Е. В. Громачевская*, А. С. Пилипенко, А. В. Бутин, В. Е. Заводник, Г. Д. Крапивин

ИССЛЕДОВАНИЯ В ОБЛАСТИ БЕНЗОКСАЗИНОВ 15*. ТАНДЕМНЫЕ ГЕТЕРОЦИКЛИЗАЦИИ С УЧАСТИЕМ 2-ФОРМИЛБЕНЗОЙНОЙ КИСЛОТЫ: СИНТЕЗ ИЗОИНДОЛО[1,2-*b*][1,3]- И -[2,1-*a*][3,1]БЕНЗОКСАЗИНОНОВ

Взаимодействием 2-формилбензойных кислот с замещенными 2-(1-аминоалкил)фенолами и 2-аминофенилкарбинолами в одну стадию получен ряд новых изомерных изоиндолобензоксазинонов; методом РСА изучена молекулярная структура 9-бром-5,5-дифенил-5H-изоиндоло[2,1-*a*][3,1]бензоксазин-11(6*a*H)-она и 2-бром-8,10-диметил-10H-изоиндоло[1,2-*b*][1,3]бензоксазин-12(4*b*H)-она.

Ключевые слова: 2-(1-аминоалкил)фенолы, 2-аминофенилкарбинолы, 10Н-изоиндоло[1,2-*b*][1,3]бензоксазин-12(4*b*H)-оны, 5Н-изоиндоло[2,1-*a*][3,1]бензоксазин-11(6*a*H)-оны, 2-формилбензойные кислоты.

Тетрациклические конденсированные структуры, содержащие аннелированный изоиндольный фрагмент, распространены в природе и обладают широким спектром биологической активности, что хорошо отражено в недавних обзорах [2, 3]. Именно поэтому поддерживается высокий интерес к разработке новых путей их синтеза. Система изоиндоло[2,1-*a*]-[3,1]бензоксазина описана в литературе, однако, большинство литературных данных посвящены производным изоиндоло[2,1-*a*][3,1]бензоксазин-5,11диона [4–7], тогда как о синтезе производных 5,6*a*-дигидроизоиндоло-[2,1-*a*][3,1]бензоксазин-11-она, насколько нам известно, сообщалось только в одной публикации [8]. Авторы этой статьи в качестве исходных соединений использовали фталимиды 2-аминокетонов **A**, которые через несложную последовательность реакций были превращены в соответствующие структуры **B**.

Несмотря на простоту схемы, этот метод все же имеет существенный недостаток, поскольку использование несимметрично замещенных фталиевых ангидридов при синтезе фталимидов **A** должно приводить к смеси изомерных спиртов **C**. Избежать этой трудности можно при использовании производных 2-формилбензойной кислоты. Хорошо известно, что 2-формилбензойные кислоты при взаимодействии с бинуклеофилами, содержащими, по крайней мере, одну первичную аминогруппу, дают аннелированные производные изоиндолинона [9–12].

^{*} Сообщение 14 см. [1].

R = Me, Ph

Цель настоящей работы – разработка препаративного универсального метода, позволяющего получать не только производные изоиндоло[2,1-*a*]-[3,1]бензоксазина, для которых описан синтез всего лишь двух выше-приведенных соединений **B** [8], но и родственные им изоиндоло[1,2-*b*]-[1,3]бензоксазины [12].

В качестве бинуклеофилов для реакции с 2-формилбензойными кислотами 1 [13] мы использовали производные 2-(аминоалкил)фенола 2, полученные по стандартной методике [14]. Реакция между эквимолярными количествами реагентов 1 и 2 в кипящем толуоле с каталитическими количествами *n*-толуолсульфокислоты и азеотропной отгонкой воды приводит к тетрациклическим 10H-изоиндоло[1,2-*b*][1,3]бензоксазин-12(4*b*H)-онам **3**.

a $R = R^3 = H$, $R^1 = R^3 = Cl$; **b–k** R = Me, **b–f** $R^3 = H$, **b** $R^1 = Me$, $R^2 = Br$; **c** $R^1 = Me$, $R^2 = Cl$; **d** $R^1 = Cl$, $R^2 = Br$; **e** $R^1 = OMe$, $R^2 = Cl$; **f** $R^1 = R^2 = Cl$; **g** $R^1 = OMe$, $R^2 = NO_2$, $R^3 = Cl$; **h** $R^1 = Me$, $R^2 = NO_2$, $R^3 = Cl$; **i** $R^1 = R^3 = Cl$, $R^2 = NO_2$; **j** $R^1 = Cl$, $R^2 = R^3 = OMe$; **k** $R^1 = R^2 = R^3 = OMe$

Время синтеза практически не зависит от характера заместителей в молекулах 2-(1-аминоалкил)фенолов 2, но существенным образом зависит от типа заместителя в формилбензойной кислоте: акцепторные заместители (NO₂, два галогена) сокращают время синтеза до 40–60 мин, в то

время как электронодоноры (метоксигруппы) увеличивают время полного завершения реакции до 10–12 ч. Очевидно, это связано с изменением электрофильности формильного атома углерода и, возможно, атома углерода азометиновой группы основания Шиффа, образующегося на первой стадии реакции. О том, что основание Шиффа действительно является промежуточным продуктом в сложной последовательности реакций, косвенно свидетельствует изменение окраски реакционной смеси в ходе синтеза: в начале реакций бесцветный реакционный раствор приобретает интенсивную желтую окраску, которая исчезает к полному завершению реакции. ТСХ также показывает образование и исчезновение ярко-окрашенного интермедиата в ходе синтеза, а таковым из всех возможных промежуточных продуктов реакции может быть только азометин.

Изоиндолобензоксазиноны За-к представляют собой бесцветные кристаллические вещества, хорошо растворимые в большинстве органических растворителей (табл. 1). ИК спектры соединений 3 содержат характеристичную полосу валентных колебаний лактамной карбонильной группы в области 1645–1700 см⁻¹. Молекула соединения **За** имеет один хиральный центр (атом 4b), что четко проявляется в спектре ЯМР ¹Н этого вещества; диастереотопные протоны метиленого 10-CH₂ звена резонируют в виде пары дублетов с геминальной константой J = 17.1 Гц (табл. 2). Соединения 3b-к имеют два хиральных центра (атомы 4b и 10) и могут в принципе существовать в виде двух пар энантиомеров. Спектры ЯМР ¹Н этих веществ содержат только один набор сигналов, характеристичными из которых являются трехпротонный дублет в сильном поле и однопротонный квартет в среднем поле системы А₃Х протонов Н-10 и группы CH₃, а также узкий однопротонный синглет протона H-4b в области 5.85-6.30 м. д. Отсутствие дальней стереоспецифической константы между протонами H-4b и H-10 может свидетельствовать в пользу структуры с трансоидным расположение этих атомов водорода относительно оксазинового цикла (R,S-S,R энантиомерной пары), т. е. о стереохимическом контроле протекания последовательных реакций циклизации.

Данные РСА соединения **3b** полностью подтверждают высказанное предположение: в кристалле действительно присутствует одна пара энантиомеров, причем в элементарной ячейке каждый энантиомер представлен двумя конформационными изомерами (на рис. 1 представлены две независимые молекулы **E** и **F** одной и той же 4bR, 10*S*-конфигурации). Молекулы **E** и **F** отличаются только конформацией оксазинового кольца, которое в обоих случаях имеет вид *полукресла* (*софы*) с плоским основанием из пяти атомов N(1)–C(16)–C(15)–C(10)–O(1) (плоскость 1, среднее отклонение атомов от плоскости для молекулы **E** составляет 0.0123 Å, для молекулы **F** 0.0208 Å). Угол между плоскостью 1 и плоскостью N(1)–C(9)–O(1) (плоскость 2) у молекулы **F** 136.8°.

В остальном независимые молекулы практически идентичны: плоскость бензольного кольца C(10)...C(15) отклонена от плоскости 1 на 2.9 и 3.1°, а плоский изоиндольный фрагмент повернут относительно плоскости 2, соответственно, на 60.4 и 60.5° для молекул **Е** и **F**. Обращает на себя

Таблица 1

Coe-	Брутто-	В	Найдено, ^ч ычислено	<u>%</u> , %	Т. пл., <u></u>	R_f (Silufol	Выход,	
дине- ние*	формула	СН		Ν	°C	(Shufor UV-254)	%	
3a	C ₁₅ H ₉ Cl ₂ NO ₂	<u>59.11</u> 58.82	$\frac{2.51}{2.94}$	$\frac{4.35}{4.58}$	208–210	0.58	60	
3b	C ₁₇ H ₁₄ BrNO ₂	<u>59.66</u>	$\frac{4.35}{4.07}$	<u>4.25</u>	149–150	0.52	65	
3c	C ₁₇ H ₁₄ ClNO ₂	<u>68.62</u>	$\frac{4.07}{4.32}$	$\frac{4.07}{4.35}$	132–133	0.60	68	
3d	C ₁₆ H ₁₁ BrClNO ₂	<u>52.50</u>	$\frac{4.67}{3.15}$	4.67 <u>3.96</u> 2.84	151–152	0.62	65	
3e	C ₁₇ H ₁₄ ClNO ₃	$\frac{52.67}{64.42}$	$\frac{3.02}{4.58}$	$\frac{3.84}{4.32}$	147–148	0.37	58	
3f	$C_{16}H_{11}Cl_2NO_2$	$\frac{60.35}{60.00}$	$\frac{4.44}{3.27}$	$\frac{4.44}{4.52}$	180–181	0.65	70	
3g	C ₁₇ H ₁₃ ClN ₂ O ₅	60.00 <u>56.71</u>	3.44 <u>3.53</u> 2.61	4.38 <u>7.90</u>	179–180	0.50	65	
3h	C17H13ClN2O4	50.59 <u>59.41</u>	3.01 <u>3.92</u> 2.77	<u>8.01</u> 8.12	183–185	0.60	65	
3i	$C_{16}H_{10}Cl_2N_2O_4$	<u>52.91</u>	$\frac{2.61}{2.74}$	$\frac{7.42}{7.67}$	199–200	0.55	67	
3j	C ₁₈ H ₁₆ ClNO ₄	$\frac{52.60}{62.32}$	$\frac{2.74}{4.61}$	$\frac{4.30}{4.05}$	181–182	0.25	62	
3k	C ₁₉ H ₁₉ NO ₅	62.52 <u>67.03</u>	4.63 <u>5.85</u>	$\frac{4.05}{4.29}$	151–152	0.20	65	
5a	$C_{15}H_{10}N_2O_4$	$\frac{63.62}{62.82}$	$\frac{3.80}{2.55}$	$\frac{4.31}{9.71}$	112–113	0.67	75	
5b	C ₁₅ H ₁₀ ClNO ₂	63.83 66.48	3.55 <u>3.51</u> 2.68	9.93 <u>5.32</u> 5.16	115–116	0.78	72	
5c	C ₁₅ H ₁₀ BrNO ₂	<u>56.72</u>	$\frac{3.30}{3.16}$	$\frac{4.71}{4.42}$	141–142	0.86	70	
5d	C ₁₉ H ₁₉ NO ₂	<u>77.60</u>	<u>6.33</u>	$\frac{4.43}{4.92}$	100–122	0.38	75	
5e	C ₂₇ H ₁₉ NO ₂	<u>83.41</u> 83.20	$\frac{4.56}{4.88}$	<u>3.85</u> <u>3.60</u>	210-211	0.59	77	
5f	$C_{19}H_{18}N_2O_4$	<u>67.65</u> 67.46	<u>5.21</u>	<u>8.42</u> 8.28	160–161	0.46	80	
5g	$C_{27}H_{18}N_2O_4$	<u>74.41</u> 74.65	$\frac{4.02}{4.15}$	<u>6.63</u>	>250	0.65	75	
5h	$C_{21}H_{23}NO_4$	<u>71.58</u> 71.30	<u>6.41</u>	$\frac{4.08}{3.07}$	171–172	0.31	75	
5i	C ₂₉ H ₂₃ NO ₄	<u>77.38</u> 77.51	<u>5.21</u> 5.12	$\frac{3.35}{3.12}$	>230	0.46	65	
5j	C ₁₉ H ₁₈ BrNO ₂	$\frac{61.51}{61.20}$	$\frac{4.70}{4.84}$	$\frac{3.88}{3.76}$	147–149	0.78	70	
5k	C ₂₇ H ₁₈ BrNO ₂	<u>69.45</u> 69.23	<u>4.02</u> 3.85	<u>3.15</u> 2.99	236–238	0.85	75	

Физико-химические характеристики изоиндолобензоксазинонов За-к и 5а-к

* Масс-спектр, *m/z* изотопов ³⁵Cl, ⁷⁹Br: **5b** – 271 [M]⁺; **5c** – 315 [M]⁺; **5h** – 353 [M]⁺; **5j** – 371 [M]⁺; **5k** – 467 [M]⁺.

Рис. 1. Проекции пространственных моделей конформационных изомеров (4bR, 10S)-2-бром-8,10-диметил-10Н-изоиндоло[1,2-b][1,3]бензоксазин-12(4bH)-она (**3b**) в кристалле

внимание плоско-тригональная геометрия атома N(1): суммы валентных углов у атома азота равны, соответственно, 359.9 и 359.7° для молекул Е и F.

Взаимодействие эквимолярных количеств формилбензойных кислот 1 и 2-аминофенилкарбинолов 4а–с в уксусной кислоте [15, 16], приводит к изоиндолобензоксазинонам 5 в одну стадию без выделения промежуточных продуктов. Реакция также хорошо протекает и в толуоле в присутствии каталитических количеств *n*-толуолсульфокислоты, но в этом случае требуются дополнительные операции по нейтрализации катализатора, удалению растворителя, тогда как в первом случае для выделения продукта реакции достаточно разбавить реакционную смесь водой.

В тандеме двух последовательных реакций гетероциклизации первой является реакция замыкания оксазинового кольца, что подтверждается строением выделенного промежуточного соединения **6** – 4,5-диметокси-2-(4,4-дифенил-1,4-дигидро-2H-3,1-бензоксазин-2-ил)бензойной кислоты, которая практически с количественным выходом превращается в соответствующий изоиндолобензоксазинон **5**i при непродолжительном нагревании в уксусной кислоте (см. экспериментальную часть).

Таблица 2

ИК и ЯМР ¹Н спектры соединений За-к, 5а-к

	KCCB, J, F _{II}	${}^{2}J_{10a,e} = 17.1, {}^{3}J_{6,7} = 9.3$	${}^{3}J_{\mathrm{CH}_{3},\mathrm{H}}=6.7, {}^{3}J_{6,7}=8.9, {}^{3}J_{3,4}=8.0, {}^{4}J_{3,1}=1.5$	${}^{3}J_{\text{CH}_{3},\text{H}}^{} = 6.7, {}^{3}J_{6,7}^{} = 8.8, \\ {}^{3}J_{3,4}^{} = 8.0, {}^{4}J_{3,1}^{} = 1.6$	${}^{3}J_{CH_{3},H}^{c} = 6.7, {}^{3}J_{6,7} = 8.7, {}^{3}J_{3,4} = 7.9, {}^{4}J_{3,1} = 1.4$	${}^{3}J_{CH_{3,H}}=6.8, {}^{4}J_{7,9}=2.8, {}^{3}J_{6,7}=8.8, {}^{3}J_{3,4}=8.0, {}^{4}J_{1,3}=1.5$	${}^{3}J_{\text{CH},\text{H}}^{\text{T}} = 6.7, {}^{3}J_{6,7} = 8.6,$ ${}^{3}J_{3,4} = 7.8$	${}^{3}J_{CH_{3},H}^{c} = 6.7, {}^{4}J_{7,9} = 2.7, {}^{3}J_{6,7}^{c} = 8.9$	${}^{3}J_{\text{CH}_{3},\text{H}} = 6.7, {}^{3}J_{6,7} = 8.9$	${}^{3}J_{\rm CH_3,H} = 6.7, {}^{3}J_{6,7} = 8.5$	${}^{3}J_{\text{CH}_{3},\text{H}} = 6.6, {}^{3}J_{6,7} = 8.8, \\ {}^{4}J_{7,9} = 2.2$	${}^{3}J_{CH_{3},H}^{0} = 6.6, {}^{3}J_{6,7} = 7.8, $ ${}^{4}J_{7,9}^{0} = 2.9$
Cnekrp AMP ¹ H*	Химические сдвиги, δ, м. д.	4.53 (1H, д, H-10 <i>a</i>); 5.14 (1H, д, H-10 <i>e</i>); 5.93 (1H, c, H-4 <i>b</i>); 6.93 (1H, д, H-6); 7.20 (2H, м, H apoм.); 7.65 (1H, м, H apom.); 7.85 (1H, c, H-1)	1.66 (3H, д, 10-CH ₃); 2.33 (3H, c, 8-CH ₃); 5.30 (1H, к, H-10); 5.95 (1H, c, H-4b); 6.86 (1H, д, H-6); 7.01 (2H, м, H-7,9); 7.65 (1H, д, H-4); 7.77 (1H, д, д, H-3); 8.00 (1H, д, H-1)	1.66 (3H, д, 10-CH ₃); 2.33 (3H, с, 8-CH ₃); 5.29 (1H, к, H-10); 5.95 (1H, с, H-4b); 6.86 (1H, д, H-6); 7.02 (2H, м, H-7 + H-9); 7.61 (1H, д. д, H-3); 7.71 (1H, д, H-4); 7.85 (1H, д, H-1)	$1.66 (3H, \pi, 10-CH_3); 5.31 (1H, \kappa, H-10); 5.91 (1H, c, H-4b); 6.91 (1H, \pi, H-6); 7.17 (1H, \pi, H-7); 7.22 (1H, c, H-9); 7.63 (1H, \pi, H-4); 7.78 (1H, \pi, H, H-3); 8.00 (1H, \pi, H-1)$	1.67 (3H, д. 10-СН ₃); 3.80 (3H, с, ОСН ₃); 5.30 (1H, кв, H-10); 5.95 (1H, с, H-4 <i>b</i>); 6.75 (1H, д, H-9); 6.79 (1H, д. д, H-7); 6.91 (1H, д, H-6); 7.60 (1H, д. д, H-3); 7.68 (1H, д, H-4); 7.84 (1H, д, H-1)	$\begin{array}{c} 1.66 \left(3H, \pi, 10\text{-}CH_3 \right); 5.31 \left(1H, \kappa, H\text{-}10 \right); 5.98 \left(1H, c, H\text{-}4b \right); 6.91 \left(1H, \pi, H\text{-}6 \right); 7.18 \left(1H, \pi, H\text{-}7 \right); 7.21 \left(1H, c, H\text{-}9 \right); \ 7.22 \left(1H, c, H\text{-}9 \right); \ 7.62 \left(1H, \mu, H\text{-}4 \right); \ 7.69 \left(1H, \mu, H\text{-}3 \right); \ 7.85 \left(1H, c, H\text{-}1 \right) \end{array}$	1.69 (3H, д. 10-CH ₃); 3.81 (3H, с, OCH ₃); 5.32 (1H, к, H-10); 6.02 (1H, с, H-4b); 6.75 (1H, д, H-9); 6.81 (1H, д. д, H-7); 6.92 (1H, д, H-6); 7.96 (1H, с, H-4); 8.28 (1H, с, H-1)	1.68 (3H, $_{\rm H}$, 10-CH ₃); 2.34 (3H, c, 8-CH ₃); 5.31 (1H, $_{\rm K}$, H-10); 6.04 (1H, c, H-4b); 6.88 (1H, $_{\rm H}$, H-6); 7.04 (2H, $_{\rm M}$, H-7,9); 7.97 (1H, c, H-4); 8.28 (1H, c, H-1)	$\begin{array}{c} 1.69 \left(3H, \pi, 10\text{-}CH_3 \right); 5.33 (1H, \kappa, H\text{-}10); 6.06 (1H, c, H\text{-}4b); 6.93 (1H, \pi, H\text{-}6); 7.21 (1H, \pi, H\text{-}7); \\ 7.25 (1H, c, H\text{-}9); 7.97 (1H, c, H\text{-}4); 8.28 (1H, c, H\text{-}1) \end{array}$	1.62 (3H, д. 10-CH ₃); 3.94 и 4.00 (6H, два с, (ОСН ₃) ₂); 5.26 (1H, к, H-10); 5.89 (1H, с, H-4 <i>b</i>); 6.88 (1H, д, H-6); 7.13 (1H, д. д, H-7); 7.19 (1H, д, H-9); 7.21 (1H, с, H-4); 7.32 (1H, с, H-1)	1.62 (3H, д. 10-СН ₃); 3.76 (3H, с, 8-ОСН ₃); 3.93 и 3.98 (6H, два с, (ОСН ₃) ₂); 5.25 (1H, к, H-10); 5.85 (1H, с, H-4b); 6.72 (1H, д. д, H-7); 6.75 (1H, д, H-9); 6.88 (1H, д, H-6); 7.20 (1H, с, H-4); 7.31 (1H, с, H- 1)
ИК спектр,	v, cm^{-1}	1700 (C=O)	1690 (C=O)	1690 (C=O)	1645 (C=O)	1690 (C=O)	1680 (C=O)	1670 (C=O), 1335, 1520 (NO ₂)	1680 (C=O), 1320, 1510 (NO ₂)	1700 (C=O), 1330, 1510 (NO ₂)	1700 (C=O)	1690 (C=O)
Соеди-	нение	3a	3b	3с	3d	3e	3f	3g	3h	3i	3j	3k

130

 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{l} 5.10 \ (1H, \pi, H-5a); \ 5.30 \ (1H, \pi, H-5e); \ 6.22 \ (1H, \alpha, H-6a); \ 7.20 \ (1H, \pi, H-3); \ 7.25 \ (1H, \pi, H-4); \\ 7.39 \ (1H, \pi, \mu, -2); \ 7.75 \ (1H, \pi, H-7); \ 7.95 \ (1H, \pi, H-8); \ 8.00 \ (1H, \pi, H-10); \ 8.23 \ (1H, \pi, H-1) \\ \hline \begin{array}{c} {}^{3}J_{2,3} = 7.0, \ {}^{3}J_{2,3} = 7.0, \ {}^{3}J_{2,3} = 8.0, \ {}^{4}J_{2,6} = 1.0, \ {}^{4}J_{2,6} = 1.0, \ {}^{4}J_{2,6} = 1.0, \ {}^{4}J_$	$\begin{array}{c} 0.55 \text{ in } 1.18 \ (6\text{H}, \mu\text{Ba } \text{T}, (\text{CH}_{3})_2); \ 2.05 \ (4\text{H}, \text{m}, (\text{CH}_{2})_2); \ 5.97 \ (1\text{H}, \text{c}, \text{H}-6a); \ 7.19 \ (2\text{H}, \text{m}, \text{H}-3, 4); \\ 7.34 \ (1\text{H}, \mu, \mu, -2); \ 7.61 \ (3\text{H}, \text{m}, \text{H}-7, 8, 9); \ 7.92 \ (1\text{H}, \mu, \text{H}-10); \ 8.35 \ (1\text{H}, \mu, \text{H}-1) \\ \end{array} \\ \begin{array}{c} 3 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 6 \\ 5 \\ 6 \\ 5 \\ 3 \\ 6 \\ 5 \\ 6 \\ 5 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 5$	$5.88 (1H, c, H-6a); 6.90 (1H, \mu, H-4); 7.07 (1H, \mu, H-3); 7.40 (14H, m, H apom.); 7.95 (1H, \mu, H-10); 8.58 = \frac{3}{3}J_{4,3} = 7.8, \frac{3}{3}J_{3,2} = 7.2, (1H, \mu, H-1)$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{l} 0.40 \text{ u} \ 1.10 \ (6H, \ \pi \text{Ba} \ \text{r}, \ (CH_3)_2); \ 1.92 \ (2H, \ \pi, \ \text{K}, \ CH-2a); \ 2.15 \ (2H, \ \pi, \ \text{K}, \ CH-2e); \ 3.85 \ \text{u} \ 3.90 \ (6H, \ \pi \text{Ba} \ \text{c}, \ \frac{3}{3}J_{\text{CH}_3\text{CH}_2} = 7.2, \ ^3J_{1,2} = 8.2, \ (OCH_3)_2); \ 6.08 \ (1H, \ \text{c}, \ H-6a); \ 7.14 \ (1H, \ \pi, \ H-3); \ 7.92 \ (1H, \ \text{c}, \ H-7); \ 7.55 \ (2H, \ \text{m}, \ \text{H} \ \text{apom}.); \ \frac{3}{2}J_{\text{H},\text{H}_2} = 8.5, \ \frac{3}{3}J_{2,3} = 8.6, \ 2.66 \ (1H, \ \text{c}, \ H-10); \ 8.10 \ (1H, \ \pi, \ H-1) \ 2J_{\text{H},\text{H}_2} = 6.0, \ ^2J_{\text{H},\text{H}_2} = 6.0, \ ^2J_{\text{H},\text{H}_2} = 1.8.5 \end{array}$	$3.96 (3H, c, OCH_3); 3.98 (3H, c, OCH_3); 5.78 (1H, c, H-6a); 6.87 (1H, д, H-4); 6.96 (1H, c, H-7);$ $3.4_{4,3} = 7.8, 3.4_{2,1} = 8.0, 3.03 (1H, д, H-3); 7.35 (12H, M, (C_{6}H_5)_2, H-2, 10); 8.55 (1H, д, H-1);$ $3.4_{4,3} = 7.8, 3.4_{2,1} = 7.8, 3.4_{2,1} = 8.0, 3.4_{2,1} =$	$\begin{bmatrix} 0.40 & 1.10 & (61 & 100 & (71 & 100 & $	$\begin{array}{c} \begin{array}{c} 0.70 \ \text{m} 1.10 \ (011, \text{A}, \text{m}, \text{H-2}); \ 7.32 \ (1\text{H}, \text{m}, \text{H-4}); \ 7.36 \ (1\text{H}, \text{m}, \text{H-3}); \ 7.70 \ (1\text{H}, \text{m}, \text{H-7}); \ 7.94 \ (1\text{H}, \text{m}, \text{H-8}); \\ \begin{array}{c} 3 \\ J_{4,3} = 8.2, \ 3 \\ J_{4,3} = 8.2, \ 3 \\ J_{7,3} = 7.9, \\ \end{array} \\ \begin{array}{c} 3 \\ J_{7,8} = 9.0, \ 2 \\ J_{1,\text{H}} = 7.5, \end{array} \\ \begin{array}{c} 3 \\ J_{1,\text{H}} = 7.5, \end{array} \end{array}$
5.09 (1Н, д, Н-5 <i>a</i>) 8.38 (1Н, д, Н-7);	5.10 (1Н, д, Н-5а) 7.38 (1Н, д. д. Н-2	5.10 (1Н, д, Н-5а) 7.39 (1Н, д. д, Н-3	0.55 и 1.18 (6Н, д 7.34 (1Н, д. д. Н-2	5.88 (1H, с, H-6a) (1H, д, H-1)	0.53 и 1.18 (6Н, д 7.83 (1Н, д, Н-7);	5.94 (1H, с, H-6a) 8.48 (1H, д, H-8);	0.40 и 1.10 (6Н, д (ОСН ₃) ₂); 6.08 (11 7.60 (1Н, с, H-10)	3.96 (3H, с, ОСН ₁ 7.03 (1H, д. д. Н-3	0.40 и 1.10 (6Н, д 7.20 (1Н, д. д. Н-7 8 00 (1Н с. Н-10)	0.00 (111, C , 11-10)
1670 (C=O), 1490, 1320 (NO ₂)	1690 (C=O)	1680 (C=O)	1685 (C=O)	1680 (C=O)	1690 (C=O), 1510, 1320 (NO ₂)	1680 (C=O), 1500, 1320 (NO ₂)	1690 (C=O)	1670 (C=O)	1690 (C=O)	
 5a	5b	5c	5d	5e	Sf	5g	Sh	Si	Şj	

* Растворитель: CDCl₃ (соединения **За-k, 5а,d-g,i**), ДМСО-d₆ (соединения **5b,c,h,j,k**).

131

4a R = H, **b** R = Et, **c** R = Ph; **5a-g** $R^2 = H$, **a** R = H, $R^1 = NO_2$; **b** R = H, $R^1 = Cl$; **c** R = H, $R^1 = Br$; **d** R = Et, $R^1 = H$; **e** R = Ph, $R^1 = H$; **f** R = Et, $R^1 = NO_2$; **g** R = Ph, $R^1 = NO_2$; **h** R = Et, $R^1 = R^2 = OMe$; **i** R = Ph, $R^1 = R^2 = OMe$; **j** R = Et, $R^1 = Br$, $R^2 = H$; **k** R = Ph, $R^1 = Br$, $R^2 = H$

В результате экспериментальных исследований на качественном уровне установлено, что акцепторные заместители в формилбензойных кислотах 1 (NO₂, Cl, Br) и донорные (Et) в составе аминофенилкарбинола 4b сокращают время синтеза соединений 5. Например, синтез изоиндолобензоксазинонов 5a-d,f,j заканчивается при комнатной температуре с достаточно высокими выходами за 30-45 мин, а при получении соединений 5e,g-i,k, более рационально поддерживать температуру реакционной массы в ходе синтеза от 45 до 50 °C в течение 1–1.5 ч.

Изоиндолобензоксазиноны формулы 5 представляют собой бесцветные кристаллы, физико-химические характеристики которых представлены в табл. 1. В ИК спектрах бензоксазинонов 5, как и спектрах соединений 3, присутствуют полосы валентных колебаний лактамных карбонильных групп в области 1645–1700 см⁻¹ (табл. 2). Молекулы соединений 5 имеют один хиральный центр (атом 6*a*), в результате прохиральные атомы водорода метиленового звена 5-CH₂ в молекулах **5а–с** становятся диастереотопными и резонируют в спектрах ЯМР ¹Н в виде пары дублетов с геминальной константой J = 14.8-15.2 Гц (табл. 2). Подобная ситуация возникает и в молекулах **5d,f,h,j**, имеющих по два прохиральных метиленовых звена в этильных заместителях у атома C(5): протоны этих метиленовых звеньев резонируют в виде двух дублетов квартетов, но с разными геминальными константами порядка 6–8 и 16–18 Гц (табл. 2).

Рис. 2. Проекция пространственной модели молекулы 9-бром-5,5-дифенил-5Низоиндоло[2,1-*a*][3,1]бензоксазин-11(6*a*H)-она (**5**k), по данным РСА, и нумерация атомов (номера атомов водорода соответствуют номерам атомов углерода)

Для однозначного подтверждения структуры изоиндолобензоксазинов 5 проведен РСА монокристалла соединения 5k. Проекция пространственной модели молекулы этого соединения представлена на рис. 2, межатомные расстояния и валентные углы близки к стандартным.

Определение конформации оксазинового кольца проведено по экспериментальным величинам шести диэдральных углов с помощью прикладного пакета RICONF [17]. Найденные параметры складчатости: $S = 0.866, \theta = 30.66^{\circ}$ и $\psi(2) = 7.78^{\circ}$ соответствуют, согласно данным работы [18], конформации слегла искаженной *софы*. Основанием *софы* являются атомы C(1), N(1), C(9), C(14) и C(15), образующие плоскость 1 (среднее отклонение атомов от среднеквадратичной плоскости 1 составляет 0.0355 Å), атом кислорода O(1) выходит из этой плоскости на 0.6336 Å и составляет с атомами C(1) и C(15) плоскость спинки *софы*, которая отклонена от плоскости 1 на 127°. В свою очередь, плоскость основания *софы* отклонена от плоскости бензольного кольца A на 3.7°.

Вообще говоря, изоиндолоновый фрагмент молекулы не совсем плоский – угол между плоскостями бензольного кольца **D** и среднеквадратичной плоскостью лактамного цикла (среднее отклонение атомов плоскости 0.0193 Å) составляет 176.2°. Тем не менее, если рассматривать изоиндолоновый фрагмент как плоскость (плоскость 2, среднее отклонение атомов равно 0.0355Å), то угол между плоскостями 1 и 2 равен 155.8°. Очевидно, такой сильный перегиб молекулы вдоль связи C(1)–N(1) обусловлен sp^3 -гибридизацией атома C(1).

X = A, Bили C

Рис. 3. Поворот фенильного заместителя относительно плоскости трех атомов – оксазинового кислорода, метинового углерода и атома углерода фенильного заместителя, связанного с метиновым углеродом

Взаимное расположение фенильных заместителей **A**, **B** и **C** у атома C(15) можно охарактеризовать как несимметричный пропеллер, у которого каждое из колец повернуто в одну и ту же сторону относительно соответствующей плоскости трех атомов O(1), C(15) и присоединенного к последнему атому ароматического кольца на соответствующий угол φ (рис. 3): $\varphi_A = 29.5$, $\varphi_B = 54.6$ и $\varphi_C = 35.4^\circ$.

Как видно, ароматическое кольцо **A**, связанное с атомом C(15) еще и трехатомным линкером имеет наименьший угол поворота φ . Практически такая же конформация несимметричного пропеллера имеется в кристаллах трифенилметана [19], но, естественно, с другими углами поворота фенильных заместителей.

В заключение отметим, что 2-формилбензойные кислоты могут быть использованы как специфические строительные блоки при конструировании изоиндолонового фрагмента в реакциях тандемной гетероциклизации, в реакциях и с другими N,O-, N,N- и N,S-бинуклеофилами для построения конденсированных аза- и тиаазагетероциклических систем, что мы покажем в ближайших публикациях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны в вазелиновом масле на приборе Specord IR-71. Спектры SMP ¹H зарегистрированы на приборах Bruker AC-200 (200 МГц), Bruker WM-250 (250 МГц), Bruker AM-300 (300 МГц) и Bruker DR-500 (500 МГц), внутренний стандарт ТМС. Масс-спектры получены на приборе Varian CH-6 с применением метода прямого ввода вещества в ионный источник при температуре 50–180 °С и энергии ионизирующих электронов 70 эВ. ТСХ осуществляли на пластинах Silufol UV-254 в системах бензол–ацетон, 4:1 и 2:1 для соединений соответственно **5а–к** и **3а–к**. Проявитель пары иода.

Рентгеноструктурное исследование соединений 3b и 5k. Бесцветные моноклинные кристаллы 2-бром-8,10-диметил-10H-изоиндоло[1,2-*b*][1,3]-бензоксазин-12(4*b*H)-она (3b) выращены кристаллизацией из этанола: a = 12.949 (3), b = 8.438(2), c = 27.120(3) Å, $\alpha = \gamma = 90, \beta = 91.29(1)^\circ, V = 2962(1)$ Å³, d = 1.543 г/см³. Пространственная группа P2(1)/c, Z = 8. РСА выполнен на круговом автоматическом дифрактометре CAD 4 (графитовый монохроматор, Мо*К* α -излучение, $\theta/2\theta$ -сканирование 1.5 до $\theta_{max} = 22.98^\circ$). Размер кристалла $0.40 \times 0.32 \times 0.25$ мм.

Получено 4112 отражений с $I > 3\sigma(I)$. Структура расшифрована прямым методом по комплексу программ SHELXTL [20] и уточнена в анизотропном (изотропном для атомов водорода) приближении до достижения факторов расходимости ${}^{1}R = 0.0389$ и $wR^{2} = 0.0925$. Координаты атомов депонированы в Кембриджском банке структурных данных (депонент CCDC 720446).

Бесцветные моноклинные кристаллы 9-бром-5,5-дифенил-5H-изоиндоло[2,1-*a*]-[3,1]бензоксазин-11(6*a*H)-она (**5**k) выращены кристаллизацией из этанола: *a* = = 11.805(2), *b* = 12.717(3), *c* = 14.603(3) Å, $\alpha = \gamma = 90$, $\beta = 107.61(3)^{\circ}$, *V* = 2089.5(7) Å³, *d* = 1.489 г/см³. Пространственная группа *P*2(1)/*n*, *Z* = 4. РСА выполнен на круговом автоматическом дифрактометре CAD 4 (графитовый монохроматор, МоКа-излучение, $\theta/2\theta$ -сканирование 1.95 до $\theta_{max} = 24.98^{\circ}$). Размер кристалла 0.24 ×0.16×0.15 мм. Получено 3667 отражений с *I* > 3 σ (*I*). Структура расшифрована прямым методом по комплексу программ SHELXTL [20] и уточнена в анизотропном (изотропном для атомов водорода) приближении до достижения факторов расходимости ¹*R* = 0.0370 и *wR*² = 0.0781. Координаты атомов депонированы в Кембриджском банке структурных данных (депонент CCDC 720445).

4,5-Диметокси-2-(4,4-дифенил-1,4-дигидро-2H-3,1-бензоксазин-2ил)бензойная кислота (6). К охлажденному до 0 °С раствору 1.38 г (5 ммоль) 2-аминофенилдифенилкарбинола (4с) в 5 мл ледяной уксусной кислоты прибавляют 1.05 г (5 ммоль) 4,5-диметокси-2-формилбензойной кислоты. Смесь перемешивают при охлаждении (ледяная баня) в течение 30 мин. Образовавшийся осадок отфильтровывают, перекристаллизовывают из бензола, получают 1.63 г (70%) соединения **6**, т. пл. >250 °С, R_f 0.20 (бензол–ацетон, 4:1). ИК спектр, v, см⁻¹: 3560–3500 (СООН), 3370 (NH). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 3.81 (3H, с, OCH₃); 3.85 (1H, с, H-2); 3.90 (3H, с, OCH₃); 6.23 (1H, с, H-3'); 7.00 (15H, м, 14H аром + NH); 7.60 (1H, с, H-6'); 12.60 (1H, уш. с, СООН). Найдено, %: С 74.68; H 5.27; N 2.91. C₂₉H₂₅NO₅. Вычислено, %: С 74.52; H 5.35; N 3.00.

8,9-Диметокси-5,5-дифенил-5Н-изоиндоло[2,1-*а***][3,1]бензоксазин-11(6***а***Н)он (5i). А. Смесь 1.38 г (5 ммоль) карбинола 4с и 1.05 г (5 ммоль) 4,5-диметокси-2-формилбензойной кислоты в 10 мл ледяной уксусной кислоты перемешивают при комнатной температуре (5–10 мин), затем нагревают до 45–50 °С и перемешивают еще 1 ч. По окончании реакции (контроль TCX), выделившийся осадок отфильтровывают, из фильтрата водно-спиртовой смесью (7:3) выделяют еще часть осадка. Осадки объединяют, перекристаллизовывают из смеси спирт– бензол, 4:1. Выход 1.46 г (65%).**

Б. Раствор 2.34 г (5 ммоль) аминокислоты **6** в 10 мл ледяной уксусной кислоты перемешивают 30 мин при температуре не выше 50 °C. Выделяют аналогично описанному в варианте А. Выход 2.02 г (90%).

Бензоксазины 5е, д, h, к получают аналогично (метод А).

9-Нитро-5,5-диэтил-5Н-изоиндоло[2,1-*а***][3,1]бензоксазин-11(6***а***Н)-он (5f). Смесь 0.89 г (5 ммоль) 2-аминофенилдиэтилкарбинола (4b) и 0.97 г (5 ммоль) 5нитро- 2-формилбензойной кислоты в 10 мл ледяной уксусной кислоты перемешивают 45 мин при комнатной температуре. По окончании реакции (контроль TCX) соединение 5f выделяют из реакционной массы осаждением водно-спиртовой смесью (7:3). Выпавший осадок отфильтровывают, перекристаллизовывают из смеси спирт – бензол, 4:1. Выход 1.35 г (80%).**

Бензоксазины 5а-d, ј получают аналогично.

8,10-Диметил-2-хлор-10Н-изоиндоло[1,2-*b***][1,3]бензоксазин-12(4***b***H)-он (3с). Смесь 0.75 г (5 ммоль) 4-метил-2-(1-аминоэтил)фенола (2b) и 0.76 г (5 ммоль) 5-хлор-2-формилбензойной кислоты в 50 мл абсолютного толуола в присутствии каталитических количеств** *n***-TCK кипятят 1–3 ч с азеотропной отгонкой воды до выделения ее расчетного количества. Затем растворитель отгоняют, остаток очищают методом колоночной хроматографии на силикагеле КСК (фракции 5–40 мкм), элюент бензол–петролейный эфир, 1:4. Выход 0.92 г (60%).**

Соединения 3а-b,d-k получают аналогично. Синтез изоиндолобензоксазинонов 3j-k осуществляется от 10 до 12 ч.

2-Аминофенилкарбинолы 4b,с получают взаимодействием метилового эфира антраноловой кислоты с соответствующими алкилмагнийгалогенидами [1, 15].

2-(Аминоалкил)фенолы 2а-b,d-е (табл. 3) получают с использованием методики [14].

Синтез формилбензойных кислот 1 описан в работе [13].

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Громачевская, Т. П. Косулина, А. А. Бородавко, *XГС*, 1230 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1068 (2006)].
- 2. Е. В. Болтухина, Ф. И. Зубков, А. В. Варламов, *XГС*, 963 (2006). [*Chem. Heterocycl. Comp.*, **42**, 831 (2006)].
- 3. Е. В. Болтухина, Ф. И. Зубков, А. В. Варламов, *XГС*, 1123 (2006). [*Chem. Heterocycl. Comp.*, **42**, 971 (2006)].
- 4. M. Lanchem, J. Chem. Soc., C, 573 (1966).
- 5. P. Aeberli, W. J. Houlihan, J. Org. Chem., 33, 2402 (1968).
- 6. V. Balasubramaniyan, N. P. Argade, Tetrahedron, 45, 835 (1989).
- 7. E. Desarbre, J. Y. Merour, Heterocycles, 41, 1987 (1995).
- 8. P. Pigeon, J. Sikoraiova, S. Marchalin, B. Decroix, Heterocycles, 56, 129 (2002).
- 9. P. Sohar, G. Stajer, A. E. Szabo, J. Szuyog, G. Bernath, *Heterocycles*, 48, 175 (1998).
- 10. A. R. Katritzky, Y.-J. Xu, H.-Y. He, P. J. Steel, J. Chem. Soc., Perkin Trans. 1, 1767 (2001).
- 11. T. M. V. D. Pinho e Melo, C. I. A. Santos, A. M. d'A. Rocha Gonsales, J. A. Paixao, A. M. Beja, *Tetrahedron*, **60**, 3949 (2004).
- 12. I. Szatmari, A. Hetenyi, L. Lazar, F. Fulor, J. Heterocyclic Chem., 41, 367 (2004).
- V. T. Abaev, A. S. Dmitriev, A. V. Gutnov, S. A. Podelyakin, A. V. Butin, J. Heterocyclic Chem., 43, 1195 (2006).
- 14. Вейганд-Хильгетак, Методы эксперимента в органической химии, Химия, Москва, 1968, 944 с.
- 15. Е. В. Громачевская, В. Г. Кульневич, Т. П. Косулина, В. С. Пустоваров, *XГС*, 842 (1988). [*Chem. Heterocycl. Comp.*, **24**, 692 (1988)].
- 16. Е. В. Громачевская, И. С. Арустамова, А. Г. Сахабутдинов, В. Г. Кульневич, *XГС*, 1670 (1988). [*Chem. Heterocycl. Comp.*, **24**, 1381 (1988)].
- 17. A. Yu. Zotov, V. A. Palyulin, N. S. Zefirov, J. Chem. Inf. Sci., 37, 766 (1997).
- 18. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 19. P. C. Riche, B. C. Pascard, J. Am. Chem. Soc., 96, 1874 (1974).
- 20. G. M. Sheldrick, *Computational Crystallography*, Oxford Univ. Press, New York, Oxford, 1982, 506 p.

НИИ ХГС Кубанского государственного технологического университета, Краснодар 350072, Россия e-mail: organics@kubstu.ru Поступило 04.03.2009