Д. Н. Бобров, А. С. Ляхов, А. А. Говорова, В. И. Тыворский

ТЕРМИЧЕСКАЯ ПЕРЕГРУППИРОВКА КОНДЕНСИРОВАННЫХ АЦИЛОКСИЗАМЕЩЕННЫХ 2-ТРИФТОРМЕТИЛ-4H-ПИРАН-4-ОНОВ В СПИРОАННЕЛИРОВАННЫЕ 3(2H)-ФУРАНОНЫ

Изомеризацией ацетатов и бензоатов конденсированных гидроксизамещенных 2-трифторметил-4Н-пиран-4-онов при 300—320 °С получены соответствующие производные спироаннелированных 3(2H)-фуранонов, строение которых подтверждено спектральными данными и с помощью РСА.

Ключевые слова: ацилоксигруппа, 2,3-дигидро-4Н-пиран-4-оны, спиросоединения, 3(2H)-фураноны, рентгеноструктурный анализ, термическая перегруппировка.

Участие соседней с реакционным центром ацилоксигруппы в процессах нуклеофильного замещения, изомеризации и других превращениях широко освещено в литературе и используется для решения различных синтетических проблем (в частности, в химии углеводов [1]), для изомеризации моносахаридов [2, 3], синтеза олигосахаридов [4, 5], взаимопревращения пиранозных и фуранозных форм углеводов и родственных систем [6, 7]. Обычно такие реакции осуществляются в мягких условиях в присутствии электрофильных катализаторов и включают образование ацилоксониевых ионов [1]. В настоящей работе установлена возможность некатализируемой термической изомеризации дигидропираноновой системы В соответствующую фураноновую, сопровождающейся миграцией ацилоксигруппы.

2-Перфторалкил-4Н-пиран-4-оны, представляющие интерес в качестве предшественников замещенных азотсодержащих гетероциклических соединений [8, 9], могут быть получены дегидратацией соответствующих 3-гидрокси-2,3-дигидро-4Н-пиран-4-онов под действием тионилхлорида в пиридине [10]. Однако 2,3-диалкилзамещенные гидроксидигидро-пираноны 1—3 в этих условиях дегидратируются с трудом, что связано с неблагоприятным для элиминирования *цис*-расположением гидроксильной группы и вицинального атома водорода [11].

В настоящей работе в результате пиролиза ацетатов конденсированных гидроксипиранонов **4a**, **5a** вместо ожидаемых продуктов *син*элиминирования уксусной кислоты с выходами 70 и 76% были выделены спиро-аннелированные 3(2H)-фураноны **6a** и **7** соответственно. Изомеризация ацетатов **4a**, **5a** происходит в процессе их однократной перегонки при атмосферном давлении и внешнем нагреве реакционной массы до 300—320 °C. В дистилляте наряду с продуктами **6a**, **7a** содержится 15—20% исходных ацетатов **4a**, **5a**, однако эта смесь, повидимому, не является равновесной, так как в результате дистилляции индивидуального спиросоединения **6a** не наблюдается образование ацетоксидигидропиранона **4a**. Выдерживание пиранона **4a** при той же температуре в запаянной ампуле с целью увеличения его конверсии в продукт перегруппировки сопровождается осмолением реакционной массы и не приводит к увеличению выхода фуранона **6a**.

Аналогично термическая перегруппировка бензоата **4b** привела с выходом 71% к спиросоединению **6b**, причем сырой продукт реакции не содержал примеси исходного пиранона **4b**, что, вероятно, связано с возможностью достижения более высокой температуры реакционной смеси. Вместе с тем в этом случае изомеризация протекала менее однозначно и сопровождалась образованием небольших количеств (до 5%) неидентифицированных соединений.

Строение полученных соединений **6а,b**, **7а** подтверждено результатами элементного анализа, а также спектральными данными.

Основное отличие спектров $\overline{MP}^{1}H$ фуранонов **6a**,**b** от спектров исходных дигидропиранонов 4а, b заключается в том, что сигнал атома водорода фрагмента CHOCOR соединений 6a,b представляет собой характерный дублет дублетов с КССВ, равными 10.0-10.5 и 5.0 Гц, что указывает на аксиальное положение этого атома в циклогексановом кольце. В спектре циклопентанового аналога 7а сигнал отмеченного Нпроявляется в виде мультиплета с шириной атома 13 Гц. псевдоэкваториальной свидетельствующей пользу ориентации В ацетоксильной группы. В спектрах ЯМР ¹³С спиросоединений 6а,b, 7а сигнал атома углерода кетонной карбонильной группы наблюдается в характерной для 3(2Н)-фуранонов области 201—203 м. д. [12], тогда как в случае исходных дигидропиранонов он находится при 186—191 м. д.[10]. В ИК спектрах продуктов 6а, b, 7а полоса поглощения карбонильной группы, несмотря на сопряжение со связью С=С, наблюдается в области 1720—1725 см⁻¹, что также характерно для 3(2H)-фуранонов [13, 14].

Структура спиросоединения **6a** установлена с помощью рентгеноструктурного анализа. Полученные данные позволяют сделать следующие заключения о конформации и конфигурации молекулы **6a** (рисунок). Фураноновый цикл плоский: среднее отклонение атомов, образующих цикл, от среднеквадратичной плоскости составляет 0.002 Å.

Строение молекулы 6-ацетокси-2-трифторметил-1-оксаспиро[4,5]дец-2-ен-4-она ба

Трифторметильная группа разупорядочена в структуре по двум позициям, развернутым относительно друг друга на угол ~ 25° . Циклогексановое кольцо имеет конформацию кресла (торсионные углы близки 60°). Ацетоксильный заместитель при атоме $C_{(6)}$ циклогексанового кольца находится в экваториальном положении. Длины связей и валентные углы в молекуле **6a** (табл. 1, 2) обычные [15]. Некоторое укорочение длин связей С—F в разупорядоченной группе CF₃ обусловлено ее значительными либрационными движениями. Никаких укороченных контактов в структуре не наблюдается, поэтому упаковка молекул определяется ван-дерваальсовыми взаимодействиями.

Связь	d, Å	Связь	<i>d</i> , Å	
O ₍₁₎ _C ₍₂₎	1.350(3)	C ₍₈₎ _C ₍₉₎	1.516(5)	
O ₍₁₎ _C ₍₅₎	1.468(3)	C ₍₉₎ _C ₍₁₀₎	1.532(5)	
C ₍₂₎ _C ₍₃₎	1.323(4)	C ₍₁₂₎ _O ₍₁₂₎	1.191(3)	
C ₍₂₎ _C ₍₁₁₎	1.481(5)	C(12)-O(6)	1.339(3)	
C ₍₃₎ _C ₍₄₎	1.446(4)	$C_{(12)} = C_{(13)}$	1.487(4)	
C ₍₄₎ _O ₍₄₎	1.215(3)	F _(1a) _C ₍₁₁₎	1.28(1)	
C ₍₄₎ _C ₍₅₎	1.534(3)	F _(2a) _C ₍₁₁₎	1.22(1)	
C(5)-C(6)	1.514(3)	F _(3a) -C ₍₁₁₎	1.45(2)	
$C_{(5)}$ — $C_{(10)}$	1.520(3)	F _(1b) _C ₍₁₁₎	1.35(2)	
C ₍₆₎ _O ₍₆₎	1.441(3)	F _(2b) _C ₍₁₁₎	1.43(2)	
C ₍₆₎ _C ₍₇₎	1.508(3)	F _(3b) _C ₍₁₁₎	1.21(2)	
C ₍₇₎ _C ₍₈₎	1.504(4)			

Длины связей (d) в молекуле 6a

Таблица 1

Таблица 2

Угол	ω, град.	Угол	ω, град.
C ₍₂₎ —O ₍₁₎ —C ₍₅₎	106.9(2)	$C_{(8)}$ — $C_{(9)}$ — $C_{(10)}$	112.5(2)
$C_{(3)}$ $- C_{(2)}$ $- O_{(1)}$	116.9(3)	$C_{(5)} - C_{(10)} - C_{(9)}$	111.1(2)
$C_{(3)}$ — $C_{(2)}$ — $C_{(11)}$	129.9(3)	O ₍₁₂₎ —C ₍₁₂₎ —O ₍₆₎	123.3(2)
$O_{(1)} - C_{(2)} - C_{(11)}$	113.3(3)	$O_{(12)}$ $- C_{(12)}$ $- C_{(13)}$	125.4(2)
$C_{(2)}$ $- C_{(3)}$ $- C_{(4)}$	106.7(2)	$O_{(6)}$ $- C_{(12)}$ $- C_{(13)}$	111.3(2)
$O_{(4)}$ $- C_{(4)}$ $- C_{(3)}$	128.7(2)	$C_{(12)}$ $O_{(6)}$ $C_{(6)}$	118.3(2)
$O_{(4)}$ $- C_{(4)}$ $- C_{(5)}$	125.0(2)	$F_{(1a)}$ — $C_{(11)}$ — $F_{(2a)}$	106(1)
$C_{(3)}$ $ C_{(5)}$	106.3(2)	$F_{(1a)}$ — $C_{(11)}$ — $F_{(3a)}$	110(1)
$O_{(1)}$ $- C_{(5)}$ $- C_{(6)}$	107.3(2)	$F_{(2a)}$ — $C_{(11)}$ — $F_{(3a)}$	106(1)
$O_{(1)}$ $- C_{(5)}$ $- C_{(10)}$	108.2(2)	$F_{(1a)}$ — $C_{(11)}$ — $C_{(2)}$	110.2(9)
$C_{(6)}$ — $C_{(5)}$ — $C_{(10)}$	109.8(2)	$F_{(2a)}$ — $C_{(11)}$ — $C_{(2)}$	119.0(9)
$O_{(1)}$ $C_{(5)}$ $C_{(4)}$	103.3(2)	$F_{(3a)}$ — $C_{(11)}$ — $C_{(2)}$	106(1)
$C_{(6)}$ — $C_{(5)}$ — $C_{(4)}$	114.1(2)	$F_{(1b)}$ — $C_{(11)}$ — $F_{(2b)}$	117(2)
$C_{(10)}$ $- C_{(5)}$ $- C_{(4)}$	113.7(2)	F _(1b)	107(2)
$O_{(6)}$ $- C_{(6)}$ $- C_{(7)}$	110.3(2)	F _(2b)	102(1)
$O_{(6)}$ $$ $C_{(6)}$ $$ $C_{(5)}$	106.8(2)	F _(1b) —C ₍₁₁₎ —C ₍₂₎	112(1)
$C_{(7)}$ $C_{(6)}$ $C_{(5)}$	112.7(2)	F _(2b) —C ₍₁₁₎ —C ₍₂₎	104.8(9)
$C_{(8)}$ — $C_{(7)}$ — $C_{(6)}$	109.5(2)	F _(3b) —C ₍₁₁₎ —C ₍₂₎	115.0(9)
$C_{(9)}$ $C_{(8)}$ $C_{(7)}$	110.5(2)		

Валентные углы (ω) в молекуле 6а

На основе приведенных данных о строении спиросоединения **6a** можно предположить, что изомеризация дигидропиранонов **4a,b**, **5a** протекает при участии ацилоксильной группы, атакующей соседний узловой атом углерода с тыльной стороны по отношению к циклическому атому кислорода, чему способствует закрепленное *mpaнc*-диаксиальное расположение этих группировок в исходных пиранонах **4a,b**, **5a**. Косвенно об участии ацилоксильной группы в процессе перегруппировки свидетельствует также тот факт, что неацилированный гидроксипиранон **2** не претерпевает указанного превращения при нагревании до 300—320 °C.

1031

Атом	x/a	y/b	z/c	U(eq)
O ₍₁₎	712(1)	4645(3)	1316(1)	72(1)
C ₍₂₎	98(1)	3622(5)	1077(1)	78(1)
C ₍₃₎	108(2)	2203(5)	646(1)	78(1)
C ₍₄₎	822(1)	2173(4)	560(1)	62(1)
C(5)	1240(1)	3821(4)	1004(1)	58(1)
C ₍₆₎	1823(1)	2729(4)	1447(1)	54(1)
C ₍₇₎	2437(1)	2001(5)	1193(1)	74(1)
C ₍₈₎	2739(2)	4016(6)	945(1)	96(1)
C ₍₉₎	2177(2)	5169(6)	494(2)	108(1)
C(10)	1531(2)	5832(4)	732(1)	88(1)
C(12)	1614(1)	596(4)	2252(1)	64(1)
C ₍₁₃₎	1220(2)	-1367(5)	2412(1)	91(1)
O ₍₄₎	1063(1)	1116(3)	206(1)	79(1)
O(6)	1517(1)	811(3)	1676(1)	62(1)
O ₍₁₂₎	1978(1)	1829(4)	2586(1)	101(1)
$F_{(1a)}^{*}$	-1081(6)	3760(30)	1014(9)	153(5)
F _(2a) *	-553(5)	6310(30)	1459(12)	180(7)
F _(3a) *	-402(9)	3110(60)	1884(8)	206(7)
$F_{(1b)}^{*2}$	-1072(10)	3040(60)	1151(15)	201(11)
F(2b)*2	-569(9)	6680(30)	1229(11)	180(7)
$F_{(3b)}^{*2}$	-373(10)	4270(50)	1864(7)	142(6)
C ₍₁₁₎	-494(2)	4323(11)	1341(3)	125(2)

Координаты (x/a, y/b, z/c, $Å \times 10^4$) и эквивалентные изотропные тепловые параметры $(U(eq), Å^2 \times 10^3)$ атомов в структуре ба

Заселенность позиции 0.58(4).

^{*2} Заселенность позиции 0.42(4).

Возможно, как и в случае подобных каталитических процессов [6, 7], реакция протекает через образование ацилоксониевых ионов типа **A**, однако подтверждение такого предположения требует постановки дополнительных экспериментов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С записаны на спектрометре Bruker AC-200 с рабочими частотами 200 и 50.3 МГц соответственно для растворов в CDCl₃. Химические сдвиги измерены относительно ТМС. ИК спектры сняты на спектрофотометре Specord 75 IR в CCl₄. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом TCX на пластинках Silufol UV-254, проявление парами иода или водным раствором перманганата калия.

Рентгеноструктурное исследование соединения 6а. Кристаллы фуранона **6а** получены кристаллизацией из гексана. Рентгеноструктурный анализ проведен на призматическом кристалле (0.66×0.45×0.32 мм), запаянном в стеклянный капилляр (ввиду неустойчивости соединения под рентгеновским пучком). Трехмерный набор рентгеновских дифракционных данных собран на автоматическом четырехкружном дифрактометре

Nicolet R3m, $\theta/2\theta$ -сканирование МоК_α-излучение, графитовый монохроматор, $(2\theta_{\text{max}} = 55^{\circ})$. Общее количество измеренных отражений 3276, независимых 3074 (R_(int) = 0.0103). Соединение кристаллизуется в моноклинной сингонии, пространственная группа C2/с. Параметры элементарной ячейки: *a* = 19.432(6); *b* = 5.935(1); *c* = 23.598(5) Å; $\beta = 102.27(2)^\circ$; V = 2659(1) Å³; Z = 8; $d_{\text{рентт}} = 1.390$ г/см³; $\mu = 1.3$ см⁻¹. Структура соединения расшифрована прямым методом. Атомы водорода локализованы из разностного синтеза Фурье. Уточнение проведено полноматричным МНК с учетом анизотропии тепловых колебаний неводородных атомов. Атомы водорода уточнены в приближении "riding" модели. Окончательные значения факторов недостоверности: $R^1 = 0.0626$, $wR^2 = 0.1701$ $(I 2 \sigma(I)); R^1 = 0.1085, wR^2 = 0.2044$ (все данные); добротность подгонки (G00F) 0.997. Поглощение не учитывалось. Все расчеты выполнены с помощью программ SHELX-97 (PC Version) [16—18]. Координаты и эквивалентные изотропные тепловые параметры атомов приведены в табл. 3.

4а-Гидрокси-2-трифторметил-4а,5,6,7,8,8а-гексагидро-4H-1-бензопиран-4-он (2) и его ацетат **4а** получают по методике работы [11]. Спектр ЯМР ¹³С соединения **4а**: 190.59 (С=О); 169.44 (<u>С</u>ОСН₃); 157.92 (к, ² J_{C-F} = 37 Гц, <u>С</u>СF₃); 118.67 (к, ¹ J_{C-F} = 275 Гц, CF₃); 103.33 (к, ³ J_{C-F} = 3 Гц, <u>С</u>Н=ССF₃); 78.15 (СН-О); 77.93 (<u>С</u>-ОСОСН₃); 29.28 (СН₂); 25.59 (СН₂); 20.93 (СО<u>С</u>Н₃); 19.35 (СН₂); 18.96 м. д. (СН₂).

4а-Гидрокси-2-трифторметил-5,6,7,7а-тетрагидроциклопента[b]пиран-4(4аН)-он (**3**) получают конденсацией 1-ацетил-1,2-эпоксициклопентана [19] с этилтрифторацетатом по методике работы [11]. Выход 68%. Т. пл. 67 °С (из гексана). ИК спектр: 1645 (С=С), 1700 (С=О), 3495 см⁻¹ (О-Н). Спектр ЯМР ¹Н: 5.86 (1H, с, СН=С); 4.81–4.74 (1H, м, CH-O); 3.60 (1H, уш. с, ОН); 2.46—1.76 м. д. (6H, м, CH₂). Найдено, %: С 48.89; Н 4.27. С₉H₉F₃O₃. Вычислено, %: С 48.66; Н 4.08.

4а-Ацетокси-2-трифторметил-5,6,7,7а-тетрагидроциклопента[b]пиран-4(4аН)-он (**5a**) получают ацилированием соединения **3** избытком ацетилхлорида по известной методике [11]. Выход 87%. Т. пл. 49—50 °С (из пентана). ИК спектр: 1650 (С=С), 1705 (С=О), 1755 см⁻¹ (С=О). Спектр ЯМР ¹Н: 5.85 (1H, с, CH=C); 5.31—5.24 (1H, м, CH-O); 2.10 (3H, с, CH₃CO); 2.28—1.92 м. д. (6H, м, CH₂). Спектр ЯМР ¹³С: 188.89 (С=О); 169.73 (<u>С</u>ОСН₃); 156.67 (к, ² $J_{C-F} = 37$ Гц, <u>С</u>СF₃); 118.64 (к, ¹ $J_{C-F} = 275$ Гц, CF₃); 102.03 (к, ³ $J_{C-F} = 3$ Гц, <u>С</u>H=CCF₃); 87.64 (CH-O); 86.20 (<u>С</u>—ОСОСН₃); 34.07 (CH₂); 31.10 (CH₂); 21.16 (CH₂); 20.79 м. д. (СО<u>С</u>H₃). Найдено, %: С 50.23; H 4.39. С₁₁H₁₁F₃O₄. Вычислено, %: С 50.01; H 4.20.

4а-Бензоилокси-2-трифторметил-4а,5,6,7,8,8а-гексагидро-4H-1-бензопиран-4-он (**4b**) синтезируют бензоилированием 1.1 г (4.7 ммоль) гидроксипиранона **2** в 2.7 мл пиридина, используя 0.85 мл (7.1 ммоль) бензоилхлорида. Получают 1.56 г (97%) бензоата **4b**. Т. пл. 128—128.5 °C (из гексана). ИК спектр: 1650 (С=С), 1705 (С=О), 1735 см⁻¹ (С=О). Спектр ЯМР ¹H: 8.12—7.98 (2H, м, Ph); 7.67—7.34 (3H, м, Ph); 5.95 (1H, с, CH=C); 5.46—5.36 (1H, м, CH-O); 2.18—1.41 м. д. (8H, м, CH₂). Спектр ЯМР ¹³С: 190.41 (С=О); 164.68 (<u>C</u>OPh); 158.01 (κ , ² J_{C-F} = 37 Гц, <u>С</u>СF₃); 133.76 (С, Ph), 130.02 (2С, Ph); 129.18 (С_{четв}, Ph); 128.59 (2С, Ph); 118.73 (κ , ¹ J_{C-F} = 275 Гц, CF₃); 103.47 (κ , ³ J_{C-F} = 3 Гц, <u>C</u>H=CCF₃); 78.31 (CH-O); 78.19 (<u>C</u>-OCOPh); 29.45 (CH₂); 25.71 (CH₂); 19.73 (CH₂); 19.06 м. д. (CH₂). Найдено, %: С 60.23; H 4.67. С₁₇H₁₅F₃O₄. Вычислено, %: С 60.00; H 4.44.

6-Ацетокси-2-трифторметил-1-оксаспиро[4.5]дец-2-ен-4-он (6а). Выдерживают 2.3 г (8.2 ммоль) соединения **4a** в перегонной колбе при 745 мм рт. ст. и температуре бани 300—320 °С. Собирают дистиллят с температурой кипения 230—245 °С, кристаллизацией которого из гексана получают 1.58 г (70%) спиросоединения **6a**. Т. пл. 75—76 °С. ИК спектр: 1640 (С=С), 1725 (С=О), 1755 см⁻¹ (С=О). Спектр ЯМР ¹Н: 5.96 (1H, с, CH=C); 5.13 (1H, д. д. J = 10.0; 5.0 Гц, CH-O); 2.01 (3H, с, CH₃CO); 2.21—1.18 м. д. (8H, м, CH₂). Спектр ЯМР ¹³С: 202.62 (С=О); 173.09 (к, ² $_{J_{C-F}}$ = 41 Гц, ССГ₃); 170.44 (СОСН₃); 118.51 (к, ¹ $_{J_{C-F}}$ = 273 Гц, СF₃); 106.44 (<u>C</u>H=CCF₃); 91.53 (С-О); 73.68 (<u>C</u>H-OCOCH₃); 31.38 (CH₂); 26.81 (CH₂); 23.03 (CH₂); 21.26 (СО<u>С</u>H₃); 20.14 м. д. (CH₂). Найдено, %: С 51.98; H 4.92. С₁₂H₁₃F₃O₄. Вычислено, %: С 51.80; H 4.71.

6-Ацетокси-2-трифторметил-1-оксаспиро[4,4]нон-2-ен-4-он (7а). Аналогично получе-нию соединения **6a** перегоняют 1.72 г (6.5 ммоль) соединения **5a**, собирая дистиллят с температурой кипения 215—230 °С, который хроматографируют на колонке с силикагелем (элюент циклогексан—эфир, 1:1). Последовательно выделяют 1.0 г (76%) фуранона **7a** и 0.4 г исходного пиранона **5a**. Спиросоединение **7a**. Т. пл. 33—34 °С (из пентана). ИК спектр: 1635 (С=С), 1725 (С=О), 1750 см⁻¹ (С=О). Спектр ЯМР ¹Н: 6.03 (1H, с, CH=C); 5.25—5.17 (1H, м, CH-O); 2.04 (3H, с, CH₃CO); 2.39—1.88 м. д. (6H, м, CH₂).

Спектр ЯМР ¹³С: 200.65 (С=О); 172.06 (к, ${}^{2}J_{C-F} = 40$ Гц, <u>С</u>СГ₃); 170.30 (<u>С</u>ОСН₃); 118.08 (к, ${}^{1}J_{C-F} = 273$ Гц, СГ₃); 106.45 (<u>С</u>H=CCF₃); 98.03 (С-О); 79.40 (<u>С</u>H-OCOCH₃); 34.16 (СН₂); 31.12 (СН₂); 21.91 (СН₂); 20.71 м. д. (СО<u>С</u>H₃). Найдено, %: С 50.25; Н 4.43. С₁₁Н₁₁F₃O₄. Вычислено, %: С 50.01; Н 4.20.

6-Бензоилокси-2-трифторметил-1-оксаспиро[4,5]дец-2-ен-4-он (6b). Выдерживают 0.50 г (0.15 ммоль) соединения 4b 15 мин при температуре бани 300—320 °C. Охлажденную реакционную массу экстрагируют 10 мл кипящего хлороформа. Остаток после удаления растворителя хроматографируют на колонке с силикагелем (элюент гексан—эфир, 3:1). Выделяют 0.36 г (71%) фуранона 6b. Масло. ИК спектр: 1635 (C=C), 1720 см⁻¹ (C=O). Спектр ЯМР ¹Н: 7.97—7.86 (2H, м, Ph); 7.62—7.33 (3H, м, Ph); 6.03 (1H, с, CH=C); 5.38 (1H, д. д. J = 10.5; 5.0 Гц. CH-O); 2.38—1.41 м. д. (8H, м, CH₂). Спектр ЯМР ¹³С: 202.01 (C=O); 172.79 (к. ² $_{JC-F} = 41$ Гц. <u>CCF</u>₃); 165.34 (<u>C</u>OPh); 133.33 (C, Ph); 129.62 (2C, Ph); 129.45 (C_{четв}, Ph); 128.47 (2C, Ph); 117.81 (к. ¹ $_{JC-F} = 273$ Гц. CF₃); 105.68 (<u>C</u>H=CCF₃); 91.19 (C—O); 73.88 (<u>C</u>H—OCOPh); 30.99 (CH₂); 26.30 (CH₂); 22.57 (CH₂); 19.58 м. д. (CH₂). Найдено, %: C 60.25; H 4.63. C₁₇H₁₅F₃O₄. Вычислено, %: C 60.00; H 4.44.

Авторы выражают благодарность РФФИ за финансовую помощь в оплате лицензии на пользование кембриджским банком структурных данных (проект 96-07-89187) при анализе результатов, полученных в данной работе.

СПИСОК ЛИТЕРАТУРЫ

- H. Paulsen, Advances in Carbohydrate Chemistry and Biochemistry, Eds. R. S. Tipson and D. Horton, Acad. Press, New York, London, 1971, 26, 127.
- 2. Г. Паульсен, *Методы исследования углеводов*, под ред. Р. Л. Уистлера и Дж. Н. Бемиллера, Мир, Москва, 1975, 114.
- 3. J. C. Norrild, Ch. Pedersen, J. Defaye, Carbohydr. Res., 291, 85 (1996).
- 4. Л. В. Бакиновский, *Прогресс химии углеводов*, под ред. И. В. Торгова, Наука, Москва, 1985, 7.
- 5. N. K. Kochetkov, V. M. Zhulin, E. M. Klimov, N. N. Malysheva, Z. G. Makarova, A. Ya. Ott, *Carbohydr. Res.*, **164**, 241 (1987).
- 6. J. Defaye, A. Gadelle, Ch. Pedersen, Carbohydr. Res., 205, 191(1990).
- 7. A. Wisniewski, J. Gajdus, J. Sokolowski, J. Szafranek, Carbohydr. Res., 114, 11 (1983).
- 8. В. И. Тыворский, Д. Н. Бобров, ХГС, №8, 1138 (1997).
- 9. В. И. Тыворский, Д. Н. Бобров, ХГС, №6, 780 (1998).
- 10. V. I. Tyvorskii, D. N. Bobrov, O. G. Kulinkovich, N. De Kimpe, K. A. Tehrani, *Tetrahedron*, **54**, 2819 (1998).
- 11. В. И. Тыворский, Л. С. Станишевский, И. Г. Тищенко, ХГС, №7, 897 (1978).
- 12. F. M. Dean, M. V. Sargent, *Comprehensive Heterocyclic Chemistry*, Eds. A. R. Katritzky, Ch.W. Rees, Pergamon Press, Oxford etc., 1984, **4**, 579.
- 13. C. W. Bird, G. W. H. Cheeseman, *Comprehensive Heterocyclic Chemistry*, Eds. A. R. Katritzky, Ch. W. Rees, Pergamon Press, Oxford etc., 1984, **4**, 19.
- 14. В. Я. Сосновских, М. Ю. Мельников, В. А. Куценко, Изв. АН. Сер. хим., №8, 1553 (1997).
- 15. F. H. Allen, O. Kennard, Chem. Design Automat. News, 8, 31 (1993).
- 16. G. M. Sheldrick, SHELX-97. Program for Crystal Structure Refinement, Univ. of Göttingen, 1997.
- 17. G. M. Sheldrick, Acta crystallogr., A46, 467 (1990).
- G. M. Sheldrick, Z. Dauter, K. S. Wilson, H. Hope, L. Sieker, *Acta crystallogr.*, D49, 18 (1993).
- 19. J. Cantocuzene, A. Keramat, C. R. Acad. Sci., C264, 618 (1967).

Белорусский государственный университет, Минск 220050 e-mail: tyvorskii@chem.bsu.unibel.by Поступило в редакцию 23.01.99