синтеза

Diazonamide synthetic studies. Reactivity of N-unsubstituted benzofuro[2,3-b]indolines

Ilga Mutule ${ }^{1}$, Toms Kalnins ${ }^{1}$, Edwin Vedejs ${ }^{1,2}$, Edgars Suna ${ }^{1 *}$
${ }^{1}$ Latvian Institute of Organic Synthesis, 21 Aizkraukles St., Riga LV-1006, Latvia; e-mail: edgars@osi.lv
${ }^{2}$ Department of Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, U. S. A.; e-mail: edved@umich.edu Submitted June 30, 2015

Accepted July 16, 2015

Benzofuro[2,3-b]indolines undergo ring opening in the presence of base to generate $3 H$-indolines. The latter can rearrange into 3 -arylindoles through an intramolecular transfer of the methoxycarbonyl moiety from quaternary carbon to oxygen of phenol. The intermediate 3 H -indolines can be isolated upon DMAP-catalyzed O -acylation of the phenol moiety with $\mathrm{Boc}_{2} \mathrm{O}$.
Keywords: diazonamide, DMAP, hemiaminal, indole, 3 H -indoline.

Benzofuro $[2,3-b]$ indoline is a core structure in a number of natural products such as the marine metabolite diazonamide A (1), azonazine (2), and voacalgine A (3), a representative of the pleiocarpamine family of alkaloids (Fig. 1). Among them, diazonamide A (1) is an especially important synthetic target ${ }^{1}$ because it exerts nanomolar cytotoxicity against a broad panel of human tumor cell lines. ${ }^{2}$ Not surprisingly, the development of methods for the assembly and further functionalization of benzofuro[2,3-b]indoline heterocyclic system has been a focus of research efforts. ${ }^{3,4}$

A majority of the natural products contains an N-substituted benzofuro[2,3-b]indoline scaffold and only diazonamide A (1) possesses the N-unsubstituted tetracyclic core. In the context of diazonamide A total synthesis, this structural feature imposes challenges associated with a potentially labile nature of the N-unsubstituted cyclic hemiaminal moiety. Thus, our group ${ }^{5}$ and Moody ${ }^{6}$ have observed fragmentation of the benzofuro[2,3-b]indoline to indolic side products. For example, during attempted Suzuki cross coupling of the N-unsubstituted benzofuro[2,3-b]indoline $\mathbf{4 a}$ with boronate $5 \mathbf{a}$ in the presence of base, we obtained 3-arylindole 6a as a major product (86% yield, Scheme 1, Conditions A). Installation of an N-MOM protecting group in the benzofuro[2,3-b]indoline moiety helped to avoid the fragmentation of the cyclic hemiaminal in the Suzuki cross coupling and
allowed for the desired biaryl 7 a to be isolated in 82% yield (Scheme 1, Conditions A). ${ }^{7}$ The formation of the undesired 3 -arylindole $\mathbf{6 b}$ was encountered also in the Stille cross coupling involving the N-unsubstituted tetracyclic stannane $\mathbf{4 b}$ under virtually neutral conditions

Diazonamide A (1)

Azonazine (2)

Voacalgine A (3)

Figure 1. Benzofuro[2,3-b]indoline motif-containing representative natural products.

Scheme 1

Fragmentation of N-unsubstituted benzofuro[2,3-b]indolines 4a,b

Scheme 2

Base-mediated fragmentation of hemiaminal rac-4a
(49\%, Scheme 1, Conditions B). ${ }^{5 a}$ The observed fragmentation of the cyclic hemiaminals to 3-arylindoles under basic or neutral cross-coupling conditions prompted us to investigate stability and reactivity of the N-unsubstituted benzofuro $[2,3-b]$ indoline $\mathbf{4 a}$.

The hemiaminal rac-4a was found to be stable in CDCl_{3} solution at room temperature, but addition of $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv) resulted in very slow formation of 3-arylindole 8a (Scheme 2). After 24 h at room temperature only trace amounts ($<5 \%$) of compound 8a were formed and complete conversion of the hemiaminal rac-4a to indole 8a required 57 days at room temperature. We hypothesized that the formation of 3-arylindole $\mathbf{8 a}$ would proceed through an initial formation of 3 H -indoline intermediate $9 \mathbf{a}$.

Unfortunately, we could not observe the formation of ring-opening intermediates such as compound 9a by NMR spectroscopy in the base-facilitated fragmentation of hemiaminal rac-4a to indole 8a. Possibly, the lifetime of putative intermediate $\mathbf{9 a}$ was too short on the timescale of the NMR experiment. Therefore, an electrophilic reagent was sought to trap the intermediate $9 \mathrm{a} . \mathrm{Boc}_{2} \mathrm{O}$ was chosen as the trapping reagent because it did not react with the starting benzofuro[2,3-b]indoline rac-4a in the absence of
base $\left(\mathrm{Boc}_{2} \mathrm{O}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 24 h or neat $\mathrm{Boc}_{2} \mathrm{O}$, rt, 24 h , or $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{ZrCl}_{4}, \mathrm{MeCN}, \mathrm{rt}, 24 \mathrm{~h}$). Disappointingly, addition of $\mathrm{Boc}_{2} \mathrm{O}$ (2 equiv) to the hemiaminal rac-4a in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv) in CDCl_{3} returned no detectable amounts of O-Boc-protected phenol 9 a or any other intermediates derived from the ring opening of the hemiaminal rac-4a. The unreacted hemiaminal rac-4a ($<5 \%$ conversion) was the only species observed after 24 h at rt . However, we were pleased to see that addition of catalytic amounts ($10 \mathrm{~mol} \%$) of DMAP to the mixture of hemiaminal rac-4a, $\mathrm{Boc}_{2} \mathrm{O}$, and $\mathrm{Et}_{3} \mathrm{~N}$ brought about a rapid conversion of the starting hemiaminal rac-4a ($>95 \%$ after 30 min at rt) and formation of O-Boc-phenol 10a as a major product (66%) together with N-Boc-indole 11a* (18\%, Scheme 3).

Importantly, a control experiment without added $\mathrm{Boc}_{2} \mathrm{O}$ (hemiaminal rac-4a, 5 equiv of $\mathrm{Et}_{3} \mathrm{~N}$, and 0.5 equiv of DMAP in CDCl_{3} at room temperature) showed only unreacted hemiaminal rac-4a after $24 \mathrm{~h}(<5 \%$ conversion).

* Isolated compound 11a was converted to N-deprotected indole 8a under thermal conditions $\left(\mathrm{PhMe}, 160^{\circ} \mathrm{C}, 30 \mathrm{~min}\right)^{8}$ to confirm the structural assignment for compound 8a, which was based on the NMR experiments.

Scheme 3

10a (66\%)

Ring opening of the hemiaminal rac-4a in the presence of $\mathrm{Boc}_{2} \mathrm{O}$

Table 1. Influence of substituents on the fragmentation of hemiaminals rac-4a,c-e

* Racemic, diastereomerically pure hemiaminals 4a,c-e were used.
** Isolated yields.
*** Yields established by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Evidently, DMAP-catalyzed trapping of the equilibrating ring-opened intermediate 9 a with $\mathrm{Boc}_{2} \mathrm{O}$ to form O -Bocphenol 10a facilitates fragmentation of the benzofuro[2,3-b]indoline rac-4a by shifting the equilibrium between compounds $4 \mathbf{a}$ and 9 a toward the latter.

Surprisingly, DMAP-catalyzed transformation of the hemiaminal rac-4a to O-Boc-phenol 10a and indole 11a proceeded even without the added triethylamine. Thus, $10 \mathrm{~mol} \%$ of DMAP effected the complete conversion of the benzofuro[2,3-b]indoline rac-4a within 1.5 h (Table 1, entry 1). Apparently, the facile formation of O-Boc-phenol 10 a is achieved by tert-butoxide, the strong base formed in situ in the reaction of DMAP with $\mathrm{Boc}_{2} \mathrm{O}$.* Notably, electronreleasing substituents at position 7 of the benzofuro $[2,3-b]-$ indoline ($\mathrm{rac}-4 \mathrm{c} \mathrm{X}=\mathrm{Me}$ and $\mathrm{rac}-4 \mathrm{~d} \mathrm{X}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$) considerably slowed down the rearrangement of the corresponding hemiaminals (from 1.5 to 72 h ; entries 2, 3). Furthermore, the formation of 3-arylindoles $11 \mathbf{c}, \mathbf{d}$ was not observed for these substrates and 3 H -indoles $10 \mathrm{c}, \mathbf{d}$ were the only products. In sharp contrast, 7-cyanobenzofuro[2,3-b]indoline rac-4e did not undergo ring opening under standard conditions (entry 4). Instead, N-Boc-protected hemiaminal 12e was isolated in almost quantitative yield (98\%).

The isolation of O-Boc phenols $10 a, \mathbf{c}, \mathbf{d}$ provide evidence that the ring opening of the benzofuro[2,3-b]indolines $\mathbf{4 a}, \mathbf{c}-\mathbf{e}$ is the first step of the multistep rearrangement process (Scheme 4). Presumably, electron-withdrawing substituents $(\mathrm{X}=\mathrm{CN})$ in the benzofuro[2,3-b]indoline rac-4e stabilize the tetracyclic system and prevent the ring opening to form compound 9e. Hence, DMAP-catalyzed N -acylation of benzofuro[2,3-b]indoline rac-4e with $\mathrm{Boc}_{2} \mathrm{O}$ affords the ring-closed N-Boc hemiaminal 12e. Other benzofuro[2,3-b]indolines rac-4a,c,d apparently lack the

[^0]stabilization by substituent and exist in the equilibrium with the corresponding phenols 9 a,c,d. For these substrates, N -acylation rates with $\mathrm{Boc}_{2} \mathrm{O}$ are presumably slower compared to the competing O-acylation of the corresponding opened forms 9a,c,d. Possibly, diminished N -acylation rates of the benzofuro[2,3-b]indolines rac-4a,c,d compared to rac-4e are the result of steric hindrance around the nitrogen atom introduced by ortho substituents X. Since a CN group is the smallest substituent in the series, increased steric hindrance imposed by other substituents ($\mathrm{X}=\mathrm{Me}$, $\left.2-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{Br}\right)$ may account for reduced rates of the catalytic N-acylation of tetracycles rac-4a,c,d with $\mathrm{Boc}_{2} \mathrm{O}$. Hence, the competing DMAP-catalyzed O-acylation with $\mathrm{Boc}_{2} \mathrm{O}$ facilitates the opening of the benzofuro[2,3-b]indolines rac-4a,c,d to form 3 H -indolines $\mathbf{1 0 a}, \mathbf{c}, \mathbf{d}$.

In the absence of external electrophile such as $\mathrm{Boc}_{2} \mathrm{O}$ phenols 9 may undergo an intramolecular acyl transfer via tetrahedral intermediate $\mathbf{1 3}$ with indole acting as a good leaving group to form the N-unsubstituted indole 14. Notably, for phenol 9a, the intramolecular acyl transfer from carbon to oxygen to afford compound 14 a was a competing side reaction (yield 15%, Table 1, entry 1) to DMAP-catalyzed intermolecular O-acylation with the excess of $\mathrm{Boc}_{2} \mathrm{O}$ (2 equiv). Possibly, the better leaving group ability of the 7 -bromoindole moiety compared to 7-methyl- and 7-(2-methylphenyl)-substituted analogs ensures sufficiently rapid decomposition of the putative tetrahedral intermediate 13a to form compound 14a (Scheme 4). It should be noted that in the presence of DMAP/ $\mathrm{Boc}_{2} \mathrm{O}$ anionic versions of intermediates $\mathrm{rac}-\mathbf{4 a}, \mathbf{c}-\mathbf{e}$ and 9a,c-e could also be involved, ${ }^{9}$ but they are not illustrated in the Scheme 4 for simplicity.

In summary, the fragmentation reaction of benzofuro-[2,3-b]indolines $r a c-4 \mathbf{a}, \mathbf{c}-\mathbf{e}$ has been studied. They undergo ring opening to the corresponding phenols $9 \mathbf{a}, \mathbf{c}, \mathbf{d}$ in the presence of a base such as $\mathrm{Et}_{3} \mathrm{~N}$ or DMAP/ $\mathrm{Boc}_{2} \mathrm{O}$. ${ }^{9}$ The intermediate phenols 9 a,c,d can be isolated upon DMAPcatalyzed O-acylation with $\mathrm{Boc}_{2} \mathrm{O}$. Without the added

Scheme 4

rac-4a,c-e
$\downarrow \begin{aligned} & \mathrm{Boc}_{2} \mathrm{O} \\ & \mathrm{DMAP}\end{aligned}$

$\left\lvert\, \begin{aligned} & \mathrm{Boc}_{2} \mathrm{O} \\ & \text { DMAP }\end{aligned}\right.$

11a
14a $(X=B r)$

Working mechanism for DMAP-catalyzed fragmentation of benzofuro[2,3-b]indolines rac-4a,c-e

Scheme 5

$\mathrm{Boc}_{2} \mathrm{O}$, phenols 9 undergo an intramolecular transfer of the methoxycarbonyl group via the tetrahedral intermediate $\mathbf{1 3}$ with indole acting as a good leaving group to form O-methoxycarbonyl phenols 14 . The proposed mechanism differs from an alternative base-mediated pathway suggested by Moody for N-substituted benzofuro[2,3-b]indolines, ${ }^{6}$ which would involve an initial hydrolysis of ester 15 by aqueous base, followed by decarboxylation of the intermediate carboxylic acid 16 with concomitant formation of N -substituted aromatic indole 17 (Scheme 5).

According to the mechanism proposed by Moody, phenolate acts as a good leaving group resulting in the formation of O-unsubstituted N-protected phenol 17 as the fragmentation product. It should be noted, that we observed the formation of N -unsubstituted O -methoxycarbonylphenols 6a and 14a with the methoxycarbonyl moiety originating from the ester moiety at the quaternary carbon in the starting benzofuro[2,3-b]indolines, hence suggesting that our mechanism differs from that of Moody. Therefore, benzofuro[2,3-b]indolines may undergo fragmentation to 3-arylindoles by two alternative mechanisms, depending on the reaction conditions.

Experimental

IR spectra were recorded on a Shimadzu IR Prestige21 FTIR spectrometer in thin film. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature on a Varian Mercury

NMR spectrometer (400 and 100 MHz , respectively) in CDCl_{3} with TMS as internal standard. High-resolution mass spectra (ESI) were obtained on a Waters Tof Synapt GSi mass spectrometer. Preparative HPLC was performed on a Waters SunFire ${ }^{\mathrm{TM}}$ Prep Silica $\mathrm{OBD}^{\mathrm{TM}} 5 \mu \mathrm{~m}, 30 \times 100 \mathrm{~mm}$, mobile phase 10% EtOAc in petroleum ether, flow rate $35 \mathrm{ml} / \mathrm{min}$. Analytical thin-layer chromatography (TLC) was performed on precoated silica gel F-254 plates (Merck).

Unless otherwise noted, all chemicals were used as obtained from commercial sources and all reactions were performed under argon atmosphere in an oven-dried $\left(120^{\circ} \mathrm{C}\right)$ glassware. Toluene was distilled from sodium/benzophenone prior the use. Anhydrous 1,4-dioxane (Acros), N, N-dimethylacetamide (Acros), and toluene were degassed by multiple freeze-pump-thaw cycles, and handled using Schlenk technique. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was obtained by passing commercially available solvent through activated alumina columns. Commercially available anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}$ was heated at $250^{\circ} \mathrm{C}$ for 3 h and stored in a glove box under argon atmosphere.

Methyl 2-(benzyloxy)-7-methyl-6,10b-dihydro-5aH-benzofuro[2,3-b]indole-10b-carboxylate (4c). N-MOMprotected hemiaminal $\mathrm{rac}-\mathbf{4 a}^{7}(25 \mathrm{mg}, 0.055 \mathrm{mmol})$ and PdCl_{2} (dppf) $(2.1 \mathrm{mg}, 0.0025 \mathrm{mmol})$ were placed into a 5 ml pressure vial and suspended in anhydrous dioxane (1.0 ml) under nitrogen atmosphere. Then dimethylzinc (1.2 M

Figure 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound $\mathbf{4 c}$.
solution in toluene, $83 \mu \mathrm{l}, 0.10 \mathrm{mmol}$) was added and the resulting clear yellow solution was heated in an oil bath at $100^{\circ} \mathrm{C}$ for 1 h . The off-white precipitate was filtered through a pad of Celite and the pad was washed with $\operatorname{EtOAc}(25 \mathrm{ml})$. The filtrate was washed with water (10 ml) and the layers were separated. The aqueous layer was backextracted with EtOAc $(2 \times 10 \mathrm{ml})$ and the combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated (rotary evaporator). The residue was purified on silica gel column using gradient elution from $2 \% \mathrm{EtOAc}$ in petroleum ether to 25% EtOAc in petroleum ether to afford colorless oil (15 mg) comprising a mixture of MOM-protected and MOM-deprotected products. To achieve complete cleavage of the N-MOM protecting group in the product, the isolated mixture of products was dissolved in $\mathrm{MeOH}(2 \mathrm{ml})$ and aqueous concentrated HCl $(50 \mu \mathrm{l})$ was added. The colorless solution was stirred at room temperature for 5 h , basified with aqueous sat. NaHCO_{3} solution to pH 7 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated (rotary evaporator). Column chromatography on silica gel using gradient elution from $2 \% \mathrm{EtOAc}$ in petroleum ether to $25 \% \mathrm{EtOAc}$ in petroleum ether afforded the product as colorless oil ($9 \mathrm{mg}, 47 \%$, Fig. 2). $R_{\mathrm{f}} 0.43$ (petroleum ether - EtOAc, 5:4). IR spectrum, $v, \mathrm{~cm}^{-1}: 3395(\mathrm{NH}), 1736(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 7.45-7.30(6 \mathrm{H}, \mathrm{m}) ; 7.27(1 \mathrm{H}, \mathrm{dd}, J=2.7$, $J=0.4) ; 6.95(1 \mathrm{H}$, ddd, $J=7.5, J=1.2, J=0.7) ; 6.86(1 \mathrm{H}$, d, $J=3.5) ; 6.78(1 \mathrm{H}, \mathrm{dd}, J=8.7, J=2.7) ; 6.75(1 \mathrm{H}, \mathrm{t}$, $J=7.5) ; 6.72(1 \mathrm{H}, \mathrm{dd}, J=8.7, J=0.4) ; 5.00(2 \mathrm{H}, \mathrm{s}) ; 4.88$ $(1 \mathrm{H}, \mathrm{d}, J=3.5) ; 3.80(3 \mathrm{H}, \mathrm{s}) ; 2.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: $170.3 ; 153.8 ; 152.7 ; 146.1 ; 137.3 ; 130.5$; $128.7 ; 128.1 ; 127.8 ; 127.7 ; 126.8 ; 121.8 ; 120.4 ; 119.5$; $115.8 ; 112.1 ; 110.2 ; 100.3 ; 71.3 ; 66.6 ; 53.2 ; 16.9$. Found, $m / z: 388.1542[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{4}$. Calculated, m / z : 388.1549 .

Methyl 2-(benzyloxy)-7-(ortho-tolyl)-6,10b-dihydro5a H -benzofuro $[2,3-b]$ indole-10b-carboxylate (4d). N -MOM -protected rac-4a ${ }^{7}$ ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$), ortho-tolylboronic acid pinacolyl ester ($26 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Pd}\left(\eta^{2}-\mathrm{O}_{2}\right)^{7}$ ($14 \mathrm{mg}, 20 \mathrm{~mol} \%$), and oven-dried $\mathrm{K}_{3} \mathrm{PO}_{4}(85 \mathrm{mg}$, 0.44 mmol) were weighed into a 5 ml pressure vial in a glove box (argon atmosphere). Anhydrous degassed toluene (2.5 ml) was added, and the reaction mixture was heated in an oil bath at $110^{\circ} \mathrm{C}$ for 18 h , then diluted with EtOAc (15 ml) and washed with water (15 ml). The aqueous layer was back-extracted with EtOAc (15 ml).

Figure 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound $\mathbf{4 d}$.
Combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated (rotary evaporator). Column chromatography on silica gel using gradient elution from 2\% EtOAc in petroleum ether to $25 \% \mathrm{EtOAc}$ in petroleum ether afforded product as yellow oil (38 mg) comprising a mixture of MOM-protected and MOMdeprotected products according to ${ }^{1} \mathrm{H}$ NMR. To achieve complete cleavage of N-MOM protecting group in the product, the mixture of products was dissolved in MeOH $(3 \mathrm{ml})$ and aqueous concentrated $\mathrm{HCl}(100 \mu \mathrm{l})$ was added. The reaction mixture was stirred at room temperature for 20 h , then basified to pH 7 using aqueous saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated (rotary evaporator). Purification of the residue on the silica gel column using gradient elution from $2 \% \mathrm{EtOAc}$ in petroleum ether to 25% EtOAc in petroleum ether afforded the biaryl $\mathbf{4 d}$ as colorless oil ($17 \mathrm{mg}, 33 \%$, Fig. 3). $R_{\mathrm{f}} 0.53$ (petroleum ether EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 3394(\mathrm{~N}-\mathrm{H}), 1733$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $7.49(1 \mathrm{H}, \mathrm{d}, J=7.6)$; $7.47-7.33(5 \mathrm{H}, \mathrm{m}) ; 7.32(1 \mathrm{H}, \mathrm{d}, J=2.7) ; 7.28-7.20(4 \mathrm{H}$, $\mathrm{m}) ; 7.00(1 \mathrm{H}, \mathrm{dd}, J=7.6, J=1.1) ; 6.85(1 \mathrm{H}, \mathrm{t}, J=7.6)$; $6.80(1 \mathrm{H}, \mathrm{dd}, J=8.7, J=2.7) ; 6.77(1 \mathrm{H}, \mathrm{d}, J=2.7) ; 6.71$ $(1 \mathrm{H}, \mathrm{d}, J=8.7) ; 5.03(2 \mathrm{H}, \mathrm{s}) ; 4.83(1 \mathrm{H}, \mathrm{s}) ; 3.84(3 \mathrm{H}, \mathrm{s}) ;$ $2.18(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 170.2; 153.8; 152.9; 145.3; 137.6; 137.3; 136.6 (br. s); 130.6; 130.3; 129.9 (br. s); 128.7; 128.1; 128.0; 127.8; 126.7 (br. s); 126.2; 123.4 (br. s); 123.3; 119.7; 115.8; 112.0; 110.2; 99.9; 71.3; 66.5; 53.3; 20.1. Found, $m / z: 464.1861$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{4}$. Calculated, m / z : 464.1862 .

Methyl 2-(benzyloxy)-7-cyano-6,10b-dihydro-5aHbenzofuro $[2,3-b]$ indole-10b-carboxylate (4e). N-MOMprotected $\mathrm{rac}-\mathbf{4 a}^{7}(100 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, dppf $(11.1 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{Zn}(\mathrm{CN})_{2}$ $(16.6 \mathrm{mg}, 0.14 \mathrm{mmol})$ were weighed into a 5 ml pressure vial and anhydrous degassed DMA (2.5 ml) was added under nitrogen. The suspension was stirred at $110^{\circ} \mathrm{C}$ for 2 h , filtered through a pad of Celite, and the pad was washed with EtOAc (30 ml). The filtrate was washed with water ($2 \times 15 \mathrm{ml}$), brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated (rotary evaporator). Purification of a brown oily residue on silica gel column using gradient elution from $7 \% \mathrm{EtOAc}$ in petroleum ether to $56 \% \mathrm{EtOAc}$ in petroleum ether was followed by additional purification on preparative TLC using 25% acetone in petroleum ether and afforded methyl 2-(benzyloxy)-7-cyano-6-(methoxymethyl)-

Figure 4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound $\mathbf{4 e}$.
6,10b-dihydro-5a \boldsymbol{H}-benzofuro[2,3-b]indole-10b-carboxylate as a brownish oil ($46 \mathrm{mg}, 53 \%$). $R_{\mathrm{f}} 0.37$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 2222(\mathrm{C} \equiv \mathrm{N})$, $1738(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 7.69(1 \mathrm{H}$, ddd, $J=7.5, J=1.2, J=0.5) ; 7.43-7.30(6 \mathrm{H}, \mathrm{m}) ; 7.17(1 \mathrm{H}$, d, $J=2.6) ; 6.86-6.76(4 \mathrm{H}, \mathrm{m}) ; 5.39(1 \mathrm{H}, \mathrm{d}, J=10.9) ; 5.04$ $(1 \mathrm{H}, \mathrm{d}, J=10.9) ; 5.00(2 \mathrm{H}, \mathrm{s}) ; 3.82(3 \mathrm{H}, \mathrm{s}) ; 3.47(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 169.0; 154.2; 152.3; $147.9 ; 137.0 ; 134.0 ; 130.3 ; 128.9 ; 128.7 ; 128.2 ; 127.7$; $126.8 ; 120.2 ; 117.7 ; 116.5 ; 111.9 ; 110.9 ; 103.1 ; 92.1 ; 77.1$; $71.3 ; 63.6 ; 55.3$; 53.6. Found, $m / z: 411.1344\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}\right]^{+}$. $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$. Calculated, $m / z: 411.1345$.

The N-MOM-protected hemiaminal from above (40 mg , 0.09 mmol) was dissolved in MeOH (2 ml), aqueous concentrated $\mathrm{HCl}(300 \mu \mathrm{l})$ was added, and the reaction mixture was stirred at room temperature for 36 h , then basified with aqueous saturated NaHCO_{3} to pH 7 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated (rotary evaporator). The residue was purified on silica gel column using gradient elution from 7\% EtOAc in petroleum ether to 60% EtOAc in petroleum ether to afford compound $\mathbf{4 e}$ as a colorless solid ($18 \mathrm{mg}, 56 \%$, Fig. 4). $R_{\mathrm{f}} 0.38$ (petroleum ether - EtOAc, 5:4). IR spectrum, $v, \mathrm{~cm}^{-1}$: $3335(\mathrm{~N}-\mathrm{H}), 2224(\mathrm{C} \equiv \mathrm{N}), 1728(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 7.65(1 \mathrm{H}, \mathrm{d}, J=7.5) ; 7.44-7.31(5 \mathrm{H}, \mathrm{m})$; $7.29(1 \mathrm{H}, \mathrm{dd}, J=7.9, J=1.1) ; 7.19(1 \mathrm{H}, \mathrm{d}, J=2.6) ; 6.88$ $(1 \mathrm{H}, \mathrm{d}, J=2.2) ; 6.83(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.6) ; 6.78(1 \mathrm{H}, \mathrm{t}$, $J=7.7) ; 6.77(1 \mathrm{H}, \mathrm{d}, J=8.8) ; 5.75(1 \mathrm{H}, \mathrm{s}) ; 5.01(2 \mathrm{H}, \mathrm{s}) ;$ $3.83\left(3 \mathrm{H}\right.$, s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 169.2; 154.1; 152. $6 ; 150.6 ; 137.0 ; 131.7 ; 128.9 ; 128.7 ; 128.3$; $128.2 ; 127.7 ; 126.6 ; 119.7 ; 116.7 ; 116.4 ; 111.7 ; 110.8$; 99.3; 91.8; 71.3; 66.0; 53.6. Found, $m / z: 399.1326[\mathrm{M}+\mathrm{H}]^{+}$. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$. Calculated, $m / z: 399.1345$.

4-(Benzyloxy)-2-[3-(2-methyloxazol-5-yl)-1-(triiso-propylsilyl)-1H,1'H-[4,7'-biindol]-3'-yl]phenyl methyl carbonate (6a). A hemiaminal rac-4a ${ }^{7}(100 \mathrm{mg}, 0.22 \mathrm{mmol})$, N-TIPS indolyl boronate $5 \mathbf{a}^{7}(106 \mathrm{mg}, 0.22 \mathrm{mmol})$, $\left(\mathrm{PCy}_{3}\right)_{2} \operatorname{Pd}\left(\eta^{2}-\mathrm{O}_{2}\right)^{7}(30 \mathrm{mg}, 20 \mathrm{~mol} \%)$, and an oven-dried $\mathrm{K}_{3} \mathrm{PO}_{4}(188 \mathrm{mg}, 0.88 \mathrm{mmol})$ were weighed into an ovendried pressure vial in a glove box (argon atmosphere). Anhydrous degassed dioxane (4 ml) was added, and the reaction mixture was heated in an oil bath at $100^{\circ} \mathrm{C}$ for 20 h , then diluted with EtOAc (25 ml) and washed with water (25 ml). The aqueous layer was back-extracted with EtOAc (25 ml). Combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated

Figure 5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound $\mathbf{6 a}$.
(rotary evaporator). Column chromatography on silica gel using gradient elution from 5% acetone in hexanes to 25% acetone in hexanes afforded the product $\mathbf{6 a}$ as off-white foam (130 mg, 86\%, Fig. 5). $R_{\mathrm{f}} 0.19$ (petroleum ether EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 3421(\mathrm{~N}-\mathrm{H}), 1763$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.16(1 \mathrm{H}, \mathrm{d}$, $J=1.5) ; 7.60(1 \mathrm{H}, \mathrm{dd}, J=6.6, J=2.7) ; 7.56(1 \mathrm{H}, \mathrm{dd}$, $J=7.5, J=1.5) ; 7.49-7.38(5 \mathrm{H}, \mathrm{m}) ; 7.38-7.29(5 \mathrm{H}, \mathrm{m})$; $7.16(1 \mathrm{H}, \mathrm{d}, J=8.9) ; 7.06-6.98(2 \mathrm{H}, \mathrm{m}) ; 6.90(1 \mathrm{H}, \mathrm{dd}$, $J=8.9, J=3.1) ; 6.16(1 \mathrm{H}, \mathrm{s}) ; 5.12(2 \mathrm{H}, \mathrm{s}) ; 3.70(3 \mathrm{H}, \mathrm{s}) ;$ $1.80(3 \mathrm{H}, \mathrm{s}) ; 1.75(3 \mathrm{H}$, septet, $J=7.5) ; 1.20(18 \mathrm{H}, \mathrm{d}$, $J=7.5) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum, δ, ppm: 159.9; 156.7; $154.4 ; 145.7 ; 142.1 ; 142.0 ; 136.9 ; 135.0 ; 132.2 ; 131.0$; $129.1 ; 128.7 ; 128.0 ; 127.4 ; 127.1 ; 125.6 ; 125.0 ; 123.7$; $123.2 ; 122.9 ; 122.5 ; 122.3 ; 120.0 ; 118.5 ; 116.3 ; 113.8$; $113.3 ; 111.8 ; 107.2 ; 70.4 ; 55.3 ; 18.2 ; 13.0 ; 12.8$. Found, $m / z: 726.3351[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}$. Calculated, m / z : 726.3363.

4-(Benzyloxy)-2-(7-bromo-1 H -indol-3-yl)phenyl methyl carbonate (8a). A solution of hemiaminal rac-4a ${ }^{7}$ (10 mg , $0.022 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.7 \mathrm{ml})$ was placed in NMR tube and $\mathrm{Et}_{3} \mathrm{~N}(6 \mu \mathrm{l}, 0.044 \mathrm{mmol})$ was added. The solution was kept at room temperature and progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. Full conversion to the starting hemiaminal bromide rac-4a was observed after 57 days.

For structure assignment and compound characterization purposes, the indole 8a was synthesized from N-Boc-indole 11a. Accordingly, a solution of N-Boc-indole 11a (30 mg , $0.054 \mathrm{mmol})$ in toluene (2.0 ml) was heated at $160^{\circ} \mathrm{C}$ in a closed 5 ml pressure vial for 30 h , then the solvent was evaporated and the brownish solid residue was purified on silica gel column using gradient elution from 7\% EtOAc in petroleum ether to $60 \% \mathrm{EtOAc}$ in petroleum ether. Indole 8a was obtained as colorless foam ($23 \mathrm{mg}, 94 \%$, Fig. 6). $R_{\mathrm{f}} 0.38$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}$: 3422 ($\mathrm{N}-\mathrm{H}$), 1761 ($\mathrm{C}=\mathrm{O}$). ${ }^{\mathrm{l}} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 8.48(1 \mathrm{H}, \mathrm{s}) ; 7.55(1 \mathrm{H}, \mathrm{d}, J=8.0) ; 7.47-7.32(7 \mathrm{H}$, m); $7.22(1 \mathrm{H}, \mathrm{d}, J=3.0) ; 7.19(1 \mathrm{H}, \mathrm{d}, J=8.9) ; 7.01(1 \mathrm{H}, \mathrm{t}$, $J=7.8) ; 6.95(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=3.0) ; 5.12(2 \mathrm{H}, \mathrm{s}) ; 3.70$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 156.9; 154.4; $142.3 ; 137.0 ; 135.9 ; 128.8 ; 128.5 ; 128.2 ; 127.6 ; 127.5$; $124.9 ; 124.3 ; 123.4 ; 121.7 ; 119.4 ; 116.7 ; 114.0 ; 113.6 ; 105.0$;

Chem. Heterocycl. Compd. 2015, 51(7), 613-620 [Химия гетерочикл. соединений 2015, 51(7), 613-620]

Figure 6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound $\mathbf{8 a}$.
70.6; 55.5. Found, $m / z: 452.0479[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrNO}_{4}$. Calculated, m / z : 452.0497.

Ring opening of the hemiaminal rac-4a in the presence of $\mathbf{B o c}_{2} \mathbf{O}$. The hemiaminal rac-4a ${ }^{7}(880 \mathrm{mg}$, 1.64 mmol) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ under nitrogen atmosphere, and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. Then, $\mathrm{Et}_{3} \mathrm{~N}(3.4 \mathrm{ml}, 24.6 \mathrm{mmol})$ was added dropwise, followed by $\mathrm{Boc}_{2} \mathrm{O}(892 \mathrm{mg}, 4.10 \mathrm{mmol})$ and DMAP ($50 \mathrm{mg}, 0.40 \mathrm{mmol}$). The colorless solution was stirred at room temperature for 30 min , then the solvent was evaporated and the residue was purified on silica gel column (80 ml SiO , mobile phase $30 \% \mathrm{EtOAc}$ in petroleum ether) to afford a mixture of O-Boc-phenol 10a and N -Boc-indole 11a. These two products were separated on the preparative HPLC.

Methyl 3-\{5-(benzyloxy)-7-bromo-2-[(tert-butoxy-carbonyl)oxylphenyl\}-3H-indole-3-carboxylate (10a) was obtained as a colorless foam ($597 \mathrm{mg}, 66 \%$, Fig. 7). $\mathrm{R}_{f} 0.47$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 1761$ $(\mathrm{C}=\mathrm{O}), 1743(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz}): 8.27$ $(1 \mathrm{H}, \mathrm{s}) ; 7.62(1 \mathrm{H}, \mathrm{d}, J=8.0) ; 7.45(1 \mathrm{H}, \mathrm{d}, J=7.5) ; 7.34-7.17$ $(7 \mathrm{H}, \mathrm{m}) ; 6.93(1 \mathrm{H}, \mathrm{dd}, J=9.0, J=3.0) ; 6.32(1 \mathrm{H}, \mathrm{d}, J=3.0)$; $4.87\left(1 \mathrm{H}, \mathrm{ABq}, J_{\mathrm{AB}}=12.0\right) ; 4.86\left(1 \mathrm{H}, \mathrm{ABq}, J_{\mathrm{AB}}=12.0\right)$; $3.70(3 \mathrm{H}, \mathrm{s}) ; 1.55(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm : $170.3 ; 168.6 ; 156.3 ; 154.1 ; 151.2 ; 143.5 ; 136.7 ; 136.1$; $133.1 ; 128.5 ; 128.0 ; 127.3 ; 126.1 ; 123.9 ; 115.5 ; 115.1$; 113.9; 84.0; 71.5; 70.3; 53.0; 27.6. Found, $m / z: 574.0834$ $[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrNNaO}_{6}$. Calculated, $m / z: 574.0841$.
tert-Butyl 3-\{5-(benzyloxy)-7-bromo-2-[(methoxycarbonyl)oxylphenyl $\}$ - 1 H -indole-1-carboxylate (11a) was obtained as a colorless oil ($167 \mathrm{mg}, 18 \%$, Fig. 8). $R_{\mathrm{f}} 0.53$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 1763$

Figure 7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound 10a.

Figure 8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound 11a.
$(\mathrm{C}=\mathrm{O}), 1738(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: $7.62(1 \mathrm{H}, \mathrm{s}) ; 7.55(1 \mathrm{H}, \mathrm{dd}, J=7.8, J=1.0) ; 7.46-7.32(6 \mathrm{H}$, $\mathrm{m}) ; 7.21(1 \mathrm{H}, \mathrm{d}, J=8.9) ; 7.11(1 \mathrm{H}, \mathrm{d}, J=3.0) ; 7.08(1 \mathrm{H}, \mathrm{t}$, $J=7.8) ; 7.01(1 \mathrm{H}, \mathrm{dd}, J=8.9, J=3.0) ; 5.11(2 \mathrm{H}, \mathrm{s}) ; 3.71$ $(3 \mathrm{H}, \mathrm{s}) ; 1.67\left(9 \mathrm{H}\right.$, s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: $156.8 ; 154.5 ; 148.4 ; 142.6 ; 136.8 ; 134.1 ; 133.0 ; 130.3$; 128.9; 128.2 (2 peaks overlapping); 127.6; 126.8; 124.4; $123.6 ; 119.5 ; 117.0 ; 116.3 ; 115.1 ; 108.1 ; 84.7 ; 70.6 ; 55.5$; 28.1. Found, m / z : $452.0484\left[\mathrm{M}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COC}(\mathrm{O})+2 \mathrm{H}\right]^{+}$. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrNO}_{4}$. Calculated, m / z : 452.0497 .

Methyl 3-\{5-(benzyloxy)-2-[(tert-butoxycarbonyl)oxy]-phenyl\}-7-methyl-3H-indole-3-carboxylate (10c). A solution of hemiaminal $\mathbf{4 c}\left(20 \mathrm{mg}, 0.052 \mathrm{mmol}\right.$, Fig. 9) in CDCl_{3} $(0.7 \mathrm{ml})$ was placed in NMR tube and DMAP $(0.64 \mathrm{mg}$, $0.0052 \mathrm{mmol})$ was added, followed with $\mathrm{Boc}_{2} \mathrm{O}(28 \mathrm{mg}$, 0.130 mmol). The clear colorless solution was kept at room temperature and progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR. Complete conversion of the starting hemiaminal $4 \mathbf{c}$ was observed after 72 h . The solution was poured onto the silica gel column and purified using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a mobile phase to afford product $\mathbf{1 0 c}(23 \mathrm{mg}, 91 \%)$ as a yellowish oil. $R_{\mathrm{f}} 0.45$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 1761(\mathrm{C}=\mathrm{O}), 1733(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm $(J, \mathrm{~Hz}): 8.20(1 \mathrm{H}, \mathrm{s}) ; 7.35(1 \mathrm{H}, \mathrm{dd}, J=7.2, J=1.0)$; $7.34-7.22(7 \mathrm{H}, \mathrm{m}) ; 7.22(1 \mathrm{H}, \mathrm{d}, J=9.0) ; 6.92(1 \mathrm{H}, \mathrm{dd}$, $J=9.0, J=3.0) ; 6.37(1 \mathrm{H}, \mathrm{d}, J=3.0) ; 4.86(2 \mathrm{H}, \mathrm{s}) ; 3.70$ $(3 \mathrm{H}, \mathrm{s}) ; 2.61(3 \mathrm{H}, \mathrm{s}) ; 1.58(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 169.6; 168.4; 156.5; 154.5; 151.6; 144.0; 134.5; $134.9 ; 131.8 ; 131.3 ; 128.7 ; 128.2 ; 127.7 ; 127.4 ; 127.2$; $123.9 ; 122.5 ; 115.0 ; 114.2 ; 84.0 ; 70.5 ; 70.3 ; 53.1 ; 27.9$; 17.0. Found, $m / z: 510.1886[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NNaO}_{6}$. Calculated, $m / z: 510.1892$.

Figure 9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound 10 c .

Figure 10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound 10d.

Methyl 3-\{5-(benzyloxy)-2-[(tert-butoxycarbonyl)oxy]-phenyl\}-7-(ortho-tolyl)-3H-indole-3-carboxylate (10d). To a solution of hemiaminal $\mathbf{4 d}(30 \mathrm{mg}, 0.065 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ under nitrogen atmosphere, DMAP $(0.8 \mathrm{mg}, 0.0065 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(36 \mathrm{mg}, 0.16 \mathrm{mmol})$ were added. The clear colorless solution was stirred at room temperature for 72 h . The solvent was evaporated and the residue was purified on silica gel column using gradient elution from $2 \% \mathrm{EtOAc}$ in petroleum ether to $25 \% \mathrm{EtOAc}$ in petroleum ether to afford the product 10d as yellow oil ($30 \mathrm{mg}, 82 \%$, Fig. 10). $R_{\mathrm{f}} 0.49$ (petroleum ether - EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 1760(\mathrm{C}=\mathrm{O}), 1742(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}(J, \mathrm{~Hz}): 8.21(1 \mathrm{H}, \mathrm{s}) ; 7.55(1 \mathrm{H}$, dd, $J=6.4, J=2.3) ; 7.43-7.27(11 \mathrm{H}, \mathrm{m}) ; 7.24(1 \mathrm{H}, \mathrm{d}$, $J=9.0) ; 6.96(1 \mathrm{H}, \mathrm{dd}, J=9.0, J=3.0) ; 6.44(1 \mathrm{H}, \mathrm{d}$, $J=3.0) ; 4.90,4.88(2 \mathrm{H}, \mathrm{ABq}, J=12.0) ; 3.73(3 \mathrm{H}, \mathrm{s}) ; 2.19$ $(3 \mathrm{H}, \mathrm{s}) ; 1.57(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: $169.5 ; 169.3 ; 156.6 ; 154.3 ; 153.8 ; 151.7 ; 144.0 ; 138.1$; $136.5 ; 136.4 ; 135.7 ; 135.2 ; 131.3 ; 130.3 ; 128.8 ; 128.3$; $128.0 ; 127.7 ; 127.4 ; 127.2 ; 125.7 ; 124.0 ; 124.0 ; 115.1$; 114.2; 70.6; 70.2; 53.1; 27.9; 20.6. Found, m/z: 586.2222 $[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{C}_{35} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{Na}$. Calculated, $m / z: 586.2206$.

6-tert-Butyl 10b-methyl 2-(benzyloxy)-7-cyano-6H-[1]benzofuro[2,3-b]indole-6,10b(5aH)-dicarboxylate (rac-12e). A solution of hemiaminal rac- $4 \mathrm{e}(15 \mathrm{mg}, 0.038 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.7 \mathrm{ml})$ was placed in NMR tube and DMAP $(0.46 \mathrm{mg}$, $0.0038 \mathrm{mmol})$ was added, followed with $\mathrm{Boc}_{2} \mathrm{O}(21 \mathrm{mg}$, $0.094 \mathrm{mmol})$. The clear colorless solution was kept at room temperature and progress of the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Complete conversion of the starting hemiaminal 4 e was observed after 20 h . The solution was poured onto the silica gel column and purified using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a mobile phase to afford rac-12e as a yellowish oil ($16 \mathrm{mg}, 83 \%$, Fig. 11). $R_{\mathrm{f}} 0.38$ (petroleum ether EtOAc, 5:2). IR spectrum, $v, \mathrm{~cm}^{-1}: 2231(\mathrm{C} \equiv \mathrm{N}), 1811$ $(\mathrm{C}=\mathrm{O}), 1742(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}(J, \mathrm{~Hz})$: $7.72(1 \mathrm{H}, \mathrm{d}, J=7.7) ; 7.55(1 \mathrm{H}, \mathrm{d}, J=7.8) ; 7.44-7.30(5 \mathrm{H}$, m); $7.22(1 \mathrm{H}, \mathrm{d}, J=2.5) ; 7.14(1 \mathrm{H}, \mathrm{dd}, J=7.7, J=7.8)$; $7.13(1 \mathrm{H}, \mathrm{s}) ; 6.82(1 \mathrm{H}, \mathrm{dd}, J=8.8, J=2.5) ; 6.77(1 \mathrm{H}, \mathrm{d}$,

Figure 11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignment for compound 12e.
$J=8.8) ; 5.01(2 \mathrm{H}, \mathrm{s}) ; 3.84(3 \mathrm{H}, \mathrm{s}) ; 1.67(9 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, δ, ppm: 168.5; 154.2; 152.4; $151.3 ; 142.2 ; 136.9 ; 134.6 ; 133.1 ; 129.1 ; 128.8 ; 128.2$; $127.7 ; 126.1 ; 124.9 ; 116.9 ; 116.4 ; 111.7 ; 110.7 ; 102.4$; $100.2 ; 85.1 ; 71.3 ; 63.7 ; 53.8 ; 28.2$. Found, $m / z: 499.1850$ $[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$. Calculated, $m / z: 499.1869$.

We thank European Social Fund (Project No. 1DP/1.1.1.2.0/13/APIA/VIAA/006) for financial support of this research. E. Vedejs thanks InnovaBalt project for funding.

References

1. For review on synthesis of diazonamide A, see: Lachia, M.; Moody, C. Nat. Prod. Rep. 2008, 25, 227.
2. Cruz-Monserrate, Z.; Vervoort, H. C.; Bai, R.; Newman, D. J.; Howell, S. B.; Los, G.; Mullaney, J. T.; Williams, M. D.; Pettit, G. R.; Fenical, W.; Hamel, E. Mol. Pharmacol. 2003, 63, 1273.
3. For review, see: Beaud, R.; Tomakinian, T.; Denizot, N.; Pouilhès, A.; Kouklovsky, C.; Vincent, G. Synlett 2015, $26,432$.
4. (a) Tomakinian, T.; Kouklovsky, C.; Vincent, G. Synlett 2015, 26, 1269. (b) Ding, H.; DeRoy, P. L.; Perreault, C.; Larivée, A.; Siddiqui, A.; Caldwell, C. G.; Harran, S.; Harran, P. G. Angew. Chem., Int. Ed. 2015, 54, 4818. (c) Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2014, 53, 11881. (d) Liao, L.; Shu, C.; Zhang, M.; Liao, Y.; Hu, X.; Zhang, Y.; Wu, Z.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 10471. (e) Shu, C.; Liao L.-H.; Liao Y.-J.; Hu, X.-Y.; Zhang, Y.-H.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2014, 4467. (f) Denizot, N.; Pouilhès, A.; Cucca, M.; Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2014, 16, 5752. (g) Zhao, J.-C.; Yu, S.-M.; Liu, Y.; Yao, Z.-J. Org. Lett. 2013, 15, 4300. (h) Beaud, R.; Guillot, R.; Kouklovsky, C.; Vincent, G. Angew. Chem., Int. Ed. 2012, 51, 12546.
5. (a) Zajac, M. A.; Vedejs, E. Org. Lett. 2004, 6, 237. (b) Peris, G.; Vedejs, E. J. Org. Chem. 2015, 80, 3050.
6. Poriel, C.; Lachia, M.; Wilson, C.; Davies, J. R.; Moody, C. J. J. Org. Chem. 2007, 72, 2978.
7. Mutule, I.; Joo, B.; Medne, Z.; Kalnins, T.; Vedejs, E.; Suna, E. J. Org. Chem. 2015, 80, 3058.
8. Rawal, V. H.; Cava, M. P. Tetrahedron Lett. 1985, 26, 6141.
9. Basel, Y.; Hassner, A. J. Org. Chem. 2000, 65, 6368.

[^0]: * As has been demonstrated by Hassner, ${ }^{9}$ the reaction of DMAP with $\mathrm{Boc}_{2} \mathrm{O}$ produces ion pair: N-Boc-pyridinium tert-butoxycarboxylate. The tert-butoxycarboxylate decomposes to CO_{2} and the strong base tert-butoxide.

