Н. Г. Батенко, Р. Э. Валтер, Г. А. Карливан

СИНТЕЗ 2,5-БИС(2-АМИНОТИАЗОЛ-5-ИЛ)-3,6-ДИХЛОР-1,4-БЕНЗОХИНОНОВ

При действии на 2-(2-аминотиазол-5-ил)-3,5,6-трихлор-1,4-бензохиноны ацетальдегида и диэтиламина в растворе толуола синтезирован ряд 2-(2-аминотиазол-5-ил)-3,6-дихлор-5-диэтиламиноэтенил-1,4-бензохинонов. Кипячение этих соединений с замещенными тиомочевинами в ацетонитриле в присутствии соляной кислоты приводит к соответствующим 2,5-бис(2-аминотиазол-5-ил)-3,6-дихлоргидрохинонам, которые окисляют трихлоридом железа в водном ДМФА до целевых продуктов.

Ключевые слова: 2-(2-аминотиазол-5-ил)-3,6-дихлор-5-диэтиламиноэтенил-1,4-бензохиноны, 2-(2-аминотиазол-5-ил)-3,5,6-трихлор-1,4-бензохиноны, 1,4-бензохиноны, 2,5-бис(2-аминотиазол-5-ил)-3,6-дихлор-1,4-бензохиноны, тиазол, внутримолекулярный перенос заряда.

Целью настоящей работы является синтез 2,5-дигетарил-1,4-бензохинонов на основе трихлор-1,4-бензохинонилтиазолов. Эти соединения вызывают интерес в связи с наличием в молекуле интенсивного внутримолекулярного переноса заряда между электроноакцепторным фрагментом хинона и электронодонорными фрагментами тиазола.

В развитие работ [1—3] при изучении возможности применения ранее разработанного метода [1] для синтеза 2,5-дигетарилзамещенных 1,4-бензохинонов на примере производных тиазола установлено, что взаимодействие трихлор-1,4бензохинонилтиазолов (1) с ацетальдегидом и диэтиламином в толуоле в ходе трехкомпонентной конденсации приводит к образованию 5-N,N-диэтиламиноэтенилпроизводных (2а—е).

Соединения 2а—е представляют собой глубоко окрашенные кристаллические вещества (выходы в этой реакции в пределах 32—96%). Заметим, что удовлетворительные результаты получаются в случае, когда протоны аминогруппы в положении 2 тиазола (соединение 1) замещены. Применение сульфата магния в ходе реакции повышает выход конечного продукта.

В методике, применявшейся для получения моногетарилзамещенных трихлор-1,4-бензохинонов [1, 3, 4], следующим шагом было получение 2,5-дигидрокси-3,4,6,7-тетрахлоро-2,3-дигидробензо[*b*]фурана из 2-(N,N-диэтиламиноэтенил)-3,5,6-трихлор-1,4-бензохинона. Однако выделить его 6-(2-аминотиазол-5-ил)замещенный аналог при нагревании соединений **2а**—е с соляной кислотой нам не удалось. Это снижает выходы конечного продукта и осложняет использование данной методики для построения других гетероциклов.

Взаимодействие соединений **2а**—е с соответствующими тиомочевинами в присутствии избытка концентрированной соляной кислоты приводит к образованию гидрохинонов **3**. Лучшим растворителем для этой реакции оказался ацетонитрил, так как при проведении реакции в диоксане образуется маслянистый осадок, не поддающийся очистке. Гидрохиноны весьма трудно выделить в индивидуальном виде, так как они легко окисляются на воздухе до соответствующих 1,4-бензохинонов. Об этом свидетельствует наличие в ИК спектрах соединений **3a** и **3b** полос поглощения групп ОН гидрохинона (3000, 3200 см⁻¹) и полос групп С=O 1,4-бензохинона (1640, 1630 см⁻¹ соответственно). Наличие в УФ спектре соединения **3b** полосы поглощения, характерной для гетарилзамещенных 1,4-бензохинонов (582 нм), подтверждает это предположение. Так как конечная цель состояла в получении 1,4-бензохинонов, то синтезированные гидрохиноны сразу подвергались окислению. Окисление трихлоридом железа в водном растворе ДМФА протекает легко и с хорошими выходами.

2,5-Бис(2-аминотиазол-5-ил)-3,6-дихлор-1,4-бензохиноны (**4а**—**f**) имеют интен- сивную синюю окраску, они плохо растворимы в органических растворителях, при растворении дают глубоко окрашенные растворы низкой концентрации. При нагревании выше 250 °С постепенно разлагаются. Применение 836

этой методики по- зволяет получить из двух региоизомеров (2,5-дигетарил-3,6дихлор- и 2,6-дигет- арил-3,5-дихлор-1,4-бензохиноны) только один 2,5-бис(2аминотиазол-5-ил)-3,6-дихлор-1,4-бензохинон. Это подтверждает спектр ЯМР ¹³С 2,5-бис(2-пиперидино- тиазол-5-ил)-3,6-дихлор-1,4-бензохинона (4е), в котором обнаруживается, как и следовало ожидать, 9 сигналов ¹³С, а в спектре его 2,6региоизомера должно появиться 10 сигналов неэквивалентных атомов ¹³С. При сравнении спектров ЯМР ¹³С соединения 4е и 2-(2-аминотиазол-5-ил)-3,5,6трихлор-1,4-бензохинона [2] со спектром хлоранила наблюдается одинаковый слабопольный сдвиг на 7—8 м. д. для сигнала ¹³С_(1,4). Отнесение остальных сигналов ¹³С в спектре соединения 4е сделано согласно данным [2] для 2-(2-N,Nдиметиламинотиазол-5-ил)-3,5,6-трихлор-1,4-бензохинона и его 5-замещенных производных. Получение спектров ЯМР ¹³С других соединений этого ряда затруднено вследствие плохой их растворимости. Недавно появилось сообщение [5] о реакции нуклеофильного замещения двух атомов брома в молекуле броманила остатками 2-(3-метил- бутил)индол-3-ила, в котором описано образование смеси (1 : 1) обоих региоизомеров (2,5- и 2,6-замещение). Однако известно [6, 7], что преобладающим направлением нуклеофильного замещения двух атомов галогена в молекуле хлоранила является 2,5-дизамещение.

В УФ спектрах соединений **4a**—**f** (табл.) полоса поглощения в области 562—610 нм, обусловленная переносом заряда в молекуле, является более интенсивной по сравнению с трихлор-1,4-бензохинонилтиазолами [1]. В УФ спектрах 2,5-бис(2-N,N-диметиламинотиазол-5-ил)-3,6-дихлор-1,4-бензохинона (**4a**) и 2-(2-аминотиазол-5-ил)-5-(2-пиперидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинона (**4b**) наблюдается еще один максимум поглощения по сравнению с 2-амино-5-(3,5,6-трихлор-1,4-бензохинонил)тиазолами — 743 и 718 нм соответственно. Для соединения **4a** внутримолекулярный перенос заряда можно представить мезомерной формулой **5**.

В ИК спектрах одинаковых заместителей при азоте аминогруппы в положении 2 тиазола присутствует интенсивная полоса валентных колебаний С=О при 1628 см⁻¹, в случае же несимметричных заместителей полоса валентных колебаний обнаруживается при 1643 см⁻¹, аналогично 2-амино-5-(3,5,6-трихлор-1,4-бензохинонил)-тиазолам.

Сооти		
Соеди-	λ_{max} , HM	lg ε
нение		
2a	351, 557	4.5; 4.45
2b	352, 563	4.58; 4.48
2c	353, 563	4.33; 4.21
2d	352, 566	4.48; 4.37
4 a	363, 400, 610, 743	3.89; 3.85; 3.82; 3.84
	364, 601, 718(п)*	4.41; 4.14; 3.81
4b* ²	359, 563, 718(п)	
4c	352, 604*	4.21; 3.93
4d	347, 562	3.50; 3.22
4 e	358, 587	4.30; 4.18
$4f^{*2}$	360, 593	

Характеристики электронных спектров соединений 2а—d и 4а—f в этаноле

* В хлороформе.

*² Из-за плохой растворимости спектр снимали для насыщенных растворов (п — перегиб).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord M-80 для суспензий в нуйоле (область 1900—1500 см⁻¹, призма NaCl) или гексахлорбутадиене (область 3800—2000 см⁻¹, LiF). УФ спектры сняты на приборе Specord M-40 для растворов в этаноле или хлороформе (концентрация 2.5·10⁻⁵моль/л). Спектры ЯМР ¹Н получены на приборе Bruker WH-90/DS, растворитель CDCl₃ или ДМСО-d₆, внутренний стандарт ТМС. Спектр ЯМР ¹³С получен на приборе Varian Mercury BB 200 (50.3 МГц) в растворе CDCl₃. Индиви- дуальность соединений контролировали методом ТСХ на пластинках с закрепленным слоем сили- кагеля Silufol UV-254, элюент ацетон—гексан, проявление УФ светом.

2-(2-N,N-Диалкиламинотиазол-5-ил)-3,5,6-трихлорбензохиноны (1а—d) получены по методике [1]. Общая методика получения 2-(2-аминотиазол-5-ил)-5-N,N-диэтиламиноэтенил-3,6-дихлор-1,4-бензохинонов (2а—e). В 30—60 мл толуола растворяют 3 ммоль соединения 1, добавляют сульфат магния, затем 3 ммоль ацетальдегида и медленно добавляют по каплям 6 ммоль диэтиламина. Далее перемешивают при комнатной температуре в течение 30 мин, отфильтровывают сульфат магния. Толуольный раствор упаривают до половины, затем добавляют 20—40 мл гексана и через 48 ч отделяют осадок. Соединения 2а—d можно перекристаллизовать из этанола, а 2е — из этилацетата. Т. пл. > 250 °C (с разл.).

2-(2-N,N-Диметиламинотиазол-5-ил)-5-N,N-диэтиламиноэтенил-3,6-дихлор-1,4-бензохинон (2а). Выход 32%. ИК спектр (тонкий слой): 2924 (С—Н), 1636 (С=О), 1570 см⁻¹(С=С). Спектр ЯМР ¹Н (CDCl₃): 8.71 (1H, с, 4-Н тиазол); 8.38 (1H, д, ³*J* = 14 Гц, N—С(Н)=С); 5.58 (1H, д, ³*J* = 14 Гц, С=С—Н,); 3.35 (4H, кв, CH₃<u>CH₂</u>); 3.17 (6H, с, N—CH₃); 1.23 м. д. (6H, т, <u>CH₃</u>CH₂). Найдено, %: Cl 18.03; S 8.40. С₁₇H₁₉Cl₂N₃O₂S. Вычислено, %: Cl 17.72; S 8.0.

5-N,N-Диэтиламиноэтенил-2-(2-пирролидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (2b). Выход 34%. ИК спектр (тонкий слой): 3008 (С—Н), 1633 (С=О), 1579 (С=С), 1553 (С=С—N), 1511 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 8.78 (1H, с, 4-Н тиазол); 8.40 (1H, д, ³*J* = 13 Гц, N—C(H)=C); 5.60 (1H, д, ³*J* = 13 Гц, С=С—Н); 3.51 (4H, т, N—CH₂ пирролидин); 3.37 (4H, кв, CH₃CH₂); 2.07 (4H, м, CH₂); 1.24 м. д. (6H, т, <u>CH₃CH₂</u>). Найдено, %: Cl 16.55; S 7.40. С₁₉H₂₁Cl₂N₃O₂S. Вычислено, %: Cl 16.25; S 7.35.

5-N,N-Дизтиламиноэтенил-2-(2-пиперидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (2с). Выход 96%. Спектр ЯМР ¹H (DMSO-d₆): 8.59 (1H, с, 4-Н тиазол); 8.36 (1H, д, ³*J* = 13 Гц, N—C(H)=C); 5.56 (1H, д, ³*J* = 13 Гц, C=C—H); 3.60 (4H, т, N—CH₂ пиперидин); 2.9 (4H, кв, CH₃<u>CH₂</u>); 1.65 (6H, м, CH₂ пиперидин); 1.57 м. д. (6H, т, <u>CH₃</u>CH₂). Найдено, %: Cl 16.43; S 7.46. C₂₀H₂₃Cl₂N₃O₂S. Вычислено, %: Cl 16.12; S 7.28.

5-N,N-Диэтиламиноэтенил-2-(2-пергидроазепинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (2d). Выход 89%. ИК спектр (тонкий слой): 2932 (С—Н), 1636 (С=О), 1584 (С=С), 1512 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 8.81 (1H, с, 4-Н тиазол); 8.44 (1H, д, ³*J* = 14 Гц, N—C(H)=C); 5.64 (1H, д, ³*J* = 14 Гц, С=С—H); 3.64 (4H, т, N—CH₂ пергидроазепин); 3.33 (4H, кв, CH₃CH₂); 1.80 (4H, м, CH₂ пергидроазепин); 1.20 м. д. (6H, т, <u>CH₃CH₂)</u>. Найдено, %: Cl 15.32; S 7.59. C₂₁H₂₅Cl₂N₃O₂S. Вычислено, %: Cl 15.61; S 7.06.

5-N,N-Диэтиламиноэтенил-2-(2-морфолинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (2е). Выход 65%, после перекристаллизации 45%. ИК спектр (тонкий слой): 2900 (С—Н), 1676, 1640 (С=О), 1586 (С=С), 1522 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 8.69 (1H, с, 4-Н тиазол); 8.40 (1H, д, ³*J* = 14 Гц, N—C(H)=C); 5.57 (1H, д, ³*J* = 14 Гц, C=C—H); 3.80 (4H, т, O—CH₂); 3.64 (4H, т, N—CH₂); 3.36 (4H, кв, CH₃<u>CH₂</u>); 1.24 м. д. (6H, т, <u>CH₃</u>CH₂). Найдено, %: Cl 17.3; S 7.4. C₁₉H₂₁Cl₂N₃O₃S. Вычислено, %: Cl 16.03; S 7.25

Общая методика получения 2,5-бис(2-аминотиазол-5-ил)-3,6-дихлор-1,4-бензохинонов (4а—f). Растворяют в 20—40 мл ацетонитрила 3 ммоль соединения 2 и медленно добавляют по каплям 4.5 мл конц. соляной кислоты, затем 3 ммоль соответствующей тиомочевины и кипятят 1.5 ч. Образовавшийся осадок отфильтровывают. Если осадок не выпадает сразу, то раствор помещают на ночь в холодильник. Затем осадок растворяют в 10—30 мл ДМФА, добавляют 50 мл 25% водного раствора трихлорида железа и встряхивают в течение 1.5 ч. Полученный осадок отфильтровывают и на фильтре обильно промывают водой. Т. пл. > 250 °C (с разл.).

2,5-Бис(2-N,N-диметиламинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4а). Выход 65%. ИК спектр (тонкий слой): 2926 (С—Н), 1628 (С=О), 1572 (С=С), 1510 см⁻¹. Спектр ЯМР ¹Н (СDСl₃): 8.71 (2Н, с, 4-Н тиазол); 3.20 м. д. (12 H, с, N—CH₃). Найдено, %: Cl 16.13; S 15.20. C₂₀H₁₄Cl₂N₄O₂S₂. Вычислено, %: Cl 16.51; S 14.90.

2-(2-Аминотиазол-5-ил)-5-(2-пиперидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4b). Выход 45%. ИК спектр (тонкий слой): 3368 (NH₂), 2936 (С—Н), 1643 (С=О), 1540 (С=С), 1505 см⁻¹. Спектр ЯМР ¹H (DMSO-d₆): 8.48 (1H, с, 4-Н тиазол); 8.37 (1H, с, 4-Н тиазол); 8.10 (2H, ш. с, NH₂); 3.58 (4H, ш. с, N—CH₂); 1.59 м. д. (6H, ш. с, CH₂). Найдено, %: Cl 16.61; S 14.19. C₁₇H₁₄Cl₂N₄O₂S₂. Вычислено, %: Cl 16.07; S 14.54.

2-(2-Пиперидинотиазол-5-ил)-5-(2-пирролидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4с). Выход 52%. ИК спектр (тонкий слой): 2924 (С—Н), 1630 (С=О), 1545 (С=С), 1502 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 8.80 (1H, с, 4-Н тиазол); 8.69 (1H, с, 4-Н тиазол); 3.68 (4H, ш. с, N—CH₂); 3.55 (4H, ш. с, N—CH₂); 2.14 (4H, с, CH₂ пирролидин); 1.69 м. д. (6H, ш. с, CH₂ пиперидин). Найдено, %: Cl 14.83; S 12.84. C₂₁H₂₀Cl₂N₄O₂S₂. Вычислено, %: Cl 14.31; S 12.94.

2,5-Бис(2-морфолинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4d). Выход 47%. Спектр ЯМР ¹Н (CDCl₃): 8.67 (2H, с, 4-Н тиазол); 3.77 (8H, с, О—CH₂); 3.64 м. д. (8H, ш. с, N—CH₂). Найдено, %: Cl 13.96; S 12.94. С₂₀Н₁₈Cl₂N₄O₄S₂. Вычислено, %: Cl 13.81; S 12.49.

2,5-Бис(2-пиперидинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4е). Выход 74%. ИК спектр (тонкий слой): 2596 (С—Н), 2512 (С—Н), 1628 (С=О), 1546 (С=С), 1505 см⁻¹. Спектр ЯМР ¹Н (200 МГц, CDCl₃): 8.76 (2H, с, 4-Н тиазол); 3.67 (8H, ш. с, N—CH₂); 1.69 м. д. (12H, ш. с, CH₂). Спектр ЯМР ¹³С: 23.97 (С₍₄₎ пиперидин); 25.28 (С_(3,5) пиперидин); 49.63 (С_(2,6) пиперидин); 116.19 (С_(2,5) бензохинон), 127.12 (С_(3,6) бензохинон), 134.68 (С₍₄₎ тиазол); 152.80 (С₍₅₎ тиазол); 177.03 и 177.46 м. д. (С₍₂₎ тиазол и/или С_(1,4) бензохинон). Найдено, %: Cl 14.06; S 12.96. С₂₂H₂₂Cl₂N₄O₂S₂. Вычислено, %: Cl 13.92; S 12.59.

2,5-Бис(2-пергидроазепинотиазол-5-ил)-3,6-дихлор-1,4-бензохинон (4f). Выход 57%. ИК спектр (тонкий слой): 2932 (С—Н), 1638 (С=О), 1544 (С=С), 1504 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 8.71 (2H, с, 4-Н тиазол); 3.77 (8H, т, N—CH₂); 1.84 (8H, м, CH₂); 1.56 м. д. (8H, м, CH₂). Найдено,%: Cl 13.88; S 12.46. С₂₁H₂₀Cl₂N₄O₂S₂. Вычислено,%: Cl 13.55; S 12.25.

СПИСОК ЛИТЕРАТУРЫ

- М. Ф. Утинан, Р. Э. Валтер, Г. А. Карливан, Э. Э. Лиепиньш, А. С. Эджиня, XTC, № 5, 692 (1988).
- М. Ф. Утинан, Ю. В. Гулбис, Р. Э. Валтер, Э. Э. Лиепиньш, Г. А. Карливан, А. С. Эджиня, XTC, № 3, 410 (1991).
- 3. R. Valters, G. Karlivans, J. Gulbis, M. Utinans, A. Bace, *Phosph. Sulf.*, 95–96, 457 (1994).
- 4. Р. Э. Валтер, Э. Э. Лиепиньш, Г. А. Карливан, В. Р. Зиньковска, М. Ф. Утинан, *ЖОрХ*, **21**, № 2, 436 (1985).
- 5. G. D. Harris, A. Nguyen, H. App, P. Hirth, G. McMahon, Cho Tang, *Organic Letters*, 1, 431 (1999).
- 6. K. Th. Finley, in *The Chemistry of Quinonoid Compounds*, 1, Ed. S. Patai, Wiley, New York, 1974, Pt. 2, 877.
- K. Th. Finley, in *The Chemistry of Quinonoid Compounds*, 2, Eds. S. Patai and Z. Rapoport, Wiley, Chichester, 1988, Pt. 1, 537.

Рижский технический университет, Рига LV-1048, Латвия e-mail:rvalters@latnet.lv Поступило в редакцию 20.01.2000