О. В. Сурикова, А. Г. Михайловский*, М. И. Вахрин

РЕАКЦИИ ЕНАМИНОКЕТОЭФИРОВ РЯДА 1,2,3,4-ТЕТРАГИДРОИЗОХИНОЛИНА С НУКЛЕОФИЛАМИ

Показано, что реакция метилового эфира 3-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-2-оксопропановой кислоты с тиосемикарбазидом в ледяной уксусной кислоте ведет к гетероциклизации с образованием 3,3-диметил-1-(5-тиоксо-1,5-дигидро-1,2,4-триазол-3-илметилиденкарбонил)-1,2,3,4-тетрагидроизохинолина, а взаимодействие с семикарбазидом в тех же условиях приводит к аннелированию пиррольного цикла. При конденсации енаминокетоэфира с малонодинитрилом образуется нитрил 5-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-4-дицианометилиден-3-оксо-2-цианопентановой кислоты.

Ключевые слова: 3,3-диметил-1-(5-тиоксо-1,5-дигидро-1,2,4-триазол-3-илметилиденкарбонил)-1,2,3,4-тетрагидроизохинолин, метиловый эфир 3-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-2-оксопропановой кислоты, нитрил 5-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-4-дицианометилиден-3-оксо-2-цианопентановой кислоты, семикарбазид, тиосемикарбазид, аннелирование пиррольного цикла, гетероциклизация, сложноэфирная конденсация с малонодинитрилом.

Ранее были получены енаминокетоэфиры, производные 1,2,3,4-тетрагидроизохинолина [1–3]. Свойства кетоэфирной группы этих соединений до настоящего времени мало изучены. Целью данной работы является исследование реакций енаминокетоэфиров ряда 3,3-диалкил-1,2,3,4-тетрагидроизохинолина с нуклеофилами.

Исходные енаминокетоэфиры 2а, b синтезированы известным методом с использованием в качестве исходных веществ диоксопирролинов 1a,b [1, 2]. Известно, что реакции соединений 2а, b с алифатическими аминами протекают при кипячении в спирте с образованием соответствующих енаминоамидов [2, 3]. Исследования реакций эфиров 2а, b с ароматическими аминами показали, что при кипячении в спирте или ледяной уксусной кислоте аминолиз не наблюдается. В то же время при кипячении соединения 1а с тиосемикарбазидом в ледяной уксусной кислоте происходит гетероциклизация с образованием кетона 3, имеющего в своей структуре систему триазола. Кипячение соединений 2а, в ледяной уксусной кислоте с солянокислым семикарбазидом приводит к аннелированию пиррольного цикла с образованием соединений 4а,b. Таким образом, в данных условиях происходит внутримолекулярный аминолиз сложноэфирной группы. Наблюдаемая реакция по кетонной группе может быть объяснена тем, что в кислой среде при переходе из формы енамина в протонированную имино-форму кетонная группа по сравнению со сложноэфирной является по отношению к семикарбазиду более электрофильной. В аналогичных условиях эфир 2а взаимодействует с гидразидом 221 изоникотиновой кислоты с образованием диацилгидразида **5a**. Соединение **5b** образуется при кипячении эфира **2a** с гидразидом *n*-амино- бензойной кислоты в 2-пропаноле.

1,2,4 a R = Me, **b** 2R = *спиро*-циклопентил; **3** R = Me; **5 a,b** R = Me, **a** Ar = 4-Ру, **b** Ar = 4-H₂NC₆H₄

При взаимодействии эфира **2a** с другими гидразидами, например цианоацетилгидразидом и гидразидом бензойной кислоты в кипящей ледяной уксусной кислоте или 2-пропаноле, новых продуктов выделено не было, что может быть объяснено слабостью нуклеофильных свойств используемых реагентов.

Известно, что 2,3-диоксопирроло[2,1-*а*]изохинолины часто выступают 222

в роли ацилирующих реагентов, взаимодействующих с N-нуклеофилами с раскрытием пиррольного цикла [4–7]. Поэтому представляло интерес изучить реакцию ацилирования этими реагентами гидразидов с целью получения веществ, аналогичных по структуре соединениям **5**а,b. Исследования показали, что при кипячении диоксопирролина **1**а с гидразидами циануксусной и *n*-аминобензойной кислот реакция протекает по ранее известной схеме с образованием соответствующих гидразонов **6** и **7**, т. е. без раскрытия пирролдионового цикла [5].

Конденсация эфира 2a с малонодинитрилом приводит к тетрацианокетону 8.

Образование структуры 8 может быть объяснено высокой СН-кислотностью малонодинитрила, а также устойчивостью образующейся структуры за счет цепи сопряжения фрагмента енамина с акцепторными нитрильными группами.

Характеристики синтезированных соединений представлены в табл. 1, данные ИК спектров и спектров и ЯМР ¹Н в табл. 2 и 3. Полученные соединения представляют собой окрашенные кристаллические вещества.

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν		
3*	$C_{15}H_{16}N_4OS$	<u>59.8</u>	<u>5.3</u>	18.8	230-232	35
		60.0	5.4	18.7		
4b	$C_{17}H_{18}N_4O_2$	<u>65.7</u>	<u>5.7</u>	<u>18.1</u>	220-222	52
		65.8	5.8	18.0		
5a	$C_{20}H_{20}N_4O_3$	<u>65.8</u>	<u>5.4</u>	<u>15.4</u>	240-242	48
		65.9	5.5	15.3		
5b	$C_{21}H_{22}N_4O_3$	<u>66.5</u>	<u>5.8</u>	<u>14.9</u>	238-240	55
		66.6	5.9	14.8		
6	$C_{17}H_{16}N_4O_2$	<u>66.1</u>	<u>5.1</u>	<u>18.3</u>	222-224	75
		66.2	5.2	18.2		
7	$C_{21}H_{20}N_4O_2$	<u>69.8</u>	<u>5.5</u>	<u>15.8</u>	296-298	82
		69.9	5.6	15.7		
8	C ₂₀ H ₁₅ N ₅ O	<u>70.3</u>	<u>4.3</u>	<u>20.4</u>	208-210	75
		70.4	4.4	20.5		

Характеристики синтезированных соединений

* Найдено, %: S 10.6; вычислено, %: S 10.7.

Таблица 2

ИК спектры	синтезированных	соединений
------------	-----------------	------------

Соединение	v, см ⁻¹
3	1610 (CO), 1640 (C=N), 3150, 3250, 3300 (NH)
4a	1700 (СО лактам), 1730 (СО семикарбазон), 3180 (NH хелат.), 3330 и 3400 (NH ₂)
4b	1700 (СО лактам), 1730 (СО семикарбазон), 3180 (NH хелат.), 3330 и 3400 (NH ₂)
5a	1600 (СО, хелат.), 1650 и 1690 (NCO), 3150 (NH цикла, хелат.), 3350 (NH гидразида)
5b	1600 (СО, хелат.), 1650 и 1690 (NCO), 3150 (NH цикла, хелат.), 3350 (NH гидразида)
6	1675 (СО гидразид), 1720 (СО лактам, хелат.), 3140 (NH, хелат.), 2260 (СN)
7	1670 (СО гидразид), 1700 (СО лактам, хелат.), 3200 (NH, гидразид), 3300 и 3400 (NH ₂)
8	1600 (СО, сопр.), 1620 (С=С, сопр.), 3210 (NH цикла), 2300-2310 (СN)

Трициклические лактамы 4, 6, 7 имеют оранжевый цвет, кетоны 3, 5 – желтую окраску, тетранитрил 8 представляет собой черные кристаллы. Соединение 4а, по данным спектров ЯМР ¹Н, ТСХ и смешанной пробы плавления, совпадает с семикарбазидом, полученным нами ранее [8].

Таблица З

Спектры ЯМР ¹Н синтезированных соединений

Соеди- нение	Химические сдвиги, б, м. д.						
	R ₂	2H-4, c	1-CH= c	Аромати- ческие протоны	NH цикла	Другие протоны	
3	1.3 (6H, c)	2.9	6.2	7.1–7.9 (4H)	9.0	6.0 (c, NH);	
4a	1.3 (6H, c)	2.8	6.7	7.0–7.6 (4H)	_	6.1 (с, NH) 10.3 (с, NH); 6.6 (2H, уш. с, NH ₂)	
4b	1.3 (8H, c)	2.8	6.7	7.0–7.7 (4H)	_	10.3 (с, NH); 6.5 (2H, уш. с, NH ₂)	
5a	1.3 (6Н, уш. с)	2.8	6.8	7.1–7.9 (8H)	13.7	8.8 (2H, c, CONHNHCO)	
5b	1.2 (3H, c); 1.3 (3H, c)	2.8	6.2	7.2–7.9 (8H)	13.6	11.4 (2H, c, CONHNHCO)	
6	1.3 (6H, c)	2.8	6.7	7.1–7.8 (4H)	-	4.1 (2H, c, CH ₂ CN) ¹	
7	1.3 (6H, c)	2.8	6.4	6.4–7.9 (8H)	_	11.6 (c, CONH) 3.7 (2H, c, H_2NAr); 13.5 (c, CONH)	
8	1.3 (6H, c)	2.8	6.2	7.0–8.0 (4H)	12.1	3.8 (c, CH(CN) ₂)	

В спектрах ЯМР ¹Н кетонов **3**, **5**, **8** (табл. 2), в отличие от спектров

исходных диоксопирролинов, присутствуют синглеты протонов групп NH изохинолинового цикла (9.0–13.7 м. д.). В случае диацилгидразидов **5а**,**b** сдвиг в слабое поле (13.6 и 13.7 м. д.) может быть объяснен возможностью образования шестичленного H-хелатного цикла. В спектре соединения **3** имеются два синглета протонов групп NH фрагмента триазола (6.0 и 6.1 м. д.). Конденсированная структура соединений **4а**,**b** подтверждается наличием синглетных сигналов протонов групп NH гидразона (10.3) и NH₂CO (6.6 и 6.5 м. д.) [8]. Спектры гидразонов **6**, **7** содержат лишь по одному синглету протонов групп NH в слабом поле (11.6 и 13.5 м. д.), что свидетельствует в пользу конденсированной трициклической структуры.

В спектре диацилгидразида **5b** метильные группы проявляются в виде двух синглетов, что может быть объяснено влиянием первичной аминогруппы ароматического цикла, которая создает различие в их магнитном окружении.

Масс-спектр соединения **3** содержит пик* молекулярного иона 300 $[M]^+$ (27), а также пик фрагмента 3,3-диметил-1-метилиденкарбонил-1,2,3,4тетрагидроизохинолина 200 (35), характерный для соединений, имеющих в своей структуре данный фрагмент [4–7]. В масс-спектре трициклического кетона **4a** наблюдается пик молекулярного иона 284 $[M]^+$ (12), а также пик, соответствующий отрыву фрагмента семикарбазида 211 $[M]^+$ (17). Масс-спектр гидразида **7** содержит пик молекулярного иона 360 $[M]^+$ (12) и пик, отвечающий элиминированию группы NHC(O)C₆H₄NH₂ 225 (4). Для спектра тетранитрила **8** характерны пик молекулярного иона 341 $[M]^+$ (36) и фрагмент, обусловленный отрывом метильной группы 326 (100).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н зарегистрированы на приборе Tesla BS 567A (100 МГц) в CDCl₃ (соединения **3** и **5a**) и ДМСО-d₆ (остальные соединения), внутренний стандарт ГМДС (δ 0.05 м. д.). ИК спектры получены на спектрометре Specord M-80 в вазелиновом масле. Масс-спектры записаны на приборе Finigan MAT INCOS 50 (70 эВ, ЭУ). Проверка чистоты полученных веществ осуществлялась методом TCX на пластинах Silufol UV-254 в системе ацетон–этанол–хлороформ, 1:3:6, проявление в УФ и парами иода.

Соединение 8 перекристаллизовано из бензола, остальные из ацетонитрила.

3,3-Диметил-1-(5-тиоксо-1,5-дигидро-1,2,4-триазол-3-илметилиденкарбонил)-1,2,3,4-тетрагидроизохинолин (3), 5,5-(R)₂-**3-оксо-2-семикарбазоно-2,3,5,6-тетрагидропирроло[2,1-а]изохинолины 4а,b и N-изоникотиноилгидразид 2-оксо-(3,3-диметил-2,3,5,6-тетрагидроизохинолиниден-1)пропановой кислоты (5а)** (общая методика). Смесь 10 ммоль кетоэфира **2а,b** с 15 ммоль соответствующего нуклеофила кипятят в 30 мл ледяной уксусной кислоты (контроль TCX). Раствор охлаждают до 20 °C, разбавляют 100 мл воды, выпавший осадок отфильтровывают, сушат и перекристаллизовывают.

N-(*n***-Аминобензоил)гидразид 3-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-2-оксопропановой кислоты (5b).** Смесь 2.59 г (10 ммоль) кетоэфира **2a** с 2.26 г (15 ммоль) гидразида *n*-аминобензойной кислоты в присутствии каталитического количества (2–3 кристаллика) *p*-TsOH в 30 мл 2-пропанола кипятят 2.5 ч (контроль TCX). Далее выделяют аналогично соединениям **3,4a,b** и **5a**.

^{*} Здесь и далее для пиков даны значения m/z ($I_{\text{отн}}$, %).

^{5,5-}Диметил-3-оксо-2-(N-цианоацетилгидразоно)-2,3,5,6-тетрагидропирроло[2,1-*а*]изохинолин (6) и 2-[N-(*n*-аминобензоил)гидразоно]-3-оксо-2,3,5,6-тетра-

гидропирроло[2,1-*а***]изохинолин (7)** (общая методика). Раствор смеси диоксопирролина **1а** с 15 мл соответствующего гидразида в 25 мл 2-пропанола кипятят 40 мин. Далее выделяют аналогично соединениям **3–5а**.

Нитрил 5-(3,3-диметил-1,2,3,4-тетрагидроизохинолиниден-1)-4-дицианометилиден-3-оксо-2-цианопентановой кислоты (8). К раствору 2.59 г (10 ммоль) кетоэфира 2а в 20 мл абсолютного метанола прибавляют 0.1 г натрия и 1.65 г (25 ммоль) малонодинитрила. Реакционную смесь кипятят 30 мин до появления темно-вишневой окраски, разбавляют 100 мл воды, подкисляют по каплям раствором уксусной кислоты до выпадения осадка темно-малинового цвета, который отфильтровывают, сушат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Г. Михайловский, В. С. Шкляев, *ХГС*, 1697 (1995). [*Chem. Heterocycl. Comp.*, **31**, 1475 (1995)].
- 2. А. Г. Михайловский, XГС, 685 (1996). [Chem. Heterocycl. Comp., 32, 590 (1996)].
- 3. А. Г. Михайловский, В. С. Шкляев, *ХГС*, 291 (1997). [*Chem. Heterocycl. Comp.*, **33**, 243 (1997)].
- А. Г. Михайловский, Н. Н. Полыгалова, Т. С. Турова, Г. А. Лобашова, М. И. Вахрин, XГС, 1357 (2004). [Chem. Heterocycl. Comp., 40, 1174 (2004)].
- 5. Н. Н. Полыгалова, А. Г. Михайловский, *ХГС*, 1378 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1173 (2005)].
- 6. Н. Н. Полыгалова, А. Г. Михайловский, *ХГС*, 1383 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1178 (2005)].
- 7. О. В. Сурикова, А. Г. Михайловский, М. И. Вахрин, *XГС*, 298 (2008). [*Chem. Heterocycl. Comp.*, **44**, 231 (2008)].
- В. С. Шкляев, Б. Б. Александров, А. Г. Михайловский, М. И. Вахрин, *XГС*, 963 (1987). [*Chem. Heterocycl. Comp.*, 23, 790 (1987)].

Пермская государственная фармацевтическая академия, Пермь 614990, Россия e-mail: perm@pfa.ru Поступило 19.12.2008