



# Синтез *N*-алкилированных бензо- и пиридотиенопирроло-[1,2-*a*][1,4]диазепин-6-онов, проявляющих антидотную активность в отношении гербицида 2,4-Д

Татьяна А. Строганова<sup>1</sup>, Владимир К. Василин<sup>1</sup>\*, Геннадий Д. Крапивин<sup>1</sup>, Владимир Д. Стрелков<sup>2</sup>, Людмила В. Дядюченко<sup>3</sup>

<sup>1</sup> Кубанский государственный технологический университет, ул. Московская, 2, Краснодар 350072, Россия; e-mail: vasvk@mail.ru

<sup>2</sup> Кубанский государственный университет,

ул. Ставропольская, 149, Краснодар 350040, Россия; e-mail: vladstrelkov@yandex.ru

<sup>3</sup> ВНИИ биологической защиты растений РАСН, а/я 5269, Краснодар 350039, Россия; e-mail: ludm.dyadiuchenko@yandex.ru

Поступило 8.10.2015 Принято после доработки 19.12.2015



Изучена реакция *N*-алкилирования пирроло[1,2-*a*][1,4]диазепин-6-онов, аннелированных с бензольным циклом или тиено[2,3-*b*]пиридиновым фрагментом. Синтезирован ряд новых N<sup>5</sup>-замещенных пирролодиазепинов, среди которых обнаружены соединения, обладающие антидотной активностью в отношении гербицида 2,4-Д.

Ключевые слова: аннелированные пирроло[1,2-*a*][1,4]диазепиноны, *N*-алкилирование, антидоты, биологическая активность, гербицид 2,4-Д.

Поскольку производные 1,4-диазепина проявляют самые разнообразные виды биологической активности,<sup>1</sup> синтез новых представителей этой гетероциклической системы весьма актуален с точки зрения поиска веществ с полезными свойствами.

Разработанный нами ранее<sup>2</sup> метод получения пирроло-[1,2-*a*][1,4]диазепинов из *N*-(5-метилфуран-2-ил)-2-аминобензамидов и *N*-(5-метилфуран-2-ил)-3-аминотиено-[2,3-*b*]пиридин-2-карбоксамидов на основе катализируемой кислотами домино-реакции раскрытия фуранового цикла с последующим аннелированием пирролодиазепинового фрагмента позволяет получать полициклические конденсированные пирролодиазепины, содержащие несколько реакционноспособных центров, пригодных для дальнейшей модификации. Ранее для этих соединений нами исследованы реакции аминоалкилирования пиррольного цикла<sup>3</sup> по Манниху и восстановительной десульфуризации тиено[2,3-*b*]пиридинового фрагмента, аннелированного с пирролодиазепиновой системой.<sup>4</sup> Перспективным направлением модификации диазепинонов является *N*-алкилирование лактамного фрагмента. Следует отметить, что получение *N*-замещенных пирролодиазепинов непосредственно рециклизацией фуранового цикла в соответствующих третичных *N*-(5-метилфуран-2-ил)замещенных 2-аминобензамидах и 3-аминотиено[2,3-*b*]пиридин-2-карбоксамидах невозможно, так как в этом случае в кислой среде преобладает элиминирование фурфурильного фрагмента.<sup>5</sup>

Обычно *N*-алкилирование диазепинонового цикла осуществляют действием алкилгалогенидов в присутствии NaH в  $T\Gamma\Phi^{6a-c}$  или  $ДM\Phi A$ ,  $^{6d,e}$  KF-Al<sub>2</sub>O<sub>3</sub> в ацетоне,  $^7$  Cs<sub>2</sub>CO<sub>3</sub> в *N*-метил-2-пирролидоне<sup>8</sup> или в условиях межфазного катализа.  $^9$ 

В настоящем сообщении представлены эксперименты по модификации пирроло[1,2-*a*][1,4]диазепинонов, конденсированных с ароматическим или гетероароматическим фрагментом, с участием лактамного фрагмента, а также результаты исследования по

#### Схема 1



| Соеди-<br>нение | А     | R                                                                       | Время<br>реакции, ч |
|-----------------|-------|-------------------------------------------------------------------------|---------------------|
| 2a              |       | <i>n</i> -Pr                                                            | 5                   |
| 2b              |       | <i>i</i> -Pr                                                            | 5                   |
| 2c              | 10    | CH <sub>2</sub> CONH(t-Bu)                                              | 8                   |
| 2d              |       | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-Me                 | 10                  |
| 2e              | 8 7 i | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-OMe                | 10                  |
| 2f              |       | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-Ac                 | 14                  |
| 2g              |       | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -2-CO <sub>2</sub> Me | 14                  |

поиску веществ с биологической активностью среди полученных *N*-алкилированных продуктов.

В результате катализируемой кислотами рециклизации N-[(5-метилфуран-2-ил)метил]амидов антраниловой и 3-амино-4,6-диметилтиено[2,3-*b*]пиридин-2-карбоновой кислот по описанной ранее методике<sup>2</sup> получены конденсированные пирролодиазепины **1а,b** (схема 1), которые использованы в дальнейшем как модельные соединения для исследования реакций N-алкилирования.

Оказалось, что пирролодиазепиноны **1а**,**b** легко подвергаются алкилированию при обработке иодалканами или *N*-замещенными хлорацетамидами в абсолютном ДМФА в присутствии NaH при комнатной температуре. Независимо от используемых алкилгалогенидов, реакция протекает региоселективно, приводя к образованию только продуктов *N*-алкилирования: 5-алкил-1-метил-4,5-дигидро-6*H*-пирроло-[1,2-*a*][1,4]бензодиазепин-6-онов **2а**-**g** и 5-алкил-1,9,11триметил-4,5-дигидро-6*H*-пиридо[3',2':4,5]тиено[2,3-*f*]пирроло[1,2-*a*][1,4]диазепин-6-онов **2h**-**o** с выходами от 48 до 96% (схема 1, табл. 1 и 2).

В спектрах ЯМР <sup>1</sup>Н *N*-алкилированных продуктов **2а–о** (табл. 2) наблюдается появление сигналов протонов соответствующих *N*-заместителей. Кроме того, в спектрах ЯМР <sup>1</sup>Н соединений **2а,b,h–j** отмечено исчезновение сигнала протона группы NH.

Как показано ранее,<sup>5b</sup> пирролодиазепиновый цикл имеет жесткую конформацию "ванна". Атомы водорода метиленовой группы пирролодиазепинового цикла соединений **2h–o**, находящиеся в псевдоаксиальном и псевдоэкваториальном положениях, резонируют в виде пары дублетов интенсивностью 1Н каждый в области 3.64–4.68 м. д. с геминальной КССВ 15.0–16.9 Гц. Повышение температуры образца в ампуле спектрометра до 150 °С не приводит к изменению вида сигна-

| Соеди-<br>нение | А         | R                                                                       | Время<br>реакции, ч |
|-----------------|-----------|-------------------------------------------------------------------------|---------------------|
| 2h              |           | Me                                                                      | 3                   |
| 2i              |           | <i>n</i> -Pr                                                            | 6                   |
| 2ј              | 10 Me     | <i>i</i> -Pr                                                            | 6                   |
| 2k              | Me-9      | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-Me                 | 24                  |
| 21              | "ĥ—🤾 📋    | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-Ac                 | 24                  |
| 2m              | S- -<br>7 | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -4-OMe                | 24                  |
| 2n              |           | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -2,4-Me <sub>2</sub>  | 24                  |
| 20              |           | CH <sub>2</sub> CONHC <sub>6</sub> H <sub>4</sub> -2-CO <sub>2</sub> Me | 24                  |

| Таблица 1. | Физико-химические | характеристики |
|------------|-------------------|----------------|
| соединений | 2a-o              |                |

| Соеди- | Брутто-               | <u>Найдено, %</u><br>Вычислено, % |                     |                       | Т. пл.,           | Выход, |
|--------|-----------------------|-----------------------------------|---------------------|-----------------------|-------------------|--------|
| нение  | формула -             | C H N                             |                     | - °C                  | %                 |        |
| 2a     | $C_{16}H_{18}N_2O$    | <u>75.59</u><br>75.56             | <u>7.03</u><br>7.13 | $\frac{11.07}{11.01}$ | 97–99             | 54     |
| 2b     | $C_{16}H_{18}N_2O$    | <u>75.52</u><br>75.56             | <u>7.11</u><br>7.13 | <u>11.09</u><br>11.01 | 175–177           | 75     |
| 2c     | $C_{19}H_{23}N_3O_2$  | $\frac{70.11}{70.13}$             | $\frac{7.09}{7.12}$ | <u>12.95</u><br>12.91 | 175–176           | 96     |
| 2d     | $C_{22}H_{21}N_3O_2$  | <u>73.48</u><br>73.52             | <u>5.92</u><br>5.89 | <u>11.67</u><br>11.69 | 168–169           | 76     |
| 2e     | $C_{22}H_{21}N_3O_3$  | $\frac{70.42}{70.38}$             | <u>5.67</u><br>5.64 | <u>11.15</u><br>11.19 | 144–145           | 83     |
| 2f     | $C_{23}H_{21}N_3O_3$  | $\frac{71.33}{71.30}$             | <u>5.43</u><br>5.46 | $\frac{10.86}{10.85}$ | >150<br>(с разл.) | 56     |
| 2g     | $C_{23}H_{21}N_3O_4$  | <u>68.43</u><br>68.47             | <u>5.23</u><br>5.25 | <u>10.39</u><br>10.42 | 151–152           | 48     |
| 2h     | $C_{17}H_{17}N_3OS$   | <u>65.54</u><br>65.57             | <u>5.42</u><br>5.50 | <u>13.63</u><br>13.49 | 198–200           | 79     |
| 2i     | $C_{19}H_{21}N_3OS$   | <u>67.27</u><br>67.23             | <u>6.18</u><br>6.24 | <u>12.37</u><br>12.38 | 169–170           | 87     |
| 2ј     | $C_{19}H_{21}N_3OS$   | <u>67.24</u><br>67.23             | <u>6.21</u><br>6.24 | <u>12.38</u><br>12.38 | >210<br>(с разл.) | 86     |
| 2k     | $C_{25}H_{24}N_4O_2S$ | <u>67.62</u><br>67.54             | <u>5.38</u><br>5.44 | <u>12.67</u><br>12.61 | 247–249           | 91     |
| 21     | $C_{26}H_{24}N_4O_3S$ | <u>66.14</u><br>66.08             | <u>5.08</u><br>5.12 | <u>11.80</u><br>11.86 | 259–261           | 88     |
| 2m     | $C_{25}H_{24}N_4O_3S$ | <u>65.17</u><br>65.20             | <u>5.29</u><br>5.25 | <u>12.19</u><br>12.17 | 223–225           | 69     |
| 2n     | $C_{26}H_{26}N_4O_2S$ | <u>68.17</u><br>68.10             | <u>5.63</u><br>5.71 | <u>12.25</u><br>12.22 | 174–176           | 71     |
| 20     | $C_{26}H_{24}N_4O_4S$ | $\frac{63.85}{63.92}$             | <u>4.91</u><br>4.95 | <u>11.52</u><br>11.47 | 196–197           | 84     |

| Соеди-<br>нение | Спектр ЯМР <sup>1</sup> Н, б, м. д. ( <i>J</i> , Гц)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Спектр ЯМР <sup>13</sup> С, б, м. д.                                                                                                                                                                                                                                                         | Масс-спектр, <i>m/z</i> ( <i>I</i> <sub>отн</sub> , %)                                                                                                                                                                                                                                                                                                                                      |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                           |
| 2a              | 0.79 (3H, $\tau$ , $J = 6.0$ , NCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ); 1.54–1.59 (2H, M, NCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> );<br>2.28 (3H, c, 1-CH <sub>3</sub> ); 3.43 (2H, $\tau$ , $J = 7.3$ , NCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ); 4.10 (1H,<br>$\pi$ , $J = 15.0$ ) u 4.25 (1H, $\pi$ , $J = 15.0$ , 4-CH <sub>2</sub> ); 6.00 (1H, $\pi$ , $J = 3.3$ ) u<br>6.08 (1H, $\pi$ , $J = 3.3$ , H-2,3); 7.43 (1H, $\pi$ , $J = 8.2$ , H Ar); 7.55–7.62<br>(2H, M, H Ar); 7.81 (1H, $\pi$ , $J = 8.3$ , H Ar)                                          | 11.0; 13.6; 20.6; 43.2; 48.3;<br>105.1; 109.3; 124.3; 125.9;<br>128.2; 130.7; 131.0; 131.1;<br>131.8; 134.6; 166.5                                                                                                                                                                           | 256 [M+2H] <sup>+</sup> (9), 255 [M+H] <sup>+</sup> (32), 254 [M] <sup>+</sup><br>(100), 212 [M–RH] <sup>+</sup> (54), 197 [M–RH–CO] <sup>+</sup><br>(63), 184 [M–RH–CH <sub>3</sub> ] <sup>+</sup> (88), 168<br>[M–R–OCNH] <sup>+</sup> (62), 154<br>[M–RH–CH <sub>3</sub> –OCNH] <sup>+</sup> (75)                                                                                        |
| 2b              | 1.12 (3H, д, $J$ = 6.0) и 1.16 (3H, д, $J$ = 6.0, CH(C <u>H</u> <sub>3</sub> ) <sub>2</sub> ); 2.28 (3H, c, 1-CH3); 3.84 (1H, д, $J$ = 15.1) и 4.41 (1H, д, $J$ = 15.1, 4-CH2); 4.73–4.81 (1H, м, C <u>H</u> Me <sub>2</sub> ); 6.00 (1H, д, $J$ = 3.3) и 6.05 (1H, д, $J$ = 3.3, H-2,3); 7.41 (1H, д, $J$ = 8.1, H Ar); 7.56–7.61 (2H, м, H Ar); 7.79 (1H, д, $J$ = 8.3, H Ar)                                                                                                                                                                                                                 | 13.7; 19.5; 19.8; 37.0; 45.0;<br>105.0; 109.4; 124.2; 125.9;<br>127.8; 130.9; 131.0; 131.2;<br>132.9; 134.5; 166.1                                                                                                                                                                           | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                        |
| 2c              | 1.27 (9H, с, C(CH <sub>3</sub> ) <sub>3</sub> ); 2.29 (3H, с, 1-CH <sub>3</sub> ); 3.64 (1H, д, $J = 16.1$ ) и<br>4.42 (1H, д, $J = 16.1$ , 4-CH <sub>2</sub> ); 4.19 (2H, с, NCH <sub>2</sub> CO); 6.00 (1H, д,<br>J = 3.3) и 6.15 (1H, д, $J = 3.3$ , H-2,3); 7.42–7.47 (2H, м, H Ar);<br>7.54 (1H, с, CONH); 7.61–7.66 (1H, м, H Ar); 7.81 (1H, д. д,<br>J = 8.1, J = 1.6, H Ar)                                                                                                                                                                                                             | 13.0; 17.7; 23.7; 45.7; 50.5;<br>55.0; 106.4; 109.7; 113.8;<br>120.6; 122.9; 126.7; 129.8;<br>132.3; 144.2; 155.2; 158.2;<br>162.2; 165.7                                                                                                                                                    | $\begin{array}{l} 325 \ \left[M\right]^+ \ (56), \ 212 \ \left[M-RH\right]^+ \ (22), \ 211 \\ \left[M-R\right]^+ \ (100), \ 197 \ \left[M-RH-CO\right]^+ \ (15), \ 184 \\ \left[M-RH-CH_3\right]^+ \ (34), \ 168 \ \left[M-R-OCNH\right]^+ \\ (41), \ 154 \ \left[M-RH-CH_3-OCNH\right]^+ \ (32) \end{array}$                                                                               |
| 2d              | 2.23 (3H, c, CH <sub>3</sub> ); 2.28 (3H, c, CH <sub>3</sub> ); 3.93 (1H, $\pi$ , <i>J</i> = 16.2) и 4.62 (1H, $\pi$ , <i>J</i> = 16.2, NCH <sub>2</sub> CO); 4.26 (1H, $\pi$ , <i>J</i> = 15.9) и 4.34 (1H, $\pi$ , <i>J</i> = 15.9, 4-CH <sub>2</sub> ); 6.00 (1H, $\pi$ , <i>J</i> = 3.0) и 6.08 (1H, $\pi$ , <i>J</i> = 3.0, H-2,3); 7.10 (1H, $\pi$ , <i>J</i> = 8.1, H Ar); 7.44 (1H, $\pi$ , <i>J</i> = 8.1, H Ar); 7.45 (2H, $\pi$ , <i>J</i> = 8.7, H Ar); 7.46 (2H, $\pi$ , <i>J</i> = 8.7, H Ar); 7.59–7.66 (1H, m, H Ar); 7.81 (1H, $\pi$ , <i>J</i> = 8.1, H Ar); 9.96 (1H, c, NH) | 14.2; 20.1; 45.1; 50.7;<br>106.0; 109.4; 119.6; 125.1;<br>126.6; 129.0; 129.6; 130.2;<br>131.7 (2C); 131.9; 132.0;<br>132.7; 135.3; 136.5; 136.8;<br>166.8; 167.7                                                                                                                            | $\begin{array}{l} 360  \left[M\!+\!H\right]^+ \; (3), \; 359 \; \left[M\right]^+ \; (17), \; 212 \\ \left[M\!-\!RH\right]^+ \; (11), \; 211 \; \left[M\!-\!R\right]^+ \; (70), \; 197 \\ \left[M\!-\!RH\!-\!CO\right]^+ \; (8), \; 184 \; \left[M\!-\!RH\!-\!CH_3\right]^+ \; (25), \\ 154 \; \left[M\!-\!RH\!-\!CH_3\!-\!OCNH\right]^+ \; (12), \; 43 \; (100) \end{array}$                |
| 2e              | 2.30 (3H, c, 1-CH <sub>3</sub> ); 3.73 (3H, c, OCH <sub>3</sub> ); 3.77 (2H, c, NCH <sub>2</sub> CO);<br>3.93 (1H, д, <i>J</i> = 16.3) и 4.63 (1H, д, <i>J</i> = 16.3, 4-CH <sub>2</sub> ); 6.02 (1H, д,<br><i>J</i> = 3.1) и 6.11 (1H, д, <i>J</i> = 3.1, H-2,3); 6.99 (2H, д, <i>J</i> = 8.9, H Ar);<br>7.33 (2H, д, <i>J</i> = 8.9, H Ar); 7.51–7.53 (2H, м, H Ar); 7.63–7.67<br>(1H, м, H Ar); 7.83 (1H, д. д, <i>J</i> = 8.8, <i>J</i> = 1.6, H Ar); 9.92 (1H, c, NH)                                                                                                                      | 13.7;       44.5;       50.1;       55.1;         105.4;       109.3;       113.8;       120.7;         124.6;       126.1;       126.7;       128.5;         129.7;       131.4;       131.9;       133.0;         134.8;       155.2;       157.7;       163.9;         166.1;       167.2 | 376 $[M+H]^+$ (22), 375 $[M]^+$ (100), 212 $[M-RH]^+$ (37), 211 $[M-R]^+$ (89), 197 $[M-RH-CO]^+$ (49), 184 $[M-RH-CH_3]^+$ (75), 168 $[M-R-OCNH]^+$ (20), 154 $[M-RH-CH_3-OCNH]^+$ (50)                                                                                                                                                                                                    |
| 2f              | 2.31 (3H, c, 1-CH <sub>3</sub> ); 2.54 (3H, c, COCH <sub>3</sub> ); 4.06 (1H, $\pi$ , $J = 16.5$ ) и<br>4.68 (1H, $\pi$ , $J = 16.5$ , 4-CH <sub>2</sub> ); 4.29 (1H, $\pi$ , $J = 15.8$ ) и 4.40 (1H, $\pi$ ,<br>$J = 15.8$ , NCH <sub>2</sub> CO); 6.02 (1H, $\pi$ , $J = 3.3$ ) и 6.10 (1H, $\pi$ , $J = 3.3$ ,<br>H-2,3); 7.44–7.49 (2H, $\pi$ , H Ar); 7.64–7.68 (1H, $\pi$ , H Ar); 7.74<br>(2H, $\pi$ , $J = 8.8$ , H Ar); 7.83 (1H, $\pi$ , $\pi$ , $J = 7.8$ , $J = 1.6$ , H Ar); 7.96<br>(2H, $\pi$ , $J = 8.8$ , H Ar); 10.44 (1H, c, NH)                                            | 13.7; 26.4; 44.6; 50.4;<br>105.4; 109.4; 118.3; 124.4;<br>126.1; 128.5; 128.8; 129.5;<br>129.6; 131.2; 131.4; 131.6;<br>131.7; 134.8; 143.1; 143.8;<br>164.2; 167.2; 196.4                                                                                                                   | $\begin{array}{l} 389 \ [M+2H]^+ \ (7), \ 388 \ [M+H]^+ \ (17), \ 387 \\ [M]^+ \ (71), \ 212 \ [M-RH]^+ \ (40), \ 211 \ [M-R]^+ \\ (100), \ 197 \ \ [M-RH-CO]^+ \ (30), \ 184 \\ [M-RH-CH_3]^+ \ (61), \ 168 \ \ [M-R-OCNH]^+ \\ (32), \ 154 \ [M-RH-CH_3-OCNH]^+ \ (16) \end{array}$                                                                                                       |
| 2g              | 2.30 (3H, c, 1-CH <sub>3</sub> ); 3.78 (3H, c, COOCH <sub>3</sub> ); 4.04 (1H, $\pm$ , <i>J</i> = 16.9)<br>h 4.53 (1H, $\pm$ , <i>J</i> = 16.9, 4-CH <sub>2</sub> ); 4.30–4.51 (2H, $\pm$ , NCH <sub>2</sub> CO); 6.00<br>(1H, $\pm$ , <i>J</i> = 3.1) $\pm$ 6.10 (1H, $\pm$ , <i>J</i> = 3.1, H-2.3); 7.18–7.23 (1H, $\pm$ ,<br>H Ar); 7.42–7.54 (2H, $\pm$ , H Ar); 7.59–7.72 (2H, $\pm$ , H Ar); 7.87<br>(1H, $\pm$ , <i>J</i> = 7.3, H Ar); 7.95 (1H, $\pm$ , <i>J</i> = 8.1, H Ar); 8.47 (1H, $\pm$ ,<br><i>J</i> = 8.1, H Ar); 10.36 (1H, c, NH)                                          | 13.7; 44.5; 51.6; 52.4;<br>105.7; 109.3; 116.5; 119.7;<br>120.3; 124.5; 126.0; 128.7;<br>129.6; 130.6; 130.8; 131.7;<br>134.3; 134.8; 139.5; 139.6;<br>167.1; 167.5; 168.0                                                                                                                   | $\begin{array}{l} 405  [M+2H]^+ \ (6), \ 403  [M]^+ \ (46), \ 212 \\ [M-RH]^+ \ (14), \ 211  [M-R]^+ \ (100), \ 197 \\ [M-RH-CO]^+ \ (14), \ 184  [M-RH-CH_3]^+ \\ (43), \ 168  [M-R-OCNH]^+ \ (11), \ 154 \\ [M-RH-CH_3-OCNH]^+ \ (38) \end{array}$                                                                                                                                        |
| 2h              | 1.95 (3H, c, CH <sub>3</sub> ); 2.19 (3H, c, CH <sub>3</sub> ); 2.58 (3H, c, CH <sub>3</sub> ); 3.03 (3H, c, 5-CH <sub>3</sub> ); 4.33 (1H, $\pi$ , $J = 15.0$ ) и 4.49 (1H, $\pi$ , $J = 15.0$ , 4-CH <sub>2</sub> ); 6.08 (1H, $\pi$ , $J = 3.3$ ) и 6.20 (1H, $\pi$ , $J = 3.3$ , H-2,3); 7.22 (1H, c, H-10)                                                                                                                                                                                                                                                                                 | 13.3; 18.0; 24.2; 35.0; 46.6;<br>106.7; 110.2; 123.2; 125.4;<br>128.4; 129.8; 130.6; 132.8;<br>144.4; 158.5; 159.0; 162.1                                                                                                                                                                    | $\begin{array}{l} 313 \ \left[ M{+}2H \right]^{+} (3), \ 312 \ \left[ M{+}H \right]^{+} (14), \ 311 \ \left[ M \right]^{+} \\ (37), \ 297 \ \left[ M{-}RH \right]^{+} (11), \ 296 \ \left[ M{-}R \right]^{+} (100), \\ 282 \ \left[ M{-}RH{-}CH_{3} \right]^{+} (11), \ 253 \ \left[ M{-}R{-}OCNH \right]^{+} \\ (17), \ 239 \ \left[ M{-}RH{-}CH_{3} {-}OCNH \right]^{+} (45) \end{array}$ |
| 2i              | 0.77 (3H, т, $J$ = 7.3, NCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ); 1.49–1.63 (2H, м, CH <sub>2</sub> CH <sub>3</sub> CH <sub>3</sub> ); 1.95 (3H, с, CH <sub>3</sub> ); 2.18 (3H, с, CH <sub>3</sub> ); 2.58 (3H, с, CH <sub>3</sub> ); 3.43 (2H, т, $J$ = 6.6, NCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> ); 4.43 (2H, с, 4-CH <sub>2</sub> ); 6.08 (1H, д, $J$ = 3.0) и 6.17 (1H, д, $J$ = 3.0, H-2,3); 7.23 (1H, с, H-10)                                                                                                                                                     | 11.0; 13.0; 17.6; 20.5; 23.7;<br>44.3; 106.2; 109.7; 122.8;<br>124.9; 128.0; 129.2; 129.8;<br>132.9; 144.0; 158.0; 158.4;<br>151.5; 161.3                                                                                                                                                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                        |
| 2j              | 1.15 (6H, д, $J = 6.9$ , CH(C <u>H</u> <sub>3</sub> ) <sub>2</sub> ); 1.95 (3H, c, CH <sub>3</sub> ); 2.18 (3H, c, CH <sub>3</sub> ); 2.58 (3H, c, CH <sub>3</sub> ); 4.14 (1H, д, $J = 16.1$ ) и 4.56 (1H, д, $J = 16.1$ , 4-CH <sub>2</sub> ); 4.62–4.80 (1H, м, C <u>H</u> Me <sub>2</sub> ); 6.08 (1H, д, $J = 3.2$ ) и 6.14 (1H, д, $J = 3.2$ , H-2,3); 7.21 (1H, c, H-10)                                                                                                                                                                                                                 | 13.0; 17.6; 19.3; 19.7; 23.7;<br>37.9; 45.5; 106.0; 109.8;<br>122.7; 124.9; 128.2; 129.0;<br>129.4; 133.7; 144.0; 157.9;<br>158.4; 161.1                                                                                                                                                     | $\begin{array}{l} 341 \ \left[ M{+}2H \right]^{+} (11), \ 340 \ \left[ M{+}H \right]^{+} (23), \ 339 \\ \left[ M \right]^{+} (100), \ 296 \ \left[ M{-}R \right]^{+} (13), \ 282 \\ \left[ M{-}RH{-}CH_{3} \right]^{+} (57), \ 253 \ \left[ M{-}R{-}OCNH \right]^{+} \\ (20), \ 239 \ \left[ M{-}RH{-}CH_{3}{-}OCNH \right]^{+} (95) \end{array}$                                           |
| 2k              | 1.97 (3H, c, CH <sub>3</sub> ); 2.21 (3H, c, CH <sub>3</sub> ); 2.26 (3H, c, CH <sub>3</sub> ); 2.60 (3H, c, CH <sub>3</sub> ); 4.07 (1H, $\pi$ , $J = 16.4$ ) $\mu$ 4.46 (1H, $\pi$ , $J = 16.4$ , 4-CH <sub>2</sub> ); 4.52–4.60 (2H, $\mu$ , NCH <sub>2</sub> CO); 6.10 (1H, $\pi$ , $J = 3.1$ ) $\mu$ 6.20 (1H, $\pi$ , $J = 3.1$ , H-2,3); 7.12 (2H, $\pi$ , $J = 8.4$ , H Ar); 7.29 (1H, c, H-10); 7.48 (2H, $\pi$ , $J = 8.4$ , H Ar); 10.00 (1H, c, NH)                                                                                                                                 | 13.0; 17.7; 20.3; 23.7; 45.7;<br>50.6; 106.4; 109.8; 119.0;<br>122.8; 124.9; 125.0; 126.9;<br>129.2; 129.3; 129.9; 130.0;<br>132.2; 132.4; 136.2; 144.2;<br>158.2; 158.4; 162.2; 166.0                                                                                                       | $\begin{array}{l} \label{eq:main_states} & 446 \; [M+2H]^+ \; (4), \; 445 \; [M+H]^+ \; (10), \; 444 \; [M]^+ \\ & (66), \; 338 \; (100), \; 297 \; [M-RH]^+ \; (21), \; 296 \; [M \\ & -R]^+ \; (76), \; 282 \; [M-RH-CH_3]^+ \; (20), \; 253 \; [M-R \\ & -OCNH]^+ \; (15), \; 239 \; [M-RH-CH_3-OCNH]^+ \\ & (13) \end{array}$                                                           |

## Таблица 2. Спектральные характеристики соединений 2а-о

| 1  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | 1.97 (3H, c, CH <sub>3</sub> ); 2.21 (3H, c, CH <sub>3</sub> ); 2.54 (3H, c, CH <sub>3</sub> ); 2.60 (3H, c, CH <sub>3</sub> ); 4.17 (1H, д, <i>J</i> = 16.5) и 4.63 (1H, д, <i>J</i> = 16.5, 4-CH <sub>2</sub> ); 4.59 (2H, c, NCH <sub>2</sub> CO); 6.10 (1H, д, <i>J</i> = 3.2) и 6.19 (1H, д, <i>J</i> = 3.2, H-2,3); 7.26 (1H, c, H-10); 7.73 (2H, д, <i>J</i> = 8.8, H Ar); 7.96 (2H, д, <i>J</i> = 8.8, H Ar); 10.47 (1H, c, NH)                                                                   | 13.0; 17.7; 23.7; 26.3; 45.8;<br>50.9; 106.4; 109.8; 118.3;<br>122.9; 124.3; 125.0; 128.7;<br>128.8; 129.5; 129.9; 130.0;<br>131.7; 132.4; 143.0; 144.2;<br>158.2; 158.4; 162.3; 166.9;<br>196.4 | 474 $[M+2H]^+$ (12), 472 $[M]^+$ (61), 297<br>$[M-RH]^+$ (64), 296 $[M-R]^+$ (100), 282<br>$[M-RH-CH_3]^+$ (13), 253 $[M-R-OCNH]^+$<br>(26), 239 $[M-RH-CH_3-OCNH]^+$ (34)                                                                                                     |
| 2m | 1.97 (3H, c, CH <sub>3</sub> ); 2.21 (3H, c, CH <sub>3</sub> ); 2.60 (3H, c, CH <sub>3</sub> ); 3.73 (3H, c, OCH <sub>3</sub> ); 4.05 (1H, $\pi$ , $J = 16.3$ ) $\mu$ 4.43 (1H, $\pi$ , $J = 16.3$ , 4-CH <sub>2</sub> ); 4.52–4.60 (2H, $\mu$ , NCH <sub>2</sub> CO); 6.10 (1H, $\pi$ , $J = 3.3$ ) $\mu$ 6.20 (1H, $\pi$ , $J = 3.3$ , H-2,3); 6.90 (2H, $\pi$ , $J = 9.0$ , H Ar); 7.26 (1H, c, H-10); 7.51 (2H, $\pi$ , $J = 9.0$ , H Ar); 9.95 (1H, c, NH)                                           | 13.0; 17.7; 23.7; 45.7; 50.5;<br>55.0; 106.4; 109.7; 113.8;<br>114.0; 120.6; 122.8; 124.9;<br>126.7; 126.9; 129.8; 130.0;<br>131.8; 132.4; 144.2; 155.2;<br>158.2; 158.4; 162.2; 165.7           | $\begin{array}{l} \mbox{461} \ [M+H]^{+} \ (11), \ 460 \ [M]^{+} \ (27), \ 338 \ (100), \\ \mbox{297} \ [M-RH]^{+} \ (11), \ 296 \ [M-R]^{+} \ (64), \ 282 \\ \ [M-RH-CH_3]^{+} \ (48), \ \ 253 \ \ [M-R-OCNH]^{+} \\ \ (14), \ 239 \ [M-RH-CH_3-OCNH]^{+} \ (60) \end{array}$ |
| 2n | 1.96 (3H, c, CH <sub>3</sub> ); 2.18 (3H, c, CH <sub>3</sub> ); 2.20 (3H, c, CH <sub>3</sub> ); 2.25 (3H, c, CH <sub>3</sub> ); 2.60 (3H, c, CH <sub>3</sub> ); 4.05 (1H, д, $J = 16.4$ ) и 4.53 (1H, д, $J = 16.4$ , 4-CH <sub>2</sub> ); 4.59 (1H, д, $J = 2.3$ ) и 4.62 (1H, д, $J = 2.3$ , NCH <sub>2</sub> CO); 6.10 (1H, д, $J = 3.2$ ) и 6.20 (1H, д, $J = 3.2$ , H-2,3); 6.97 (1H, д, $J = 8.2$ , H Ar); 7.03 (1H, c, H Ar); 7.26 (1H, c, H-10); 7.28 (1H, д, $J = 8.2$ , H Ar); 9.34 (1H, c, NH) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             | 459 $[M+H]^+$ (5), 458 $[M]^+$ (21), 297 $[M-RH]^+$ (21), 296 $[M-R]^+$ (100), 282 $[M-RH-CH_3]^+$ (31), 253 $[M-R-OCNH]^+$ (19), 239 $[M-RH-CH_3-OCNH]^+$ (80)                                                                                                                |
| 20 | 1.97 (3H, c, CH <sub>3</sub> ); 2.21 (3H, c, CH <sub>3</sub> ); 2.60 (3H, c, CH <sub>3</sub> ); 3.77 (3H, c, COOCH <sub>3</sub> ); 4.18 (1H, $\pi$ , $J = 16.9$ ) и 4.50 (1H, $\pi$ , $J = 16.9$ , 4-CH <sub>2</sub> ); 4.63 (2H, c, NCH <sub>2</sub> CO); 6.07 (1H, $\pi$ , $J = 2.9$ ) и 6.20 (1H, $\pi$ , $J = 2.9$ , H-2,3); 7.19–7.24 (1H, M, H Ar); 7.27 (1H, c, H-10); 7.62–7.67 (1H, M, H Ar); 7.94 (1H, $\pi$ , $J = 7.3$ , H Ar); 8.40 (1H, $\pi$ , $J = 7.3$ , H Ar); 10.95 (1H, c, NH)        | 13.1; 17.7; 23.8; 45.7; 51.9;<br>52.4; 106.6; 109.8; 116.9;<br>120.6; 122.9; 123.4; 124.8;<br>126.8; 130.1; 130.3; 130.6;<br>132.1; 134.2; 139.4; 144.3;<br>158.4; 158.6; 162.7; 166.7;<br>167.4 | $\begin{array}{l} 489  [M+H]^+  (9), \ 488  [M]^+  (29), \ 297 \\ [M-RH]^+  (10), \ 296  [M-R]^+  (100), \ 282 \\ [M-RH-CH_3]^+  (11), \ 253  [M-R-OCNH]^+ \\ (12), \ 239  [M-RH-CH_3-OCNH]^+  (30) \end{array}$                                                               |

Таблица 2 (окончание). Спектральные характеристики соединений 2а-о

лов и тем более к их коалесценции, что позволяет качественно оценить энергетический барьер вырожденной инверсии "ванна"–"ванна" более чем в 65–70 КДж/моль. В соединении **2i** соответствующий сигнал атомов водорода внутрициклического метиленового звена не расщепляется и резонирует в виде синглета интенсивностью 2H при 4.43 м. д. Возможно, в данном случае химическое окружение атомов водорода  $H_a$  и  $H_e$ таково, что разность химических сдвигов их сигналов близка к нулю.

Спектры ЯМР <sup>13</sup>С продуктов алкилирования **2а–о** соответствуют количественному содержанию атомов углерода в *N*-заместителях и степени их замещенности. Атомы углерода амидных групп в диазепиновом цикле и в *N*-заместителях резонируют при 161.1–167.7 м. д.

*N*-Алкилированные пирролодиазепины, конденсированные как с бензольным циклом, так и с тиено[2,3-b]-пиридиновым фрагментом, различаются по устойчивости к электронному удару. Так, в масс-спектрах соединений **2a,b,e,f,i–l** присутствуют пики молекулярных ионов максимальной или средней интенсивности (61–100%). В то же время молекулярные ионы соединений **2c,d,g,h,m–o** неустойчивы, интенсивность их пиков мала (17–56%) (табл. 2).

Основным направлением масс-спектрометрического распада соединений **2а–о** является отщепление радикала от атома азота амидной группы (схема 2).

В масс-спектрах *N*-алкилированных пиридотиенопирролодиазепинов **2h–o**, в зависимости от массы алкильного заместителя, изменяется соотношение интенсивностей молекулярного катион-радикала и катиона  $[M-R]^+$ . За редким исключением (соединение **2h**), чем большую массу имеет заместитель R, тем меньше интенсивность пика  $[M]^{++}$  и тем выше интенсивность пика  $[M-R]^+$ , то есть хорошо выполняется известное в масс-спектрометрии правило потери максимально тяжелого заместителя.

Полученные соединения испытаны в лабораторных условиях на рострегулирующую и антидотную активность в отношении гербицида 2,4-Д (2,4-дихлорфеноксиуксусной кислоты) во Всероссийском научно-исследовательском институте биологической защиты растений РАСН (Краснодар).

Следует отметить, что в литературе встречаются весьма немногочисленные данные по действию 1,4-диазепинов на культурные растения. Известно, что среди соединений этого ряда имеются вещества, проявляющие гербицидную активность.<sup>10</sup>

Применение химических средств борьбы с сорной растительностью является неотьемлемым элементом современных технологий производства сельскохозяйственной продукции. Однако гербициды являются токсичными не только для сорняков, но и для культурных растений.<sup>11</sup> Это вызывает необходимость поиска веществ (антидотов), способных обезвреживать отрицательное действие гербицидов на культурные растения и не влияющих на гербицидыв свойства по отношению к сорнякам.<sup>12</sup> Одной из чрезвычайно чувствительных к гербицидам группы 2,4-Д культурой является подсолнечник, и до сих пор защита его проростков и вегетирующих растений от повреждающего действия 2,4-Д остается актуальной и нерешенной.



Ранее среди 3-аминотиено[2,3-*b*]пиридин-2-карбоксамидов выявлены антидоты, способные ослаблять повреждающее действие гербицида 2,4-Д на подсолнечник,<sup>13</sup> и соединения, проявляющие рострегулирующую и антистрессовую активность.<sup>14</sup> Несомненно, представляло интерес выяснить, какой вид активности – гербицидную, антидотную или рострегулирующую – могут проявлять синтезированные нами продукты *N*-алкилирования пирроло[1,2-*a*][1,4]диазепинов.

Именно факт обнаружения биологической активности среди амидов ряда 3-аминотиено[2,3-*b*]пиридина объясняет, во-первых, выбор в качестве объекта изучения в основном диазепинов, аннелированных с тиенопиридиновым фрагментом, а во-вторых, использование в качестве алкилирующих агентов хлорацетамидов, позволяющих ввести в молекулы 1,4-диазепинов заместитель, содержащий амидную функцию.

Изучение рострегулирующей и антидотной активности проведено в лабораторных условиях на проростках подсолнечника сорта "Мастер" по ранее разработанной и апробированной методике.<sup>15</sup>

Установлено, что исследуемые соединения 2с,i,l-n не обладают рострегулирующей активностью по отношению к проросткам подсолнечника.

В то же время соединения **2с,i,l-n** проявили антидотную активность в отношении 2,4-Д (табл. 3). Защитный (антидотный) эффект определяли по увеличению длины гипокотиля и корня в варианте "гербицид + антидот" относительно аналогичных величин в варианте "гербицид" (эталон). Статистическая обработка экспериментальных данных проведена с использованием t-критерия Стьюдента при p = 0.95.

Найдено, что при обработке водными растворами соединений 2c,i,l-n проростков подсолнечника наблюдается снижение ингибирующего действия 2,4-Д на гипокотиль на 6–39%, на корни проростков – на 5–35% (табл. 3).

Из результатов биологических испытаний следует, что наибольший антидотный эффект обнаружен у соединений **21,n** в концентрации  $10^{-2}$ , у соединения **2i** в концентрации  $10^{-3}$  и у соединения **2m** в концентрации  $10^{-5}$  масс. %. Указанные соединения достоверно снижают фитотоксическое действие гербицида 2,4-Д на проростки подсолнечника, что может способствовать увеличению урожайности этой культуры. Приведенные результаты испытаний показывают перспективность поиска антидотов среди *N*-замещенных пирроло[1,2-*a*][1,4]диазепин-6-онов.

Таким образом, нами получен ряд новых *N*-замещенных пирроло[1,2-*a*][1,4]диазепин-6-онов, конденсированных с бензольным циклом или тиено[2,3-*b*]пиридиновым фрагментом. Экспериментально показано, что *N*-алкилзамещенные пирролодиазепины снижают фитотоксическое действие наиболее широко применяемого гербицида 2,4-Д (2,4-дихлорфеноксиуксусной кислоты) на проростки подсолнечника.

|                            | Контроль | Герб   | бицид | Гербицид + антидот, масс. % |             |            |                  |    |                  |    |                  |  |
|----------------------------|----------|--------|-------|-----------------------------|-------------|------------|------------------|----|------------------|----|------------------|--|
| Соеди-<br>нение            | A* —     | Эталон |       | 10 <sup>-2</sup>            |             | 1          | 10 <sup>-3</sup> |    | 10 <sup>-4</sup> |    | 10 <sup>-5</sup> |  |
|                            |          | А      | B**   | А                           | C***        | А          | С                | А  | С                | А  | С                |  |
| Оценка по длине гипокотиля |          |        |       |                             |             |            |                  |    |                  |    |                  |  |
| 2c                         | 100      | 52     | 48    | 60                          | 115         | 60         | 114              | 57 | 110              | 54 | 104              |  |
| 2i                         | 100      | 52     | 48    | 55                          | 106         | 66         | 130              | 56 | 108              | 65 | 125              |  |
| 21                         | 100      | 52     | 48    | 62                          | 119         | 56         | 108              | 56 | 107              | 64 | 139              |  |
| 2m                         | 100      | 52     | 48    | 42                          | 92          | 57         | 110              | 57 | 110              | 65 | 125              |  |
| 2n                         | 100      | 52     | 48    | 62                          | 119         | 59         | 114              | 62 | 119              | 60 | 115              |  |
|                            |          |        |       |                             | Оценка по д | лине корня |                  |    |                  |    |                  |  |
| 2c                         | 176      | 65     | 66    | 75                          | 115         | 85         | 131              | 78 | 120              | 73 | 112              |  |
| 2i                         | 176      | 65     | 66    | 74                          | 114         | 80         | 124              | 73 | 112              | 81 | 125              |  |
| 21                         | 176      | 65     | 66    | 86                          | 132         | 73         | 112              | 79 | 122              | 73 | 112              |  |
| 2m                         | 176      | 65     | 66    | 68                          | 105         | 78         | 120              | 74 | 114              | 88 | 135              |  |
| 2n                         | 176      | 65     | 66    | 87                          | 134         | 70         | 108              | 81 | 125              | 72 | 111              |  |

Таблица 3. Результаты исследований соединений 2c,i,l-n в качестве антидотов 2,4-Д на проростках подсолнечника

\* А – длина, мм.

\*\* В – подавление роста под действием гербицида, %.

\*\*\* C – % к эталону. Различия между вариантами "гербицид + антидот" и "гербицид" (эталон) достоверны при p = 0.95.

### Экспериментальная часть

Спектры ЯМР <sup>1</sup>Н и <sup>13</sup>С зарегистрированы на спектрометре Agilent 400-MR (400 и 100 МГц соответственно) в ДМСО- $d_6$ , внутренний стандарт ТМС. Масс-спектры зарегистрированы на приборе Kratos MS-30, ионизация ЭУ (70 эВ). Элементный анализ проведен на СНN-анализаторе Carlo-Erba 1102. Температуры плавления определены на приборе Stuart SMP 30 и не исправлены. ТСХ выполнена на пластинах Silufol UV-254 и Сорбфил (ООО "Сорбполимер"), проявители: пары иода или брома, система элюентов в каждом случае подобрана индивидуально.

Соединения **1а,b** получены по литературной методике<sup>2</sup> рециклизацией *N*-фурфурилзамещенных вицинальных аминоамидов действием HCl в уксусной кислоте. Температуры плавления и спектральные характеристики соединений **1а,b** соответствуют литературным данным.<sup>1,4а</sup>

Синтез соединений 2а–о (общая методика). К раствору 2 ммоль диазепина 1а, b в 30 мл абс. ДМФА при перемешивании добавляют 0.12 г (3 ммоль) NaH (60% суспензия в минеральном масле), реакционную смесь выдерживают в течение 20 мин. Затем добавляют раствор 2.5 ммоль иодалкана или хлорацетамида в 15 мл абс. ДМФА и продолжают перемешивание при комнатной температуре до полного исчезновения исходного диазепина (контроль методом TCX). Реакционную смесь выливают в 150 мл воды, перемешивают до формирования осадка, который отфильтровывают, сушат и перекристаллизовывают из смеси  $CH_2Cl_2$  – петролейный эфир, получая *N*-алкилзамещенные диазепиноны **2а–о** в виде белых порошков с выходами 48–96%.

Методика приготовления рабочих растворов соединений 2с,і,І-п. Навеску 100 мг соединения 2с,і,І-п и 2 капли эмульгатора ОП-7 тщательно растирают до образования пасты, вносят 4 мл ЕtOH и размешивают до полного растворения, при необходимости нагревая до 35–40 °С. Полученный раствор переносят в мерную колбу объемом 100 мл и доводят объем до метки дистиллированной водой, получая раствор № 1 концентрацией 10<sup>-1</sup> масс. %.

Из исходного раствора готовят серию 10-кратных разведений, получая рабочие растворы с концентрациями  $10^{-2}$ ,  $10^{-3}$ ,  $10^{-4}$  и  $10^{-5}$  масс. %.

Биологические исследования соединений 2с,i,l-n проведены по известной методике.<sup>15</sup>

Работа выполнена в рамках федеральной целевой программы "Исследование и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы". Уникальный идентификатор прикладных научных исследований (проект) RFMEF157714X0046.

### Список литературы

- (a) Ramajayam, R.; Girdhar, R.; Yadav, M. R. *Mini Rev. Med. Chem.* 2007, 7, 793. (b) Fotso, S. *Mini Rev. Org. Chem.* 2010, 7, 68. (c) Kaur, N. *Int. J. Pharm. Bio. Sci.* 2013, 4(2), 318.
- Stroganova, T.; Vasilin, V.; Butin, A.; Nevolina, T.; Krapivin, G. Synlett 2007, 1106.
- Stroganova, T. A.; Red'kin, V. M.; Vasilin, V. K.; Krapivin, G. D. J. Heterocycl. Chem. 2013, 50, 854.
- Red'kin, V. M.; Stroganova, T. A.; Vasilin, V. K.; Krapivin, G. D. Chem. Heterocycl. Compd. 2012, 47, 1319. [Химия гетероцикл. соединений 2011, 1588.]
- (a) Stroganova, T. A.; Vasilin, V. K.; Zelenskaya, E. A.; Red'kin, V. M.; Krapivin, G. D. *Synthesis* 2008, 19, 3088.

(b) Butin, A. V.; Nevolina, T. A.; Shcherbinin, V. A.; Trushkov, I. V.; Cheshkov, D. A.; Krapivin, G. D. *Org. Biomol. Chem.* **2010**, *8*, 3316.

- a) Beccalli, E. M.; Broggini, G.; Paladino, G.; Zoni, C. *Tetrahedron* 2005, 61, 61. (b) Herrero, S.; Garcia-López, M. T.; Cennaruzabeitia, E.; Del Rio, J.; Herranz, R. *Tetrahedron* 2003, 59, 4491. (c) Lindner, A. S.; Geist, E.; Gjikaj, M.; Schmidt, A. *J. Heterocycl. Chem.* 2014, 51, 423. (d) Murugesan, N.; Gu, Z.; Lee, V.; Webb, M. L.; Liu, E. C. K.; Hermsmeier, M.; Hunt, J. T. *Bioorg. Med. Chem. Lett.* 1995, 5, 253. (e) Ettari, R.; Pinto, A.; Tamborini, L.; Angelo, I. C.; Grasso, S.; Zappalà, M.; Capodicasa, N.; Yzeiraj, L.; Gruber, E.; Aminake, M. N.; Pradel, G.; Schirmeister, T.; De Micheli, C.; Conti, P. *Chem. Med. Chem.* 2014, 9, 1817.
- Blass, B. E.; Burt, T. M.; Liu, S.; Portlock, D. E.; Swing, E. M. Tetrahedron Lett. 2000, 41, 2063.
- Zats, G. M.; Kovaliov, M.; Albeck, A.; Shatzmiller, Sh. J. Pept. Sci. 2015, 21, 512.
- (a) Rakib, E. M.; Benchidmi, M.; Essassi, E. M.; El Bouadili, A.; Ibn Mansour, A.; Bellan, J.; Lopez, L.; Lamandé, L. *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.* 2000, 39B, 339.
   (b) Bogdal, D. *Molecules* 1999, 4, 333.
- (a) Karp, G. M.; Manfredi, M. C.; Guaciaro, M. A.; Ortlip, Ch. L.; Marc, P.; Szamosi, I. T. *J. Agric. Food. Chem.* **1997**, *45*, 493. (b) Singh, B. K.; Szamosi, I. T.; Dahlke, B. J.; Karp, G. M.; Shaner, D. L. *Pestic. Biochem. Physiol.* **1996**,

56, 62. (c) Guaciaro, M. A.; Harrington, P. M.; Karp, G. M. US Patent 5438035.

- 11. Чкаников, Д. И.; Соколов, М. С. Гербицидное действие 2,4-Д и других галоидфеноксикислот; Наука: Москва, 1973, 215 с.
- 12. (а) Питина, М. Р.; Познанская, Н. Л.; Промоненков, В. К.; Швецов-Шиловский, Н. И. *Агрохимия* **1986**, 4, 107.
  (b) Спиридонов, Ю. Я.; Хохлов, П. С.; Шестаков, В. Г. *Агрохимия* **2009**, *5*, 81.
- Дмитриева, И. Г.; Дядюченко, Л. В.; Стрелков, В. Д.; Исакова, Л. И.; Крапивин, Г. Д.; Заплишный, В. Н. Патент РФ 2276845; Бюл. изобрет. 2006, (15).
- 14. (а) Стрелков, В. Д.; Дядюченко, Л. В.; Исакова, Л. И.; Квасенков, О. И. Патент РФ 2277333; Бюл. изобрет. 2006, (16). (b) Дмитриева, И. Г.; Дядюченко, Л. В.; Стрелков, В. Д.; Исакова, Л. И.; Ткач, Л. Н.; Назаренко, Д. Ю.; Чубенко, Т. И.; Цитович, И. О. Патент РФ 2475490; Бюл. изобрет. 2013, (5). (c) Стрелков, В. Д.; Дядюченко, Л. В.; Исакова, Л. И.; Дмитриева, И. Г.; Ткач, Л. Н.; Голубева, Н. В.; Назаренко, Д. Ю.; Надыкта, В. Д. Патент РФ 2421992; Бюл. изобрет. 2011, (18). (d) Кайгородова, Е. А.; Василин, В. К.; Тыморин, В. А.; Ненько, Н. И.; Крапивин, Г. Д.; Дядиченко, Л. В.; Исакова, Л. И.; Стрелков, В. Д. Патент РФ 2232762; Бюл. изобрет. 2004, (20).
- 15. Стрелков, В. Д.; Дядюченко, Л. В.; Исакова, Л. И.; Дмитриева, И. Г. *Агрохимия* **2010**, 28.