В. А. Мамедов, С. Цубой^а, Л. В. Мустакимова, Х. Хамамото^а, А. Т. Губайдуллин, И. А. Литвинов, Я. А. Левин

1,4-ДИОКСИНЫ ИЗ МЕТИЛОВОГО ЭФИРА ФЕНИЛХЛОРПИРОВИНОГРАДНОЙ КИСЛОТЫ. КОНКУРЕНЦИЯ РЕАКЦИЙ ДАРЗАНА, ФАВОРСКОГО И ГАБРИЭЛЯ

Взаимодействие метилового эфира фенилхлорпировиноградной кислоты с фталимидом калия и имидазолидом натрия приводит к изомерным 2,5-диметоксикарбонил-3,6-дифенил- и 2,6-диметоксикарбонил-3,5-дифенил-1,4-диоксинам.

Ключевые слова: 1,4-диоксены, 1,4-диоксины, метиловый эфир фенилхлорпировиноградной кислоты, реакция Дарзана, реакция Фаворского, реакция Габриэля, реакция присоединения-отщепления, СН-л-взаимодействие, π,π -взаимодействие, внутри- и межмолекулярные короткие контакты.

Нами показано, что реакции производных 2-оксо-3-фенил-3-хлорпропионовой (фенилхлорпировиноградной) кислоты с нуклеофилами в зависимости от природы последних и условий взаимодействия приводят к различным типам продуктов. В реакциях метилового и этилового эфиров этой кислоты с алкоголятами натрия в спиртовых растворах получаются эфиры 3-алкоксифенилпировиноградной кислоты или 3-алкокси-2,5-диалкоксикарбонил-3,6-дифенил-2,3-дигидро-1,4-диоксины [1–4]. При взаимодействии метилового эфира и диметиламида той же кислоты с трифенилфосфином образуются О- и С-фосфониевые соли [5], а с фосфитами имеет место реакция только по кислороду с образованием замещенных винилфосфатов по Перкову [6]. При взаимодействии метилового и этилового эфиров и диизопропиламида фенилхлорпировиноградной кислоты с азидом натрия образуются функционализированные 1,3-оксазолы [7].

В настоящей работе приводим результаты исследования поведения метилового эфира фенилхлорпировиноградной кислоты (1) по отношению к фталимиду калия (2) и имидазолиду натрия.

При взаимодействии α-хлоркетона 1 с фталимидом 2 в условиях реакции Габриэля [8] вместо ожидаемого N-замещенного фталимида 3 в качестве основного продукта образуется вещество, не содержащее азота. Проведение реакции в различных растворителях (формамид, ДМФА, ацетон, хлорбензол) во всех случаях приводит к кристаллическому продукту, в спектре ЯМР ¹Н которого имеется только два сигнала при 3.67 (с) и 7.47-7.70 м. д. (м) с соотношением интегральных интенсивностей 3 : 5. Химические сдвиги и интенсивности этих сигналов соответствуют содержащимся в спектре ЯМР ¹Н исходного α-хлоркетона 1 сигналам протонов метоксикарбонильной и фенильной групп. Следовательно, в образующемся продукте нет структурных фрагментов фталимида, а также метинового протона исходного хлоркетона. По элементному составу полученное соединение соответствует диметоксикарбонилдифенил-1,4-диоксину. Учитывая упомянутую способность α-хлоркетона 1 претерпевать под действием анионных нуклеофилов (MeONa и EtONa) конденсацию в 2-алкокси-3,5-диалкоксикарбонил-3,6-дифенил-2,3дигидро-1,4-диоксины [1, 2], это, скорее всего, должен быть 2,5-диметоксикарбонил-3,6-дифенил-1,4-диоксин (4). ИК спектр полученного соединения не противоречит такому выводу. Для подтверждения его строения проведено рентгеноструктурное исследование, которое показало, что реакция α-хлоркетона 1 с фталимидом калия действительно протекает с образованием гетероцикла 4.

При использовании вместо фталимида калия имидазолида натрия также образуется диоксин 4. Кроме получающегося с хорошим выходом диоксина 4 из реакционной смеси дробной кристаллизацией удалось выделить в чистом виде минорный продукт, который, судя по его элементному составу и спектрам (ЯМР ¹Н и ИК), почти не отличающимся от спектров основного продукта реакции, является его изомером – диоксином 5. Этот вывод также был подтвержден данными рентгеноструктурного анализа.

В исследуемой реакционной смеси в небольших количествах (не более 5%) присутствует и ожидаемый продукт реакции Габриэля, который выделить не удалось, однако в пользу его присутствия говорит наличие в спектре ЯМР ¹Н смеси синглетов карбометоксильной группы при 3.84 м. д. и метинового протона при 4.75 м. д., фталимидных мультиплетов в области 7.15–7.20 и 7.25–7.30 м. д. (несколько искаженная система AA'BB') и мультиплета фенила около 7.50 м. д. с соотношением интегральных интенсивностей 3 : 1: (2+2) : 5.

К образованию диоксина 4 может приводить несколько путей. Один из них представляет собой двойную самоконденсацию α-хлоркетона 1 по типу реакции Дарзана. На первой стадии одна из молекул хлоркетона обеспечивает генерирование аниона А, другая реагирует с ним своей кетонной группой. В образующемся оксирановом интермедиате те же роли играют 1-α-хлорбензильный и 2-метоксикарбонилформильный заместители.

Другая возможность – замещение хлора в α-хлоркетоне 1 мезомерным анионом А на первой стадии и отщепление гидрохлорида в результате внутримолекулярной реакции присоединения-отщепления на второй.

Схема образования изомерного 3,5-дифенилдиоксина 5, как и диоксина 4, может быть представлена двумя способами (показано выше) с той лишь разницей, что для диоксина 5 исходным, по-видимому, является анион метилового эфира 3-оксо-3-фенил-2-хлорпропионовой кислоты (В), а не анион А. Образование аниона В как побочного интермедиата в основных условиях реакции Габриэля может быть объяснено перегруппировкой аниона А по схеме, обычно рассматриваемой для перегруппировки Фаворского [9–12].

При обработке диоксина 4 метилатом натрия в метаноле происходит присоединение MeOH по одной двойной связи с образованием 3-метокси-2,5диметоксикарбонил-3,6-дифенил-2,3-дигидро-1,4-диоксина (6), идентичного соединению, полученному непосредственно из α-хлоркетона 1 аналогичной обработкой [3].

Отметим, что продолжительность реакции или повышение концентрации основания не влияет на конечный результат – присоединение второй молекулы метанола не наблюдается. Это, возможно, объясняется стерическими и электронными факторами: присоединение одной молекулы метанола приводит к трансформации плоской молекулы диоксина 4 (свободной для атаки с обеих сторон) в молекулу 6, гетероцикл которой имеет конформацию полукресла, и подход второй молекулы метанола к двойной связи диоксена стерически блокируется.

Рассмотрим пространственное строение диоксинов 4 и 5 по данным рентгеноструктурного исследования их кристаллов.

Молекула диоксина **4** находится в кристалле в частном положении в центре симметрии, поэтому симметрически независимую часть кристаллической ячейки составляет половина молекулы этого соединения (рис.1).

Поиск аналогичных структур [13] привел к единственному соединению этого типа – исследованному нами 2,5-дибензоил-3,5-бис(4'-метоксифенил)-1,4-диоксину [14]. Как и в последнем, в молекуле соединения 4 диоксиновый цикл плоский (отклонения атомов от плоскости кольца не превышают 0.006(2) Å). При этом двойные связи $C_{(2)} = C_{(3')}$ (1-*x*, -*y*, -*z*) несколько удлинены

Рис. 1. Геометрия молекулы соединения 4 в кристалле

(1.341(3) Å) по сравнению с этими связями в 2,5-дибензоильном аналоге (1.327(5) Å) [14] и циклогексене (1.326 Å) [15]; связи С–О также удлинены по сравнению со связями $C_{(sp2)}$ – $O_{(2)}$ в шестичленных гетероциклах и равны 1.396(3) и 1.386(3) Å (среднее в аналогичных циклических системах, по данным КБСД, 1.368 Å [13]), но в пределах экспериментальных погрешностей совпадают с найденными в молекуле дибензоильного аналога (1.394(4) Å). Плоскости фенильного заместителя и метоксикарбонильной группы составляют с плоскостью диоксинового цикла диэдральные углы 70.2(1) и 3.5(3)° соответственно. В молекуле соединения **4** не обнаружено

Рис. 2. Система водородных связей в кристалле соединения 4 (Н-связи показаны пунктиром)

коротких внутримолекулярных контактов; из межмолекулярных взаимодействий следует отметить водородные связи типа С–Н…О: протона $H_{(14)}$ в *орто*-положении фенильного фрагмента с атомом кислорода сложноэфирной группы $O_{(7")}$ (1–*x*, 1–*y*, –*z*) с параметрами: $C_{(14)}$ … $O_{(7")}$ 3.500(3), $H_{(14)}$ … $O_{(7")}$ 2.48(3) Å, $\angle C_{(14)}$ — $H_{(14)}$ — $O_{(7")}$ 176(2)° и водорода $H_{(83)}$ метильной группы с атомом кислорода диоксинового цикла $O_{(1")}$ (*x*, 1+*y*, *z*) со следующими параметрами: $C_{(8)}$ … $O_{(1"')}$ 3.607(3) Å, $H_{(83)}$ … $O_{(1")}$ 2.44(5) Å, $\angle C_{(8)}$ — $H_{(83)}$ — $O_{(1"')}$ 156(4)° (рис. 2).

Рис. 3. Вид вдоль оси ОУ на упаковку молекул соединения 4 в кристалле

Упаковка молекул в кристаллической ячейке (рис. 3) характеризуется наличием π - π -взаимодействий между диоксиновыми циклами молекул, связанных центром симметрии, со следующими параметрами: диэдральный угол между плоскостями циклов 0.2(2)°, расстояние между плоскостями циклов 3.436(3) Å. При этом каждый диоксиновый цикл принимает участие в двух таких взаимодействиях. Интересно также отметить наличие CH... π -взаимодействия между протоном фенильной группы H₍₁₃₎ и π -системой фенильного заместителя молекулы, связанной с ней операцией симметрии (1/2–x, 1/2+y, 1/2–z) (расстояние от H₍₁₃₎ до центра фенильного цикла (Cg2) 3.144 Å, угол (C₍₁₃₎-H₍₁₃₎...Cg1) 129.5°) и протоном метоксильной группы как с диоксиновыми (Cg1), так и фенильными циклами (Cg2) соседних молекул со следующими характеристиками:

Связь	Операция симметрии	<i>d</i> (HCg), Å	∠D-НСg, град.
$C_{(8)}H_{(82)}\ldots Cg2$	(3/2-x, 1/2+y, 1/2-z)	2.74	146.2
$C_{(8)}H_{(83)}\ldots Cg1$	(x, 1+y, z)	2.48	158.2

Гетероцикл молекулы диоксина 5 обладает собственной (некристаллографической) плоскостью симметрии, проходящей через атомы кислорода диоксинового цикла (рис. 4). Однако в кристаллической ячейке молекула теряет этот элемент симметрии. Наиболее значительным конформационным отличием от молекулы диоксина 4 является неплоский диоксиновый цикл, имеющий форму ванны (диэдральный угол между плоскостями O₍₁₎-C₍₆₎-C₍₅₎-O₍₄₎ и O₍₁₎-C₍₂₎-C₍₃₎-O₍₄₎ равен 32.2(1)°). Основание цикла – фрагмент $C_{(2)}C_{(3)}C_{(5)}C_{(6)}$ – плоский в пределах 0.004(2) Å, отклонения атомов O₍₁₎ и O₍₄₎ от этой плоскости 0.384(1) и 0.293(1) Å по одну от нее сторону, но на разные расстояния. Двугранные углы между этой плоскостью и плоскостями C₍₆₎-O₍₁₎-C₍₂₎ и C₍₃₎-O₍₄₎-C₍₅₎ равны 29.7(2) и 23.2(2)° соответственно. Плоскости фенильных заместителей С(15)-С(20) и С(9)-С(14) составляют диэдральные углы с плоскостью основания диоксинового цикла 36.9(1)° и 55.7(1)° соответственно, а метоксикарбонильные $C_{(21)}-O_{(21)}-O_{(22)}-C_{(22)}$ группы 26.6(2)° и $C_{(7)}-O_{(7)}-O_{(8)}-C_{(8)}$ 21.4(2)°. При этом метоксикарбонильные заместители по-разному развернуты относительно гетероцикла – если в одном заместителе в заслонении находятся связи С=О и С-О цикла, то в другом эндоциклической связью заслоняется связь С-О метоксигруппы (торсионные углы $O_{(1)}-C_{(2)}-C_{(7)}-O_{(7)}$ 6.8(2)°, $O_{(1)}-C_{(6)}-C_{(21)}-O_{(22)}$ 10.6(2)°). Таким образом, именно различие в развороте метоксикарбонильных заместителей при атомах цикла приводит к понижению собственной симметрии молекулы.

Рис. 4. Геометрия молекулы соединения 5 в кристалле

В молекуле диоксина 5 длины связей C=C в цикле (1.331(2) и 1.326(2) Å) несколько меньше, чем в молекуле диоксина 4. Наблюдаются некоторые различия в длинах эндоциклических связей O–C: длина связи $O_{(1)}$ –C₍₆₎ 1.394(2) Å совпадает с длинами связей при атоме $O_{(4)}$ и длинами связей в молекуле диоксина 4, в то время как связь $O_{(1)}$ –C₍₂₎ несколько удлинена – 1.403(2) Å. По-видимому, в плоском гетероцикле молекулы соединения 4 реализуется сопряжение эндоциклических двойных связей, связей C=O метоксикарбонильных заместителей и НЭП атомов кислорода. В неплоском гетероцикле молекулы диоксина 5 сопряжение менее вероятно и связи имеют локализованный характер.

В кристалле диоксина **5** реализуются следующие внутри- и межмолекулярные короткие контакты (рис.5):

Связь	Элемент симметрии связи молекул	d (D-H), Å	d (HA), Å	d (DA), Å	∠D-НА, град.
$C_{(10)}H_{(10)}\cdots O_{(21)}$	1-x, 1-y, -z	0.96(2)	2.54(1)	3.257(2)	131.3(1)
$C_{(14)}H_{(14)}\cdots O_{(1)}$	-x, 1-y, -z	0.99(2)	2.41(2)	3.372(2)	164.7(2)
$C_{(20)}H_{(20)}\cdots O_{(21)}$	Внутримолек.	1.00(2)	2.58(2)	2.961(2)	102.4(1)

Рис. 5. Межмолекулярные водородные связи в кристалле соединения **5** (Н-связи показаны пунктиром)

Упаковка молекул в кристалле соединения 5, в отличие от соединения 4 (рис. 6), характеризуется параллельным расположением фенильных заместителей $C_{(9)}-C_{(14)}(Cg2)$ и $C_{(5)}-C_{(20)}(Cg3)$ у соседних молекул и проявлением следующих π - π -взаимодействий (Cg-Cg – расстояние между центрами колец; α – угол между плоскостями колец; β – угол между нормалью к плоскости кольца и линией, соединяющей их центры; L – расстояние между плоскостями колец):

Cg–Cg	Операция симметрии	<i>d</i> (Cg−Cg), Å	α, град.	β, град.	L, Å
Cg2–Cg2	- <i>x</i> , 2- <i>y</i> , - <i>z</i>	5.74	0.0	57.4	3.09
Cg3–Cg3	1-x, -y, -z	5.72	0.2	59.6	2.91

С—НСд	Симметрия	<i>d</i> (H Cg), Å	∠C—H—Сg, град.
C ₍₁₀₎ -H ₍₁₀₎ Cg3	1-x, 1-y, -z	3.14	130.2
$C_{(18)}$ - $H_{(18)}$ $Cg2$	1-x, y-1/2, 1-z	2.77	140.9
C ₍₂₂₎ -H ₍₂₂₃₎ Cg3	x, y-1/2, z-1/2	3.28	156.9

Кроме того, в кристалле диоксина **5** наблюдаются короткие межмолекулярные контакты СН… π типа:

Расчеты невозмущенной конформации диоксинового цикла методом MNDO указывают на то, что, по-видимому, основной причиной искажения плоской конформации цикла в молекуле диоксина **5** является влияние кристаллического поля, включающего как оптимизацию упаковки молекул в кристаллической ячейке, так и наиболее полную реализацию всех приведенных выше межмолекулярных взаимодействий. Об этом же свидетельствует и несколько меньшая величина вычисленной плотности кристалла диоксина **5** по сравнению с плотностью кристалла диоксина **4**. Авторы работ [16, 17], выполнившие теоретический анализ конформаций неароматических гетероциклов, пришли к аналогичному выводу.

Таблица 1

Координаты атомов структуры диоксина 4, эквивалентные изотропные температурные параметры неводородных атомов ($B = 4/3 \cdot \sum_{i=1}^{3} \sum_{j=1}^{3} (\mathbf{a}_i \cdot \mathbf{a}_j) B(i, j)$, Å²) и изотропные

Атом	x	у	Ζ	В
1	2	3	4	5
C ₍₂₎	0.5758(2)	0.1862(4)	1.0058(1)	2.53(4)
O ₍₁₎	0.5458(2)	0.1303(3)	1.0926(1)	3.76(3)
O ₍₇₎	0.7056(2)	0.4561(4)	0.9609(1)	4.98(4)
O ₍₈₎	0.6925(2)	0.4774(3)	1.1178(1)	3.18(3)
C ₍₃₎	0.5306(2)	0.0632(4)	0.9167(2)	2.41(4)
C ₍₇₎	0.6652(2)	0.3854(4)	1.0232(2)	2.58(4)
C ₍₈₎	0.7786(2)	0.6748(5)	1.1422(2)	3.66(6)
C ₍₉₎	0.5520(2)	0.1052(4)	0.8187(1)	2.33(4)
C(10)	0.5016(2)	0.3073(5)	0.7574(2)	3.18(5)
C ₍₁₁₎	0.5167(3)	0.3331(5)	0.6630(2)	3.75(5)
C ₍₁₂₎	0.5798(2)	0.1636(5)	0.6288(2)	3.59(5)
C(13)	0.6315(2)	-0.0329(5)	0.6899(2)	3.58(5)
C ₍₁₄₎	0.6159(2)	-0.0639(5)	0.7841(2)	3.01(4)
H ₍₁₀₎	0.462(2)	0.432(5)	0.782(2)	3.4(5)*
H ₍₁₁₎	0.492(3)	0.477(6)	0.621(3)	7.0(9)*

температурные параметры атомов водорода

Окончание таблицы 1

1	2	3	4	5
H ₍₁₂₎	0.594(2)	0.178(5)	0.563(2)	4.4(6)*
H ₍₁₃₎	0.676(2)	-0.143(4)	0.665(2)	2.8(5)*
H ₍₁₄₎	0.638(2)	-0.209(6)	0.834(2)	5.4(7)*
H ₍₈₁₎	0.809(3)	0.705(6)	1.210(2)	6.3(8)*
H ₍₈₂₎	0.856(3)	0.618(7)	1.135(3)	$8(1)^{*}$
H ₍₈₃₎	0.701(4)	0.831(9)	1.101(4)	$12(1)^{*}$

* Уточнены в изотропном приближении.

Таблица 2

Координаты атомов структуры диоксина 5, эквивалентные изотропные температурные параметры неводородных атомов ($B = 4/3 \cdot \sum_{i=1}^{3} \sum_{j=1}^{3} (\mathbf{a}_{i} \cdot \mathbf{a}_{j}) B(i, j)$, Å²) и изотропные температурные параметры атомов водорода

гемпературные	параметры	атомов	водорода

	-			
Атом	x	у	Ζ	В
1	2	3	4	5
O(1)	0.85233(9)	-0.1084(1)	0.54307(8)	3.98(2)
O ₍₄₎	0.7272(1)	0.0217(1)	0.41068(7)	3.69(2)
O(7)	0.9912(2)	0.0058(1)	0.6717(1)	6.33(3)
O ₍₈₎	0.9354(1)	0.1978(1)	0.62373(8)	5.09(3)
O ₍₂₁₎	0.5971(1)	-0.3046(1)	0.5514(1)	5.29(3)
O ₍₂₂₎	0.7809(1)	-0.3123(1)	0.61834(9)	4.82(3)
C ₍₂₎	0.8599(1)	0.0237(1)	0.5412(1)	3.24(3)
C ₍₃₎	0.8009(1)	0.0881(1)	0.4743(1)	3.19(3)
C(5)	0.6804(1)	-0.0915(1)	0.4421(1)	3.26(3)
C ₍₆₎	0.7402(1)	-0.1531(1)	0.5104(1)	3.31(3)
C ₍₇₎	0.9354(1)	0.0728(2)	0.6196(1)	3.55(3)
C ₍₈₎	1.0098(2)	0.2553(2)	0.6955(1)	6.50(5)
C ₍₉₎	0.7983(1)	0.2255(1)	0.45610(9)	3.11(3)
C(10)	0.6925(1)	0.2920(2)	0.4608(1)	3.70(3)
C ₍₁₁₎	0.6891(2)	0.4205(2)	0.4435(1)	4.39(4)
C(12)	0.7907(2)	0.4839(2)	0.4210(1)	4.55(4)
C(13)	0.8957(2)	0.4176(2)	0.4149(1)	4.57(4)
C(14)	0.9004(1)	0.2890(2)	0.4319(1)	3.97(3)
C(15)	0.5679(1)	-0.1235(2)	0.3903(1)	3.40(3)
C(16)	0.4841(2)	-0.0289(2)	0.3711(1)	3.98(3)
C ₍₁₇₎	0.3802(2)	-0.0558(2)	0.3192(1)	4.87(4)
	1	1	1	1

Окончание таблицы 2

1	2	3	4	5
C ₍₁₈₎	0.3592(2)	-0.1762(2)	0.2853(1)	5.31(4)
C ₍₁₉₎	0.4423(2)	-0.2701(2)	0.3026(1)	5.38(4)
C(20)	0.5466(2)	-0.2449(2)	0.3547(1)	4.49(4)
C(21)	0.6969(1)	-0.2633(2)	0.5613(1)	3.53(3)
C(22)	0.7456(2)	-0.4222(2)	0.6701(1)	5.99(5)
H ₍₁₀₎	0.622(1)	0.247(2)	0.474(1)	4.4(4)*
H ₍₁₁₎	0.616(2)	0.465(2)	0.448(1)	6.9(5)*
H ₍₁₂₎	0.786(2)	0.575(2)	0.405(1)	6.2(5)*
H ₍₁₃₎	0.960(2)	0.464(2)	0.399(2)	6.7(5)*
H ₍₁₄₎	0.977(2)	0.243(2)	0.428(1)	5.3(4)*
H ₍₁₆₎	0.500(2)	0.058(2)	0.393(1)	5.3(4)*
H ₍₁₇₎	0.321(2)	0.018(2)	0.309(1)	6.6(5)*
H ₍₁₈₎	0.290(2)	-0.196(2)	0.241(2)	6.9(5)*
H ₍₁₉₎	0.428(2)	-0.354(2)	0.280(1)	5.7(5)*
H ₍₂₀₎	0.606(2)	-0.311(2)	0.375(1)	4.7(4)*
H ₍₈₁₎	1.009(2)	0.214(3)	0.754(2)	9.5(7)*
H ₍₈₂₎	0.981(2)	0.344(2)	0.694(2)	9.0(7)*
H ₍₈₃₎	1.091(3)	0.274(4)	0.677(3)	14(1)*
H ₍₂₂₁₎	0.721(2)	-0.486(2)	0.628(2)	7.9(6)*
H ₍₂₂₂₎	0.817(2)	-0.439(2)	0.716(2)	7.6(6)*
H ₍₂₂₃₎	0.679(3)	-0.381(3)	0.698(2)	12.1(9)*

* Уточнены в изотропном приближении.

Длины связей (d) в структурах диоксинов 4 и 5

Таблица З

Струк	тура 4	Структура 5			
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
1	2	3	4	5	6
O ₍₁₎ —C ₍₂₎	1.396(3)	O ₍₁₎ —C ₍₂₎	1.394(2)	C(11)-C(12)	1.383(3)
O ₍₁₎ —C ₍₃₎	1.373(3)	O ₍₁₎ —C ₍₆₎	1.403(2)	C ₍₁₂₎ —C ₍₁₃₎	1.381(3)
C ₍₂₎ —C _(3')	1.341(3)	O ₍₄₎ —C ₍₃₎	1.394(2)	C ₍₁₃₎ —C ₍₁₄₎	1.378(2)
C ₍₂₎ —C ₍₇₎	1.482(3)	O ₍₄₎ —C ₍₅₎	1.394(2)	C ₍₅₎ —C ₍₁₅₎	1.472(2)
O ₍₈₎ —C ₍₇₎	1.183(3)	C ₍₂₎ —C ₍₃₎	1.331(2)	C ₍₁₅₎ —C ₍₁₆₎	1.388(2)
O ₍₇₎ —C ₍₇₎	1.330(2)	C(5)-C(6)	1.336(2)	C(15)-C(20)	1.395(2)
$O_{(8)}$ — $C_{(8)}$	1.447(3)	C ₍₂₎ —C ₍₇₎	1.475(2)	C(16)-C(17)	1.382(2)
C(3)-C(9)	1.476(3)	O ₍₇₎ —C ₍₇₎	1.188(2)	C ₍₁₇₎ —C ₍₁₈₎	1.377(3)
$C_{(9)}$ — $C_{(10)}$	1.399(3)	O ₍₈₎ —C ₍₇₎	1.318(2)	$C_{(18)}$ — $C_{(19)}$	1.373(3)

Окончание таблицы 3

1	2	3	4	5	6
C ₍₉₎ —C ₍₁₄₎	1.382(3)	O ₍₈₎ —C ₍₈₎	1.434(2)	C ₍₁₉₎ —C ₍₂₀₎	1.383(3)
$C_{(10)} - C_{(11)}$	1.380(3)	C ₍₃₎ —C ₍₉₎	1.472(2)	C ₍₆₎ —C ₍₂₁₎	1.478(2)
$C_{(11)} - C_{(12)}$	1.375(4)	C ₍₉₎ —C ₍₁₀₎	1.387(2)	O ₍₂₁₎ —C ₍₂₁₎	1.206(2)
C(12)-C(13)	1.377(4)	C ₍₉₎ —C ₍₁₄₎	1.396(2)	O ₍₂₂₎ —C ₍₂₁₎	1.324(2)
C(13)-C(14)	1.384(3)	$C_{(10)} - C_{(11)}$	1.377(2)	O ₍₂₂₎ —C ₍₂₂₎	1.452(3)

Таблица4

Основные валентные углы (ω) в структуре диоксина 4

Угол	ω, град.	Угол	ω, град.
$C_{(2)}$ — $O_{(1)}$ — $C_{(3)}$	116.4(2)	O ₍₇₎ —C ₍₇₎ —O ₍₈₎	124.4(2)
C ₍₇₎ —O ₍₈₎ —C ₍₈₎	115.3(2)	$C_{(3)}$ $C_{(9)}$ $C_{(10)}$	120.4(2)
$O_{(1)} - C_{(2)} - C_{(3')}$	122.4(2)	$C_{(3)}$ $C_{(9)}$ $C_{(14)}$	119.8(2)
$O_{(1)} - C_{(2)} - C_{(7)}$	113.7(2)	$C_{(10)}$ $C_{(9)}$ $C_{(14)}$	119.7(2)
$C_{(3')} - C_{(2)} - C_{(7)}$	123.9(2)	$C_{(9)}$ $C_{(10)}$ $C_{(11)}$	119.0(2)
$O_{(1)} - C_{(3)} - C_{(2')}$	121.2(2)	$C_{(10)}$ $C_{(11)}$ $C_{(12)}$	121.0(2)
$O_{(1)} - C_{(3)} - C_{(9)}$	110.5(2)	$C_{(11)}$ $C_{(12)}$ $C_{(13)}$	120.0(2)
$C_{(2')} - C_{(3)} - C_{(9)}$	128.3(2)	$C_{(12)}$ $C_{(13)}$ $C_{(14)}$	119.8(3)
C ₍₂₎ —C ₍₇₎ —O ₍₇₎	124.6(2)	$C_{(9)} - C_{(14)} - C_{(13)}$	120.4(2)
$C_{(2)}$ $C_{(7)}$ $O_{(8)}$	110.9(2)		

Основные валентные углы (ω) в структуре диоксина 5

Таблица5

Угол	ω, град.	Угол	ω, град.
1	2	3	4
$C_{(2)}$ $O_{(1)}$ $C_{(6)}$	112.6(1)	$O_{(1)} - C_{(6)} - C_{(21)}$	114.4(1)
$C_{(3)}$ $O_{(4)}$ $C_{(5)}$	115.6(1)	$C_{(5)}$ $C_{(6)}$ $C_{(21)}$	126.2(1)
$C_{(7)}$ $O_{(8)}$ $C_{(8)}$	117.0(1)	O ₍₇₎ —C ₍₇₎ —O ₍₈₎	124.4(1)
$C_{(21)}$ $O_{(22)}$ $C_{(22)}$	115.5(1)	O ₍₇₎ —C ₍₇₎ —C ₍₂₎	122.9(1)
$O_{(1)} - C_{(2)} - C_{(3)}$	119.6(1)	$O_{(8)}$ $C_{(7)}$ $C_{(2)}$	112.7(1)
$O_{(1)} - C_{(2)} - C_{(7)}$	111.6(1)	$C_{(3)}$ $C_{(9)}$ $C_{(10)}$	119.6(1)
$C_{(3)}$ $- C_{(2)}$ $- C_{(7)}$	128.8(1)	$C_{(3)}$ $C_{(9)}$ $C_{(14)}$	120.7(1)
$O_{(4)} - C_{(3)} - C_{(2)}$	118.8(1)	$C_{(10)}$ $C_{(9)}$ $C_{(14)}$	119.7(1)
O ₍₄₎ —C ₍₃₎ —C ₍₉₎	111.7(1)	$C_{(5)}$ $C_{(15)}$ $C_{(16)}$	119.3(1)
$C_{(2)}$ $- C_{(3)}$ $- C_{(9)}$	129.5(1)	$C_{(5)}$ $-C_{(15)}$ $-C_{(20)}$	121.6(1)

Окончание таблицы 5

1	2	3	4
$O_{(4)}$ $C_{(5)}$ $C_{(6)}$	118.6(1)	$C_{(16)}$ $C_{(15)}$ $C_{(20)}$	118.9(1)
$O_{(4)}$ $C_{(5)}$ $C_{(15)}$	111.1(1)	$O_{(21)}$ $C_{(21)}$ $O_{(22)}$	123.8(2)
$C_{(6)}$ $C_{(5)}$ $C_{(15)}$	130.4(1)	$O_{(21)}$ $C_{(21)}$ $C_{(6)}$	124.0(1)
$O_{(1)} - C_{(6)} - C_{(5)}$	119.3(1)	$O_{(22)} - C_{(21)} - C_{(6)}$	112.2(1)

Основные торсионные углы (т) в структуре диоксина 4

Угол Угол τ, град. τ, град. $O_{(1)} - C_{(2)} - C_{(3')} - O_{(1')}$ $O_{(1')} - C_{(2')} - C_{(3)} - O_{(1)}$ -1.8(3)1.8(3) $C_{(2')} - C_{(3)} - O_{(1)} - C_{(2)}$ $C_{(2)} - C_{(3')} - O_{(1')} - C_{(2')}$ 1.7(3) -1.7(3) $C_{(3)}$ $O_{(1)}$ $C_{(2)}$ $C_{(3')}$ $C_{(3')} - O_{(1')} - C_{(2')} - C_{(3)}$ -1.7(3)1.7(3) $C_{(7)} - C_{(2)} - C_{(3')} - C_{(9')}$ $C_{(8)} - O_{(8)} - C_{(7)} - C_{(2)}$ -4.0(3) -179.6(2) $O_{(1)} - C_{(2)} - C_{(7)} - O_{(7)}$ 177.6(2) $C_{(8)}$ $O_{(8)}$ $C_{(7)}$ $O_{(7)}$ -0.7(3) $O_{(1)} - C_{(2)} - C_{(7)} - O_{(8)}$ $O_{(1)} - C_{(3)} - C_{(9)} - C_{(10)}$ -108.3(2)-3.4(2) $C_{(3')}$ $C_{(2)}$ $C_{(7)}$ $O_{(7)}$ $C_{(2')}$ $C_{(3)}$ $C_{(9)}$ $C_{(10)}$ 0.0(4) 72.0(3) $C_{(3')} - C_{(2)} - C_{(7)} - O_{(8)}$ 178.9(2)

Таблица 7

Таблица б

Основные торсионные углы (т) в структуре диоксина 5

Угол	τ, град.	Угол	τ, град.
1	2	3	4
$C_{(6)}$ $O_{(1)}$ $C_{(2)}$ $C_{(3)}$	-34.3(2)	$C_{(3)}$ $C_{(2)}$ $C_{(7)}$ $O_{(7)}$	-174.2(2)
$C_{(6)}$ $O_{(1)}$ $C_{(2)}$ $C_{(7)}$	144.8(1)	$C_{(3)}$ $C_{(2)}$ $C_{(7)}$ $O_{(8)}$	4.6(2)
$C_{(2)}$ $O_{(1)}$ $C_{(6)}$ $C_{(5)}$	35.1(2)	$O_{(4)}$ $C_{(3)}$ $C_{(9)}$ $C_{(10)}$	62.5(2)
$C_{(2)}$ $O_{(1)}$ $C_{(6)}$ $C_{(21)}$	-141.4(1)	$O_{(4)}$ $C_{(3)}$ $C_{(9)}$ $C_{(14)}$	-115.8(1)
$C_{(5)}$ $O_{(4)}$ $C_{(3)}$ $C_{(2)}$	27.1(2)	$C_{(2)}$ $C_{(3)}$ $C_{(9)}$ $C_{(10)}$	-116.2(2)
$C_{(5)}$ $O_{(4)}$ $C_{(3)}$ $C_{(9)}$	-151.7(1)	$C_{(2)}$ $C_{(3)}$ $C_{(9)}$ $C_{(14)}$	65.5(2)
$C_{(3)}$ $O_{(4)}$ $C_{(5)}$ $C_{(6)}$	-26.2(2)	$O_{(4)}$ $C_{(5)}$ $C_{(6)}$ $O_{(1)}$	-5.3(2)
$C_{(3)}$ $O_{(4)}$ $C_{(5)}$ $C_{(15)}$	154.3(1)	$O_{(4)}$ $C_{(5)}$ $C_{(6)}$ $C_{(21)}$	170.7(1)
$C_{(8)}$ $O_{(8)}$ $C_{(7)}$ $O_{(7)}$	1.2(3)	$C_{(15)}$ $C_{(5)}$ $C_{(6)}$ $O_{(1)}$	174.1(1)
$C_{(8)}$ $O_{(8)}$ $C_{(7)}$ $C_{(2)}$	-177.6(1)	$C_{(15)} - C_{(5)} - C_{(6)} - C_{(21)}$	-9.9(3)
$C_{(22)}$ $O_{(22)}$ $C_{(21)}$ $O_{(21)}$	0.1(2)	$O_{(4)}$ $C_{(5)}$ $C_{(15)}$ $C_{(16)}$	-43.6(2)

Окон	чание	табли	цы 7
------	-------	-------	------

1	2	3	4
$C_{(22)}$ $O_{(22)}$ $C_{(21)}$ $C_{(6)}$	-179.3(1)	$O_{(4)}$ $C_{(5)}$ $C_{(15)}$ $C_{(20)}$	132.1(2)
$O_{(1)}$ $C_{(2)}$ $C_{(3)}$ $O_{(4)}$	3.8(2)	$C_{(6)}$ $C_{(5)}$ $C_{(15)}$ $C_{(16)}$	136.9(2)
$O_{(1)} - C_{(2)} - C_{(3)} - C_{(9)}$	-177.6(1)	$C_{(6)}$ $C_{(5)}$ $C_{(15)}$ $C_{(20)}$	-47.4(2)
$C_{(7)}$ $C_{(2)}$ $C_{(3)}$ $O_{(4)}$	-175.2(1)	$O_{(1)}$ $C_{(6)}$ $C_{(21)}$ $O_{(21)}$	170.0(1)
$C_{(7)}$ $C_{(2)}$ $C_{(3)}$ $C_{(9)}$	3.5(3)	$O_{(1)}$ $C_{(6)}$ $C_{(21)}$ $O_{(22)}$	-10.6(2)
$O_{(1)} - C_{(2)} - C_{(7)} - O_{(7)}$	6.8(2)	$C_{(5)}$ $C_{(6)}$ $C_{(21)}$ $O_{(21)}$	-6.2(3)
$O_{(1)} - C_{(2)} - C_{(7)} - O_{(8)}$	-174.4(1)	$C_{(5)}$ $- C_{(6)}$ $- C_{(21)}$ $- O_{(22)}$	173.1(1)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определены на столике типа Boetius. ИК спектры сняты на спектрометрах UR-20 и JASCO Model A-102 в вазелиновых пастах, спектры $\rm MMP~^1H$ – на приборе Bruker 250.

Рентгеноструктурное исследование. Кристаллы диоксина 4, $C_{20}O_6H_{16}$, т. пл. $211-212^{\circ}$ С, моноклинные. При 20° С a = 11.808(8), b = 5.4988(9), c = 13.794(6) Å, $\beta = 110.22(4)^{\circ}$, V = 840.5(7) Å³, Z = 2, $d_{\text{выч}} = 1.39$ г/см³, пространственная группа P2₁/n. Проведен эмпирический учет поглощения (µCu 8.2 см⁻¹).

Кристаллы диоксина 5, $C_{20}O_6H_{16}$, т. пл. 145–147° С, моноклинные. При 20° С a = 11.264(2), b = 10.533(6), c = 14.610(6) Å, $\beta = 93.71(3)^\circ$, V = 1729.7(9) Å³, Z = 4, $d_{BHY} = 1.35$ г/см³, пространственная группа P2₁/с. Проведен эмпирический учет поглощения (µCu 8.0 см⁻¹).

Параметры ячеек и интенсивности 1978 (4) и 7416 (5) отражений, из которых 1380 (4) и 5924 (5) с $I \ge 3\sigma$, измерены на автоматическом 4-кружном дифрактометре Enraf-Nonius CAD-4 при 20 °C (λ CuK_{α} = 1.5418 Å, графитовый монохроматор, $\omega/2\theta$ -сканирование, $\theta \le 56^\circ$). Падения интенсивностей трех контрольных отражений за время съемки образцов не наблюдалось.

Структуры расшифрованы прямым методом по программе SIR [18] и уточнены в изотропном, затем в анизотропном приближении. Из разностных рядов электронной плотности выявлены все атомы водорода и уточнены в изотропном приближении на заключительной стадии. Окончательные значения факторов расходимости следующие: в структуре диоксина 4 R = 0.0582, $R_w = 0.0748$ по 1195 отражениям, в структуре диоксина 5 R = 0.0606, $R_w = 0.0897$ по 5405 отражениям с $F^2 \ge 3\sigma$. Все расчеты выполнены по комплексу программ MolEN [19] на компьютере DEC Alpha Station 200. Для расчетов межмолекулярных взаимодействий и графического представления геометрии молекул использована программа PLATON [20]. Координаты атомов структур для молекулы диоксина 4 приведены в табл. 1, для молекулы диоксина 5 – в табл. 2. Основные геометрические параметры молекул диоксинов 4 и 5 (длины связей, валентные и торсионные углы) приведены в табл. 3–7.

Взаимодействие метилового эфира фенилхлорпировиноградной кислоты 1 с фталимидом калия. К суспензии 2.80 г (15 ммоль) фталимида калия в 10 мл хлорбензола при 20 °С добавляют при перемешивании 1.60 г (7.5 ммоль) α -хлоркетона 1, температуру реакционной смеси поднимают до 100 °С и продолжают перемешивание еще 8 ч. После охлаждения растворитель отгоняют, остаток перекристаллизовывают из метанола и отделяют 1.90 г (86 %) фталимида, маточный раствор упаривают досуха. Перекристаллизацией остатка из пропанола-2 получают 2,5-диметоксикарбонил-3,6-дифенил-1,4-диоксин 4; выход 0.95 г (72 %). Т. пл. 211–212 °С (из метанола). ИК спектр: 1735, 1650, 1450, 1360, 1305, 1200, 1140, 1100, 1030, 840, 770, 720 см⁻¹. Спектр ЯМР ¹Н (ДМСО + ацетон-d₆): 3.67(3H, с, CH₃); 7.47–7.70 (5H, м, C₆H₅). Найдено, %: С 68.31; Н 4.50. С₂₀H₁₆O₆. Вычислено, %: С 68.19; Н 4.54.

Маточный раствор пропанола-2 после выделения диоксина **4** упаривают и перекристаллизацией остатка из пропанола-2 получают 2,6-диметоксикарбонил-3,5-дифенил-1,4-диоксин **5**; выход 65 мг (5 %). Т. пл. 145–147 °С. ИК спектр: 1735, 1655, 1450, 1355, 1300, 1210, 1145, 1100, 1035, 840, 775 см⁻¹. Спектр ЯМР ¹Н (CDCl₃): 3.69 (3H, с, CH₃); 7.45–7.72 (5H, м, C₆H₃). Найдено, %: С 68.45; H 4.41. $C_{20}H_{16}O_6$. Вычислено, %: С 68.19; H 4.54.

Взаимодействие α-хлоркетона 1 с имидазолидом натрия. Аналогичным образом заменой фталимида калия на имидазолид натрия получают диоксин 4 (выход 63%), идентичный описанному выше.

Присоединение метанола к диоксину 4. В метанольном растворе метилата натрия, приготовленном растворением 0.05 г натрия в 15 мл метанола, растворяют 0.80 г диоксина 4 и кипятят смесь 30 мин. После охлаждения кристаллизуется 3-метокси-2,5- диметоксикарбонил-3,6-дифенил-2,3-дигидро-1,4-диоксин (6). Выход 0.67 г (77 %). Т. пл. 158.5–160 °С (из метанола), что соответствует температуре плавления заведомого образца [2]. Смешанная проба с этим образцом депрессии температуры плавления не дает.

Работа поддержана Японским обществом содействия науке в мире (JSPS), грант RC 39626110.

СП ИСОК ЛИТЕРАТУРЫ

- 1. В. А. Мамедов, И. А. Литвинов, И. А. Нуретдинов, *Изв. АН СССР. Сер. хим.*, № 10, 2454 (1990).
- 2. В. А. Мамедов, И. А. Литвинов, А. Т. Х. Ленстра, Ю. А. Ефремов, В. А. Наумов, И. А. Нуретдинов, Изв. АН СССР. Сер. хим., № 6, 1427 (1991).
- 3. В. А. Мамедов, И. А. Нуретдинов, Ю. А. Ефремов, Ф. Г. Сибгатуллина, Изв. АН СССР. Сер. хим., № 7, 1695 (1988).
- В. А. Мамедов, И. А. Нуретдинов, Ю. А. Ефремов, Ф. Г. Сибгатуллина, Изв. АН СССР. Сер. хим., № 4, 962 (1989).
- 5. В. А. Мамедов, И. А. Нуретдинов, В. А. Полушина, Изв. АН СССР. Сер. хим., № 6, 1395 (1989).
- 6. V. A. Mamedov, L. V. Krokhina, Ya. A. Levin, XI International Conference on Chemistry of Phosphorus Compounds, Abstr., Kazan, 1996, 140.
- 7. V. A. Mamedov, A. T. Gubaidullin, I. A. Litvinov, S. Tsuboi, Heterocycles, 52, N 3, 1385 (2000).
- 8. M. S. Gibson, R. W. Bradshaw, Angew. Chem., 80, 986 (1968).
- 9. T. Sakai, A. Yamawaki, T. Katayama, H. Okada, M. Utaka, A. Takeda, *Bull. Chem. Soc. Jpn.*, **60**, 1067(1987).
- 10. C. Rappe, L. Knutson, N. J. Turro, R. B. Gagosian, J. Amer. Chem. Soc., 92, 2032 (1970).
- 11. J. F. Pazos, J. G. Pacifici, G. O. Pierson, D. B. Sclore, F. D. Greene, J. Org. Chem., **39**, 1930 (1974).
- 12. J. C. Craig, A. Dinner, P. J. Mulligan, J. Org. Chem., 37, 3539 (1972).
- 13. Cambridge Structural Database System. Version 5.14. November 1997.
- V. A. Mamedov, I. A. Litvinov, O. N. Kataeva, I. Kh. Rizvanov, I. A. Nuretdinov, *Monatsh. Chem.*, 125, 427 (1994).
- 15. F. N. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, N 12, S1 (1987).
- V. S. Mastryukov, K.-H. Chen, S. H. Simonsen, N. L. Allinger, J. E. Boggs, J. Mol. Struct., 413–414, 1 (1997).
- 17. O. Y. Borbulevych, O. V. Shishkin, J. Mol. Struct., 446, 11 (1998).
- 18. A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, Acta crystallogr. A, 47, 744 (1991).
- 19. L. H. Straver, A. J. Schierbeek, *MolEN. Structure Determination System. Vol.1. Program Description.* Nonius B.V., 1994, 180.
- 20. A. L. Spek, Acta Crystallogr. A, 46, 34 (1990).

Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра РАН, Казань 420088, Россия e-mail: mamedov@iopc.kcn.ru Поступило в редакцию 05.01.99

^a Department of Environmental Chemistry and Materials, Okayama University, Tsushima, Okayama 700, Japan