А. В. Гулевская, В. В. Горюненко, А. Ф. Пожарский

ПУРИНЫ, ПИРИМИДИНЫ И КОНДЕНСИРОВАННЫЕ СИСТЕМЫ НА ИХ ОСНОВЕ

17*. ВЗАИМОДЕЙСТВИЕ 6,8-ДИМЕТИЛ-3-ХЛОРПИРИМИДО[4,5-с]ПИРИДАЗИН--5,7(6H,8H)ДИОНА С С-НУКЛЕОФИЛАМИ

6,8-Диметил-3-хлорпиримидо[4,5-*c*]пиридазин-5,7(6H,8H)-дион реагирует с малонодинитрилом, эфирами циануксусной кислоты и нитро-метаном в присутствии оснований, образуя продукты нуклеофильного замещения атома хлора. Полученные соединения с остатками эфиров циануксусной кислоты и нитрометана в растворах CHCl₃ и ДМСО существуют исключительно в хелатированной метилиденовой форме. Взаимодействие пиридазиноурацила с метилмагнийхлоридом и бутил-литием приводит к образованию продуктов нуклеофильного присоедине-ния по атому C₍₄₎.

Ключевые слова: 6,8-диметил-3-хлорпиримидо[4,5-*c*]пиридазин-5,7(6H,8H)-дион, СН-кислоты, металлоорганические соединения, С-нуклеофилы, нуклеофильное замещение.

При взаимодействии 1,3-диметил-6-хлорлумазина с алкиламинами и карбанионами СН-кислот образуются продукты нуклеофильного замещения атома хлора и атома водорода в положении 7 [2, 3]. Целью настоящей работы было изучение реакционной способности изомера 1,3-диметил-6-хлорлумазина – пиридазиноурацила 1 по отношению к С-нуклеофилам, в качестве которых были выбраны металлоорганические соединения и некоторые СН-кислоты (малоновый и циануксусный эфиры, малонодинитрил, нитрометан и др.). Для ионизации СН-кислот использовали метилат натрия, диэтиламин и амид калия.

Мы нашли, что при нагревании пиридазиноурацила 1 с малонодинитрилом и эфирами циануксусной кислоты в среде метилат натрияметанол образуются исключительно продукты нуклеофильного замещения атома хлора остатками СН-кислот 2а-с. В тех же условиях реакция с малоновым эфиром и 1,3-диметилбарбитуровой кислотой не протекает даже при длительном кипячении. Характер взаимодействия пиридазиноурацила 1 с СН-кислотами в диэтиламине существенно не Так, при использовании избытка метилцианоацетата, изменяется. этилцианоацетата или малонодинитрила образуются соли За-с, из которых при подкислении могут быть выделены соединения 2а-с.

Не обнаружено какой-либо отчетливой зависимости между СН-кислотностью нуклеофила [4] и результатом реакции. Повидимому, важным обстоятельством является не только сама возможность образования карбаниона, но и его нуклеофильность. Так, в случае малонодинитрила (р K_a 11.2) выход соединений **2a** и **3a** составляет 82 и

^{*} Сообщение 16 см. [1].

2, 3a X = CN, b X = CO₂Me, c X = CO₂Et; 2, 3b R = Me, c R = Et

43% соответственно, тогда как для менее кислых эфиров циануксусной кислоты ($pK_a \sim 12$) он не превышает 32%. Осуществить аналогичные превращения с ацетоуксусным эфиром, ацетилацетоном ($pK_a 9.0$) и нитрометаном ($pK_a 10.2$), образующими менее нуклеофильные анионы, не удалось: при комнатной температуре реакция не протекала совсем, а при длительном кипячении наблюдалось сильное осмоление. Однако взаимодействие пиридазиноурацила 1 с нитрометаном возможно в жидком аммиаке в присутствии амида калия. Выход 3-нитрометильного производного 4 – 79%. Некоторые характеристики полученных соединений представлены в табл. 1–3.

Поскольку для соединений 2 и 4 возможна метил-метилиденовая таутомерия, мы рассмотрели также вопрос о том, какая из двух таутомерных структур 2 или 2', 4 или 4' предпочтительнее.

В ИК спектрах соединений 2 частоты поглощения групп С≡N (2150– 2200 см⁻¹) и С=О (1645 см⁻¹) существенно понижены, что свидетельствует об их вовлечении в цепь сопряжения, возможном лишь для метилиденовой формы 2'. К тому же в спектрах ЯМР ¹Н соединений 2 и 4 в ДМСО-d₆ отсутствует сигнал метинового протона, отвечающего ароматической структуре. В случае соединений 2b,с и 4 реализуется, поТаблица 1

Характеристика синтезированных соединений

Выход, %			82	11	15	43	32	19	62
Спектр ЯМР ¹ Н, <i>ð</i> , м.л.	CDCl ₃	HN		14	14.02				
		4-H		8.39 д (J = 2.33 Гц)	$(J = 1.52 \Gamma \mu)$	7.96	8.54	8.74	
		N-Me		3.44; 3.53	3.44; 3.52	3.44; 3.62	3.44; 3.56	3.44; 3.59	
		HN		13.92	13.92				13.23
	ДМСО-d ₆	4-H	8.51	7.96	7.93	7.23	8.54	8.77	8.66
		N-Me	3.20; 3.51	3.28; 3.49	3.29; 3.40	3.26; 3.57	3.25; 3.56	3.28; 3.61	3.22; 3.36
Т. пл., °С			>300	260-262	221–224	232–235	240–242	202-205	229–230 (разл.)
<u>Найдено, %</u> Вычислено, %	Z		<u>32.7</u> 32.8	<u>24.4</u> 24.2	<u>23.3</u> 23.1	<u>29.6</u> 29.8	<u>23.4</u> 23.2	<u>22.1</u> 22.3	<u>27.7</u> 27.9
	Н		$\frac{3.3}{3.1}$	$\frac{3.7}{3.8}$	$\frac{4.1}{4.3}$	<u>5.8</u> 5.8	<u>6.2</u> 6.1	<u>6.2</u> 6.4	<u>3.8</u> 3.6
	ζ	J	<u>51.8</u> 51.6	<u>49.5</u> 49.8	<u>51.6</u> 51.5	<u>54.9</u> 54.7	<u>53.0</u> 53.0	<u>54.1</u> 54.3	<u>43.3</u> 43.0
-	Бругто-формула		$C_{11}H_8N_6O_2$	$C_{12}H_{11}N_5O_4$	$C_{13}H_{13}N_5O_4$	$C_{15}H_{19}N_7O_2$	$C_{16}H_{22}N_6O_4$	$C_{17}H_{24}N_6O_4$	$C_9H_9N_5O_4$
Соединение			2a	2b	2c	3a	3b	3c	4

Таблица 2

ИК и УФ спектры синтезированных соединений

		CO	lg <i>c</i>	5.02	4.23	4.30	4.30	4.26	3.76	4.43
	УФ спектры	WIT	$\lambda_{ m max},$ HM	430	530	530	550	540	540	430
		Cl ₃	lg <i>e</i>		4.56	4.69	5.40	4.60	4.35	
		CH	$\lambda_{ m max}$, HM		540	538	570	550	550	
		MeOH	lg <i>e</i>	3.92	3.32	3.54	3.07	3.43	3.41	2.95
			$\lambda_{ m max},$ HM	430	495	495	530	490	500	418
	ИК-спектр, v, cм ⁻¹	HN		3300-600	3200-3500	3350-3400	3250-600	3200-3600	3200-600	3300–3500
		C=O C≡N		2180	2200	2200	2150, 2180	2160	2160	
				1660, 1730	1687, 1731, 1759	1687, 1731, 1759	1685, 1720	1640, 1690, 1725	1645, 1690, 1720	1694, 1731
		Соединение		2a	2b	2c	3a	3b	3c	4

видимому, хелатированная форма **2'b**, **c** и **4'**, о чем можно судить по слабопольному смещению сигнала протона NH (δ 13–14 м. д.).

Метил-метилиденовая таутомерия весьма чувствительна к растворителю [5-7]. Соединения 2а и 4 практически нерастворимы в хлороформе, поэтому спектры ЯМР ¹Н в CDCl₃ удалось снять только для **2b,с**. Однако, как и в ДМСО-d₆, в них отсутствует сигнал метинового протона, а сигнал протона 4-Н расщеплен в дублет (J = 1.5-2.3 Гц) за счет спин-спинового взаимодействия с протоном NH. Таким образом, соединения 2b,с существуют в метилиденовой форме и в растворе хлороформа. УФ спектры полученных веществ подтверждают этот вывод (табл. 2). Соединения 2-4 ярко окрашены, причем окраска хелатированных соединений 2'b,с заметно глубже, чем дицианометилпроиз-водного **2'а**, в котором образование хелатной структуры невозможно (разница λ_{max} для длинноволновой полосы поглощения 65-100 нм). Величины λ_{\max} соединений 2b,с в растворах CHCl₃ и ДМСО близки по значениям. В метаноле наблюдается гипсохромный сдвиг максимума поглощения на 30-50 нм и незначительный гипохромный эффект. По-видимому, протонные растворители облегчают прототропный переход и слегка повышают концентрацию метильной формы. Для соединений 2b,c И соответствующих им солей **3b,с** в каждом из растворителей $\Delta \lambda_{max}$ не превышает 5-10 нм, в то время как для дицианметилпроизводных 2а, 3а переход к аниону сопровождается сильным батохромным сдвигом ($\Delta \lambda_{max}$ 100–120 нм).

В спектре ЯМР ¹Н соли **3а** наблюдается ожидаемое смещение сигнала 4-Н в сильное поле на ~1.3 м. д. по сравнению с неионизированной молекулой **2а**, в солях же **3b,с** сигнал протона 4-Н несколько неожиданно смещен на 0.7-0.8 м. д. в более слабое поле по сравнению с аналогичным сигналом в спектрах **2b,с**. В последнем случае, вероятно, реализуется конформация, отраженная в структурах **3b,с**, в которой протон 4-Н дезэкранируется карбонильной группой.

Несколько иначе пиридазиноурация **1** реагирует с металлоорганическими соединениями. Так, реакция с эквимолярным количеством метилмагнийхлорида и бутиллития приводит к образованию продуктов нуклеофильного присоединения **5а,b** с выходом 58 и 21 % соответственно.

5a R = Me, b R = Bu

В спектре ЯМР ¹Н соединения **5а** имеется дублетный сигнал группы 4-СН₃ (1.34 м. д.), квартет метинового протона 4-Н (3.84 м. д.) и уширенный сигнал NH, исчезающий после дейтерирования (8.32 м. д.). Полученные данные являются первым примером взаимодействия азиноурацилов с металлоорганическими соединениями (ср. [8]).

Причиной двойственной реакционной способности пиридазиноурацила

1 по отношению к С-нуклеофилам, как и в случае 1,3-диметил-6хлорлумазина, является недостаточная подвижность атома хлора, обусловленная электронодонорным эффектом атома азота пиррольного типа в положении 8. В условиях кинетического контроля нуклеофил атакует наиболее электронодефицитный [1] атом $C_{(4)}$, тогда как при нагревании образуются термодинамически более стабильные продукты нуклеофильного замещения атома $Cl_{(3)}$. Вероятно также, что положение 4 в молекуле 1 отчасти экранировано карбонильной группой $C_{(5)}=O$, поэтому более объемные CH-кислоты трудно реагируют с пиридазиноурацилом 1 при комнатной температуре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе UR-20 и Specord IR-71 в вазелиновом масле. Спектры ЯМР ¹Н сняты на спектрометре Bruker-250. Температуры плавления измерялись на приборе ПТП в запаянных капиллярах. Контроль за ходом реакции и индивидуальностью полученных соединений осуществляли с помощью TCX на Al_2O_3 3–4 ст. акт. по Брокману, элюент хлороформ, проявление парами иода.

Исходный 6,8-диметил-3-хлорпиримидо[4,5-*c*]пиридазин-5,7(6H,8H)-дион 1 получен по методу работы [9].

(2,3,5,6,7,8-Гексагидро-5,7-диоксо-6,8-диметилпиримидо[4,5-с]пиридазин-3-

илиден)ма-лоодинитрил (2а). А. К раствору 46 мг (2 ммоль) натрия в 2 мл метанола добавляют при перемешивании 132 мг (1.67 ммоль) малонодинитрила и через 3 мин 227 мг (1 ммоль) пиридазиноурацила 1. Реакционную смесь нагревают до кипения, раствор приобретает темно-красную окраску, исходное вещество растворяется. Через 5–7 мин выпадает желтый осадок. Смесь охлаждают, осадок отфильтровывают, промывают спиртом и эфиром, перекристаллизовывают из воды. Выход 210 мг (82 %).

Б. Соединение 2а получают подкислением соли За разбавленной HCl.

Метиловый эфир (2,3,5,6,7,8-гексагидро-5,7-диоксо-6,8-диметилпиримидо[4,5-*c*]пиридазин-3-илиден циануксусной кислоты (2b). А. Реакцию проводят аналогично предыдущему опыту, используя в качестве СН-кислоты метилцианоацетат. Смесь кипятят 20 мин (много смол!). Охлаждают в холодильнике в течение дня. Осадок отфильтровывают, подкисляют конц. HCl (3 капли), упаривают досуха. Остаток обрабатывают водой (4–5 мл), отфильтровывают ярко-красный осадок, перекристаллизовывают из разбавленной уксусной кислоты, 1 : 1. Выход 32 мг (11 %).

Б. Соединение 2b получают подкислением соли 3b разбавленной HCl.

Этиловый эфир (2,3,5,6,7,8-гексагидро-5,7-диоксо-6,8-диметилпиримидо[4,5-*c*]пиридазин-3-илиден)циануксусной кислоты (2с). А. Соединение 2с получают аналогично соединению 2b из пиридазиноурацила 1 и этилцианоацетата.

Б. Соединение 2с получают подкислением соли 3с разбавленной HCl.

Диэтиламмониевая соль (2,3,5,6,7,8-гексагидро-5,7-диоксо-6,8-диметилпиримидо[4,5-с]пиридазин-3-илиден)малонодинитрила (3а). К раствору 165 мг (2.5 ммоль) малонодинитрила в 5 мл диэтиламина добавляют 227 мг (1 ммоль) пиридазиноурацила 1; при этом образуется раствор красного цвета. Реакционную смесь кипятят 5 мин. Выпадает красный осадок. После охлаждения продукт реакции отфильтровывают, промывают спиртом и эфиром, перекристаллизовывают из изопропанола. Выход 140 мг (43 %).

Диэтиламмониевая соль метилового эфира (2,3,5,6,7,8-гексагидро-5,7-диоксо-6,8диметилпиримидо[4,5-с]пиридазин-3-илиден)циануксусной кислоты (3b). Получают аналогично соединению 3a, используя в качестве СН-кислоты метилцианоацетат (0.25 мл, 2.5 ммоль). Реакционную смесь кипятят 3 ч. Оставляют на ночь. Выпавший красный осадок отфильтровывают, промывают спиртом и эфиром, перекристаллизовывают из изопропанола. Выход 113 мг (32 %).

Диэтиламмониевая соль этилового эфира (2,3,5,6,7,8-гексагидро-5,7-диоксо-6,8диметилпиримидо[4,5-с]пиридазин-3-илиден)циануксусной кислоты (3с). Получают аналогично соединению 3а, используя в качестве СН-кислоты этилцианоацетат (0.25 мл, 2.5 ммоль). Реакционную смесь кипятят 3 ч. Оставляют на ночь. Выпавший красный осадок отфильтровывают, промывают спиртом и эфиром, перекристаллизовывают из изопропанола. Выход 73 мг (19 %). (2,3,5,6,7,8-Гексагидро-5,7-диоксо-6,8-диметилпиримидо[4,5-с]пиридазин-3-илиден)нитрометан (4). К раствору 60 мг (1.5 ммоль) калия в 20 мл жидкого аммиака при -50 – -40 °C добавляют 0.8 мл (1.5 ммоль) нитрометана и через 10 мин 100 мг (0.44 ммоль) пиридазинурацила 1. Реакционную смесь перемешивают при указанной температуре в течение 1 ч. В ходе реакции образуется раствор оранжевого цвета. Убирают охлаждение и дают аммиаку свободно испаряться. Сухой остаток экстрагируют 15 мл хлороформа (для отделения непрореагировавшего исходного вещества, регенерировано 20 мг). Нерастворившийся в хлороформе продукт обрабатывают 10 мл уксусной кислоты. Упаривают темно-оранжевый раствор досуха, обрабатывают 7 мл воды и отфильтровывают осадок горчичного цвета, промывают водой, спиртом, эфиром. Выход 70 мг (79 %).

4,6,8-Триметил-3-хлор-1,4-дигидропиримидо[**4,5-***с*]пиридазин-5,7(6**H**, **8H**)-дион (5а). Реакцию проводят в атмосфере азота. К перемешиваемому раствору 227 мг (1 ммоль) соединения **1** в 50 мл диэтилового эфира добавляют по каплям 0.6 мл 3М раствора метилмагнийхлорида в гексане (2 ммоль). Через 30 мин отгоняют эфир под уменьшенным давлением. Остаток нейтрализуют насыщенным раствором NH₄Cl и экстрагируют хлороформом (2 × 15 мл). Экстракт концентрируют и пропускают через колонку с Al₂O₃ (элюент хлороформ). Отбирают фракцию R_f 0.2. Получают 145 мг (58 %) соединения **5а** в виде бесцветного масла. ИК спектр: 1600, 1620 (кольцо), 1690, 1715 (С=О), 2800–3400 см⁻¹ (ас. NH). Спектр ЯМР ¹H (CDCl₃): 1.35 (3H, д, J = 6.83 Гц, C-Me); 3.45 (3H, с, 8-Me); 3.45 (3H, с, 6-Me); 3.83 (1H, кв, J = 6.83 Гц, 4-H); 8.32 м. д. (1H, уш. с, исчезает после дейтерирования, NH).

6,8-Диметил-4-бутил-3-хлор-1,4-дигидропиримидо[4,5-с]пиридазин-5,7(6H,8H)-дион (5b). Реакцию проводят в инертной атмосфере (в токе азота). Охлаждающая смесь жидкий азот–изобутанол. К раствору 400 мг (1.76 ммоль) соединения **1** в 70 мл смеси диэтиловый эфир–ТГФ–гексан, 4 : 4 : 1, охлажденному до –100 °С, добавляют при перемешивании 1.4 мл 1.6 М (2.1 ммоль) раствора бутиллития в гексане. Перемешивают реакционную смесь 4 ч при указанной температуре, убирают охлаждающую баню, давая содержимому колбы нагреться до комнатной температуры. Реакционную смесь обрабатывают насыщенным водным раствором NH₄Cl до pH 7–8. Органическую фракцию отделяют, упаривают и пропускают через колонку с Al₂O₃ (элюент хлороформ). Отбирают фракцию с R_f 0,15. Получают 60 мг (21 %) соединения **5b** в виде бесцветного масла. ИК спектр: 1605, 1620 (кольцо), 1695, 1720 (С=О), 2800–3400 см⁻¹ (ас. NH). Спектр ЯМР ¹H (CDCl₃): 0.83 (3H, т, *J* = 7.05 Гц, CH₂CH₂CH₂CH₂Me); 1.24 (4H, м, CH₂<u>CH₂CH₂Me); 1.7 (2H, м, CH₂CH₂CH₂Me); 3.29 (3H, 8-Me); 3.44 (3H, с, 6-Me); 3.88 (1H, т, *J* = 4.72 Гц, 4-H); 8.98 м. д. (1H, уш. с, исчезает после дейтерирования, NH).</u>

СПИСОК ЛИТЕРАТУРЫ

- 1. А. В. Гулевская, Д. В. Беседин, А. Ф. Пожарский, Изв. АН. Сер. хим., 1161 (1999).
- 2. А. В. Гулевская, А. Ф. Пожарский, А. И. Чернышев, В. В. Кузьменко, *ХГС*, № 9, 1202 (1992).
- 3. А. В. Гулевская, А. Ф. Пожарский, *ЖОрХ*, **32**, 455 (1996).
- 4. И. И. Белецкая, Химия карбанионов, Знание, Москва, 1978, 64.
- 5. L. H. Klemm, D. R. Muchiri, J. N. Louris, J. Heterocycl. Chem., 21, 1135 (1984).
- L. H. Klemm, D. R. Muchiri, M. Anderson, W. Salbador, J. Ford, J. Heterocycl. Chem., 31, 261 (1994).
- 7. Х. Гюнтер, Введение в курс спектроскопии ЯМР, Мир, Москва, 1984, 393.
- 8. A. V. Gulevskaya, A. F. Pozharskii, *Targets in Heterocyclic Systems. Chemistry and Properties*, 2, 101 (1998).
- 9. S. Nishigaki, M. Ichiba, K. Senga, J. Org. Chem., 48, 1628 (1983).

Ростовский государственный университет, Ростов-на-Дону 344090, Россия e-mail: AGulevskaya@chimfak.rsu.ru Поступило в редакцию 29.10.99