиенов R–N=CH–CH=CH–R'. В основном это соединения, полученные конденсациями производных анилина с производными коричного альдегида [2, 3], а также их комплексы с переходными металлами [4–8].

Таблица 1

Имин	Время реакции, ч	Брутто- формула	<u>Найдено, %</u> Вычислено, %		Т. пл., °С	Цвет	Выход, %	
			С	Н	Ν			
2a	64	$C_{13}H_{12}N_2O$	<u>73.46</u> 73.57	<u>5.57</u> 5.70	$\frac{13.20}{13.20}$	70-71	Желтый	51
2b	132	$C_{14}H_{14}N_2O$	<u>74.29</u> 74.31	<u>6.25</u> 6.24	<u>12.39</u> 12.38	91–92	Оранже- вый	57
2c	41	$C_{15}H_{14}N_2$		6.35	<u> </u>	Масло	Темно- красный	81

Характеристики синтезированных соединений

В результате поиска в Кембриджском банке кристаллографических данных определено, что структуры азометинов на основе аминопиридинов не известны, найдено лишь две структуры указанной выше общей формулы на основе производных фурилакролеина: N-[3-(2,3-бисметоксикарбонил-5фурил)-2-пропенилиден]анилин [9] и N'-[3-(5-нитро-2-фурил)-2-пропенилиден]бензгидразид [10]. Все эти соединения и лиганды в комплексах представляют собой сопряженные системы, включающие по три практически плоских фрагмента: R, N=CH-CH=CH и R'.

С целью определения структуры новых гетероциклических непредельных оснований Шиффа и характера сопряжения в этих иминах в настоящей работе из соединения **2b**, а также из ранее [1] синтезированного N-(3-фенил-2-пропенилиден)-2-аминопиридина (**2d**) кристаллизацией из смеси гексана с этилацетатом были получены монокристаллы и проведено их рентгеноструктурное исследование. На рис. 1, 2 представлены пространственные модели молекул соединенй **2b**, **2d** с обозначением атомов.

Рис. 1. Пространственная модель молекулы соединения **2b** с обозначением атомов

Кристаллографические данные, координаты неводородных атомов и некоторые величины, характеризующие структуру изученных соединений, приведены в табл. 2–6. Молекулы обоих альдиминов имеют s-*mpaнc-E*-конфигурацию, их конформация включает три приблизительно плоских фрагмента: пиридиновый – А, фурановый (для 2b) или фенильный (для 2d) – В и диеновый – С. В табл. 6 приведены уравнения средних плоскостей для фрагментов А, В и С в декартовой системе координат и выходы атомов из них.

Рис. 2. Пространственная модель молекулы A соединения **2d** с обозначением атомов

Максимальное отклонение наблюдается у атома C(9) молекулы **2b**. Взаимная ориентация фрагментов определяется их поворотами вокруг связей N(2)–C(2) и C(9)–C(10). Двугранные углы между плоскостями A и C составляют 9.1(3) и 8.7(2)° для молекул **2b** и **2d** соответственно; между плоскостями B и C они равны 13.6(3) и 16.0(3)°. Эти отклонения от плоской структуры, хотя и незначительно, нарушают сопряжение в молекулах **2b** и **2d**. Анализ длин связей и валентных углов указывает на неравномерность распределения π -электронов в молекулах. Так, связи C(2)–N(2), C(7)–C(8) и C(9)–C(10) длиннее полуторных, а связи N(2)–C(7) и C(8)–C(9) близки по длине к двойным. Величины валентных углов в боковой цепи (табл. 5) увеличиваются в направлении от пиридинового кольца к фурановому (или бензольному). Наличие углов несколько выше стандартного значения 120° согласуется с теорией отталкивания электронных пар валентного уровня [11]. Уменьшение углов, исходя из данной теории, объясняется влиянием неподеленной пары электронов атомов азота N(1) и N(2).

Рис. 3. Диаграмма упаковки молекул в кристалле 2d в проекции на плоскость у0z с обозначением атомов молекулы В

На рис. 3 дана диаграмма упаковки молекул соединения 2d в кристалле, структура которого включает две кристаллографически независимые молекулы (A и B). Молекула B находится в частной позиции и разупорядочена, в связи с чем стандартные отклонения в геометрических параметрах этой молекулы существенно выше, чем в A. Поэтому в обсуждении результатов используются величины, рассчитанные для молекулы A. Упаковка молекул в кристаллах соединений 2b и 2d осуществляется на расстояниях, не меньших сумм ван-дер-ваальсовых радиусов контактирующих атомов [12].

Таблица 2

Характеристика	Соединение			
Tupuntophornia	2b	2d		
Формула	$C_{14}H_{14}N_2O$	$C_{14}H_{12}N_2$		
Молекулярная масса	226.28	208.26		
Цвет	Оранжевый	Оранжевый		
Размер (мм)	0.70×0.36×0.20	0.50×0.50×0.30		
Кристаллическая сингония	Моноклинная	Моноклинная		
Пространственая группа	C 2/c	$P 2_1 / c$		
Параметры решетки				
<i>a</i> (Å)	27.018(8)	6.649(1)		
<i>b</i> (Å)	6.748(2)	17.422(3)		
<i>c</i> (Å)	23.424(5)	15.164(3)		
eta (°)	143.78(1)	100.49(3)		
Обьем элементарной ячейки, $V(Å^3)$	2523.3(9)	1727.2(5)		
Число молекул в элементарной ячейке, Z	8	6		
Плотность, $d(\Gamma/cM^3)$	1.191(1)	1.201(1)		
Коэффициент поглощения, µ (мм ⁻¹)	0.077	0.072		
Число независимых рефлексов	2214	2259		
Число рефлексов с $I > 2 \sigma(I)$	1107	1001		
Число уточняемых параметров	210	217		
Фактор расходимости, R	0.0595	0.0821		

Кристаллографические данные для соединений 2b и 2d

Таблица З

Координаты неводородных атомов в структуре 2b

Атом	x	у	Z
O(1)	0.12005(14)	0.4562(3)	0.74584(16)
N(1)	0.3584(2)	-0.4043(5)	0.9427(2)
N(2)	0.2803(2)	-0.1782(4)	0.9266(2)
C(2)	0.3240(2)	-0.3587(5)	0.9606(2)
C(3)	0.3310(2)	-0.4784(6)	1.0150(3)
C(4)	0.3738(2)	-0.6549(6)	1.0517(3)
C(5)	0.4096(3)	-0.7025(7)	1.0333(3)
C(6)	0.4010(3)	-0.5755(7)	0.9808(4)
C(7)	0.2521(2)	-0.0929(6)	0.8558(3)
C(8)	0.2087(2)	0.0928(5)	0.8188(3)
C(9)	0.1765(2)	0.1876(6)	0.7437(3)
C(10)	0.1328(2)	0.3705(5)	0.7050(2)
C(11)	0.0961(3)	0.4854(7)	0.6310(3)
C(12)	0.0602(3)	0.6470(7)	0.6255(3)
C(13)	0.0754(2)	0.6263(6)	0.6957(3)
C(14)	0.0546(4)	0.7418(8)	0.7273(5)
C(15)	0.3796(6)	-0.7943(11)	1.1073(6)

Таблица 4

Координаты неводородных атомов в структуре 2d

Атом (*)	x	у	Z
N(1)	0.7689(10)	0.4304(3)	0.7670(4)
N(2)	0.4175(8)	0.3971(3)	0.7460(4)
C(2)	0.5820(11)	0.4423(4)	0.7267(5)
C(3)	0.5290(11)	0.4962(4)	0.6581(5)
C(4)	0.6791(15)	0.5407(4)	0.6382(6)
C(5)	0.8733(14)	0.5325(4)	0.6814(6)
C(6)	0.9156(11)	0.4759(4)	0.7466(5)
C(7)	0.4364(9)	0.3663(3)	0.8244(4)
C(8)	0.2795(10)	0.3195(4)	0.8479(4)
C(9)	0.2898(9)	0.2835(3)	0.9253(4)
C(10)	0.1372(10)	0.2332(3)	0.9521(4)
C(11)	0.1867(10)	0.1858(4)	1.0259(4)
C(12)	0.0448(12)	0.1362(4)	1.0501(4)
C(13)	-0.1484(12)	0.1333(4)	1.0010(5)
C(14)	-0.2040(11)	0.1818(4)	0.9283(5)
C(15)	-0.0622(11)	0.2305(4)	0.9058(4)
At(1)	0.2016(11)	0.6907(4)	0.8721(5)
At(2)	0.0844(11)	0.5859(4)	0.9545(5)
C(2')	0.2387(12)	0.6171(5)	0.9077(4)
C(3')	0.4041(12)	0.5784(4)	0.8997(4)
C(4')	0.5403(13)	0.6074(5)	0.8560(6)
C(5')	0.5111(14)	0.6806(6)	0.8189(5)
C(6')	0.3445(15)	0.7202(4)	0.8290(5)
C(7')	0.0788(11)	0.5137(5)	0.9769(5)

*At = C (g = 0.5), N (g = 0.5)

Таблица 5

v	Соединение		
Характеристика	2b	2d	
d			
C(2)–N(2)	1.412(4)	1.421(8)	
N(2)–C(7)	1.275(5)	1.289(7)	
C(7)–C(8)	1.433(5)	1.420(8)	
C(8)–C(9)	1.338(5)	1.322(8)	
C(9)–C(10)	1.419(5)	1.453(8)	
θ			
C(3)-C(2)-N(2)	116.9(3)	115.2(7)	
C(2)–N(2)–C(7)	118.3(3)	118.1(6)	
N(2)-C(7)-C(8)	121.4(4)	121.2(6)	
C(7)–C(8)–C(9)	124.1(4)	125.0(6)	
C(8)-C(9)-C(10)	125.3(4)	127.4(6)	

Некоторые длины связей (d, Å) и валентные углы (θ, град.) в структурах 2b и 2d

Таблица б

Нормальные уравнения плоских фрагментов и выходы атомов из них

Плоский	Коэффициенты уравнения плоскости				Выходы атомов			
фрагмент	ax + by + cz - d = 0				из плоскости фрагмента			
	а	b	с	d				
Молекула 2ь								
А	-0.5824	-0.5032	-0.6385	-1.8022	$\Delta C2 = -0.018(5) \Delta C9 = -0.004(5)$ $\Delta C3 = 0.009(6) \Delta N1 = 0.004(4)$ $\Delta C4 = -0.014(6) \Delta N2^* = -0.419(5)$ $\Delta C6 = 0.003(9)$			
В	-0.2809	-0.5049	-0.8162	-6.9395	$\Delta O1 = -0.008(3) \Delta C13 = 0.034(5)$ $\Delta C10 = -0.050(4) \Delta C9^* = 0.218(4)$ $\Delta C11 = -0.021(4) \Delta C14^* = -0.016(5)$ $\Delta C12 = 0.037(4)$			
С	-0.4508	-0.5863	-0.6731	-3.4906	$\Delta C7 = -0.005(5) \Delta N2 = -0.027(4)$ $\Delta C8 = -0.072(5) \Delta C2^* = 0.034(5)$ $\Delta C9 = 0.105(5)$			
Молекула 2d								
A	0.2851	-0.6611	-0.6940	-12.0540	$\Delta N1 = 0.014(5) \Delta C5 = -0.011(8)$ $\Delta C2 = -0.029(7) \Delta C6 = 0.005(8)$ $\Delta C3 = 0.014(6) \Delta N2^* = -0.036(5)$ $\Delta C4 = -0.006(8)$			
В	0.3897	-0.7050	-0.5926	-11.9582	$\Delta C10 = -0.013(6) \Delta C14 = -0.004(8)$ $\Delta C11 = -0.008(7) \Delta C15 = -0.011(7)$ $\Delta C12 = -0.007(7) \Delta C9^* = 0.056(6)$ $\Delta C13 = 0.016(8)$			
С	0.4834	-0.8023	-0.3506	-9.1094	$\Delta N2 = 0.009(5) \Delta C9 = 0.013(6)$ $\Delta C7 = -0.013(6) \Delta C2^* = 0.034(7)$ $\Delta C8 = -0.016(6) \Delta C10^* = 0.049(6)$			

* Атомы, не учтенные при расчете плоскости.

Спектры ЯМР ¹Н исследованы на спектрометре Мегсигу фирмы Varian (200 МГц) для растворов в CDCl₃, внутренний стандарт ТМС. Масс-спектры получены на хромато-массспектрометре HP 6890 GC/MS, оборудованном капиллярной колонкой HP-5 MS (30.0 м × 250 мм × 0.25 мм), при программировании температуры от 70 до 260 °C (10 °C/мин). Реакционные смеси анализировали на хроматографе Chrom-4, снабженном пламенно-ионизационным детектором и стеклянной колонкой (1.2 м × 3 мм), заполненной фазой 5% OV-17 на хромосорбе W-AW (60–80 меш), температура колонки 120–250 °C, газ-носитель – азот (60 мл/мин).

Бензол перед использованием перегоняли над CaH₂. Альдегиды **1a** и **1b** синтезировали по методике [13]. Коричный альдегид (Реахим) очищали вакуумной перегонкой, 2-амино-4-метилпиридин (Fluka) перекристаллизовывали из бензола, после чего их свойства соответствовали литературным данным. В работе применяли молекулярные сита 4A (VEB Laborchemie Apolda).

Рентгеноструктурные исследования. Оранжевые монокристаллы соединений 2b и 2d получены медленной кристаллизацией из смеси гексан–этилацетат (1:1). Исследования проводили при 25 °C на автоматическом 4-кружном дифрактометре Syntex $P2_1$ (МоК $_{\alpha}$ -излучение, графитовый монохроматор, ω -сканирование, 2 θ max = 50° для 2b и 45° для 2d). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном приближении. Расчеты выполнены с помощью программ [14, 15].

Общая методика синтеза азометинов 1–3. В колбу помещали 10 мл сухого бензола и по 5 ммоль исходных альдегида и амина, затем 5 г свежепрокаленных молекулярных сит и выдерживали при комнатной температуре, периодически отбирая пробы и анализируя их методами ГЖХ и ГЖХ-МС. В течение определенного времени в зависимости от субстратов (табл. 1) происходит практически полное их превращение в соответствующие продукты. По окончании реакции сита отфильтровывали, промывали их бензолом, фильтрат упаривали при пониженном давлении (40 °C/15 мм) и удаляли незначительные остатки исходных веществ в вакууме (45–50 °C/0.1 мм). Твердые продукты очищали перекристаллизацией из гексана, после чего определяли характеристики полученных соединений (табл. 1) и регистрировали их спектры ЯМР ¹Н.

N-[3-(2-фурил)-2-пропенилиден)]-2-амино-4-метилпиридин (2a). ГЖХ-МС, m/z ($I_{\text{отн}}$, %): 212 (20, M⁺), 211 (10, $[M - H]^+$), 184 (15, $[M - \text{CO}]^+$), 183 (100, $[M - \text{HCO}]^+$), 168 (5, $[M - \text{HCO} - \text{Me}]^+$), 157 (4), 145 (3, $[M - \text{Fur}]^+$), 132 (15, Me-C₅H₃N-NCHCH]⁺), 120 (7), 119 (3, $[M - \text{Fur-CH=CH}]^+$), 93 (26, $[\text{Me-C}_5\text{H}_3\text{N-H}]^+$, $[\text{Fur-CH=CH}]^+$), 92 (14, $[\text{Me-C}_5\text{H}_3\text{N}]^+$), 78 (2, Py⁺), 77 (3), 66 (15), 65 (24), 51 (14), 39 (19). ЯМР ¹H, δ (м.д.), J (Ги): 2.36 (3H, с, CH₃), 6.47 (1H, д.д. J = 3.4 и 1.6, FurH-4), 6.59 (1H, д. J = 3.4, FurH-3), 6.98 (1H, m.д. J = 5.0, PyH-5), 7.0–7.1 (2H, м, CH=CH), 7.09 (1H, с, PyH-3), 7.50 (1H, д. J = 1.6, FurH-5), 8.30 (1H, д. J = 5.0, PyH-6), 8.92 (1H, м, CH=N).

N-[3-(5-метил-2-фурил)-2-пропенилиден)]-2-амино-4-метилпиридин(2b). ГЖХ-МС, *m/z* (*I*_{отн}, %): 226 (8, M⁺), 225 (6), 211 (2, [M – Me]⁺), 184 (15), 183 (100, [M – Me-CO]⁺), 168 (8, [M – Me – Me-CO]⁺), 156 (2), 145 (2), 132 (10), 104 (2), 93 (16, [Me-C₅H₃N-H]⁺), 92 (8, [Me-C₅H₃N]⁺), 77 (5), 66 (8), 65 (14), 53 (5), 51 (6), 43 (9), 39 (11). ЯМР ¹Н, δ (м. д.), *J* (Гц): 2.36 (6H, с, 2 CH₃), 6.08 (1H, ш.д., *J* = 3.2, FurH-4), 6.49 (1H, д. *J* = 3.2, FurH-3), 6.8–7.0 (3H, м, PyH-5 и CH=CH), 7.07 (1H, с, PyH-3), 8.30 (1H, д. *J* = 5.0, PyH-6), 8.90 (1H, м, CH=N).

N-(3-фенил-2-пропенилиден)-2-амино-4-метилпиридин (2с). ГЖХ-МС, *m/z* ($I_{\text{отн}}$, %): 222 (31, M⁺), 221 (44, [M – H]⁺), 207 (1, [M – Me]⁺), 194 (6), 146 (10), 145 (100, [M – Ph]⁺), 130 (44, [M – Me – Ph]⁺), 115 (14), 103 (7), 102 (9, [Ph-CH=CH]⁺), 93 (47, [Me-C₅H₃N-H]⁺), 92 (21, [Me-C₅H₃N]⁺), 78 (7, Py⁺), 77 (13, Ph⁺), 66 (21), 65 (29), 64 (6), 52 (7), 51 (13), 39 (18). ЯМР ¹H, δ (м. д.), *J* (Гц): 2.37 (3H, с, CH₃), 6.97 (1H, ш.д., *J* = 5.0, РуН-5), 7.07 (1H, с, РуН-3), 7.13 (1H, д.д., *J* = 16.0 и 8.5, CH_β), 7.28 (1H, д., *J* = 16.0, CH_α), 7.3–7.6 (5H, м, Ph), 8.31 (1H, д., *J* = 5.0, РуН-6), 8.99 (1H, д., *J* = 8.5, CH=N).

Авторы благодарны Ю. Попелису и С. Гринберге за спектральный анализ образцов, а также Латвийскому совету по науке за финансирование работы (грант 707).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, в печати.
- 2. К. Ш. Караев, Н. Г. Фурманова, Кристаллография, 29, 462 (1984).
- 3. R. F. Childs, G. S. Show, C. J. L. Lock, J. Am. Chem. Soc., 111, 5424 (1989).
- 4. C. Müller, L. Stamp, H. tom Dieck, Z. Naturforsch., Teil B, 41, 519 (1986).
- 5. C. Müller, L. Stamp, H. tom Dieck, J. Organomet Chem., 105, 308 (1986).
- 6. L. Stamp, H. T. Dieck, Inorg. Chim. Acta, 147, 199 (1988).
- 7. W. J. J. Smeets, A. L. Spek, Inorg. Chem., 32, 3015 (1993).
- 8. W. J. J. Knolker, H. Goesmann, P. Gonser, Tetrah. Lett., 37, 6543 (1996).
- 9. G. Ferguson, K. J. Fisher, B. J. Ibrahim, C. Y. Ishag, G. M. Iskander, A. R. Katritzky, M. Parvez, J. Chem. Soc. Chem. Commun., 1216 (1983).
- 10. С. М. Алдошин, И. И.Чуев, Л. О. Атовмян, О. А. Козина, В. С. Недзвецкий, Изв. АН СССР. Сер. хим., № 8, 1556 (1990).
- 11. Р. Гиллеспи, Геометрия молекул, Мир, Москва, 1975.
- 12. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, **58**, 713 (1989).
- Синтезы гетероциклических соединений, вып. 2, под ред. А. Мнджояна, Изд-во АН Армении, Ереван, 1957, 57.
- 14. В. И. Андрианов, Кристаллография, 32, 228 (1987).
- 15. А. Ф. Мишнев, С. В. Беляков, Кристаллография, 33, 835 (1988).

Латвийский институт органического синтеза, Рига LV-1006 e-mail: iovel@osi.lanet.lv Поступило в редакцию 19.01.2000