Л. М. Потиха,* А. Р. Турелик, В. А. Ковтуненко, А. В. Туров, Г. В. Паламарчук^а, Р. И. Зубатюк^а, О. В. Шишкин^а

ВЗАИМОДЕЙСТВИЕ (Z)-4-БРОМ-1,3-ДИ(2-ТИЕНИЛ)-2-БУТЕН-1-ОНА С АМИНАМИ, СИНТЕЗ ДИ(2-ТИЕНИЛ)АЗОЛО[*а*]ПИРИДИНОВ

(Z)-4-Бром-1,3-ди(2-тиенил)-2-бутен-1-он получен при бромировании 1,3-ди-(2-тиенил)-2-бутен-1-она NBS в безводном CCl₄. Исходный бутенон получен конденсацией 1-(2-тиенил)-1-этанона под действием SOCl₂. Взаимодействие (Z)-4-бром-1,3-ди(2-тиенил)-2-бутен-1-она с третичными аминами (Et₃N, пиридин, 1-алкил-1,3-диазол, 1-алкилбензимидазол, 1-алкил-1,2,4-триазол) приводит к четвертичным солям. Соли азолия циклизуются под действием оснований в производные ди(2-тиенил)азоло[*a*]пиридиния. Бромиды 3-метил-6,8-ди(2-тиенил)-[1,3]тиазоло[3,2-*a*]-пиридин-4-ия и 2,4-ди(2-тиенил)пиридо[2,1-*b*][1,3]бензотиазол-10-ия получены тем же способом, но без выделения промежуточных четвертичных солей.

Ключевые слова: 4-бром-1,3-ди(2-тиенил)-2-бутен-1-он, имидазо[1,2-*a*]пиридин, пиридо[1,2-*a*]бензимидазол, пиридо[2,1-*b*][1,3]бензотиазол, [1,3]тиазоло[3,2-*a*]пиридин, [1,2,4]триазоло[4,3-*a*]пиридин.

Неослабевающий интерес к производным системы азоло[*a*]пиридина обусловлен обнаружением среди них веществ с высоким уровнем биологической активности и в широком диапазоне механизмов действия [1–3]. Введение в молекулу дополнительных гетероциклических фрагментов может привести к появлению новых полезных свойств соединений этого ряда. Известны два способа получения гетарилзамещённых азоло[*a*]пиридинов, которые можно рассматривать как общие: конденсация солей 2,3-диалкилазолия с α-дикетонами гетероциклического ряда [4] и конденсация солей N-гетарилметилпиридиния с изоцианатами [5].

Недавно [6, 7] нами был найден удобный метод синтеза солей диарилазоло[*a*]пиридиния, который заключается в инициируемой основанием циклизации четвертичных солей [(*Z*)-2,4-диарил-4-оксо-2-бутенил]азолия. Последние были получены алкилированием незамещённых во втором положении 1,3-диазолов производными 4-бром-1,3-дифенил-2-бутен-1-она (γ-бромдипнона). В данной работе для синтеза производных азоло[1,2-*a*]пиридиния предлагается использовать (*Z*)-4-бром-1,3-ди(2-тиенил)-2-бутен-1-он (1).

Имеющиеся в литературе данные о свойствах бромкетона **1** ограничены описанием метода синтеза этого соединения как побочного продукта реакции 1-(2-тиенил)-1-этанона (метилтиенилкетона) и 2-бром-1-(2-тиенил)-1-этанона с выходом 26% [8]. Его пространственное строение авторами не обсуждалось. Нами найден удобный метод синтеза бромкетона **1**,

состоящий в бромировании 1,3-ди(2-тиенил)-2-бутен-1-она (2) N-бромсукцинимидом в тетрахлорметане. Продукт реакции 1 образуется с высоким выходом (88%) и высокой степенью чистоты. Исходный дитиенил-2-бутен-1-он 2 получен конденсацией метилтиенилкетона под действием тионилхлорида с выходом 60%.

Поскольку пространственное строение ненасыщенных 1,4-диэлектрофилов существенным образом влияет на прохождение их реакций с различными нуклеофилами, нами была установлена конфигурация соединения **1**.

Результаты рентгеноструктурного исследования (рис. 1*a*, табл. 1–3) свидетельствуют об образовании (*Z*)-изомера бромкетона **1**. Центральный сопряжённый фрагмент молекулы, соединяющий два тиофеновых цикла, практически плоский, среднеквадратичное отклонение атомов O(1), C(4), C(5), C(6), C(7), C(8) и C(9) от их средней плоскости составляет 0.04 Å. Тиофеновые циклы немного развёрнуты относительно этого фрагмента (торсионные углы C(7)–C(8)–C(9)–C(10) –11.0(6)° и C(3)–C(4)–C(5)–C(7)–174.2(4)°), а связь C–Bг ориентирована практически перпендикулярно к нему (торсионный угол C(4)–C(5)–C(6)–Bг(1) 83.7(4)°). Плоская конформация сопряжённого фрагмента молекулы дополнительно стабилизирована образованием слабой внутримолекулярной водородной связи C(6)–H(6B)…O(1) (H…O 2.22 Å, C–H…O 122°).

Дитиенилбромкетон 1, как и его карбоциклический аналог γ -бромдипнон, чувствителен к действию кислот и оснований. Но, в отличие от γ -бромдипнона, который в этих условиях преимущественно превращется в 2,4-дифенилфуран [9, 10], соединение 1 образует сложные смеси продуктов, идентифицировать которые нам не удалось. Такое же поведение (образование сложных смесей продуктов реакции) бромкетон 1 демонстрирует и при взаимодействии с первичными или вторичными аминами (были испытаны анилины и морфолин). А с триэтиламином нам удалось

Соеди- нение	Атом	<i>x/a</i> (σ)	<i>y/b</i> (σ)	<i>z/c</i> (σ)	$U_{ m eq}$
1	Br(1)	1821(1)	3894(1) 4475(1)		117(1)
	S (1)	1158(1)	2235(1)	7293(1)	92(1)
	S(2)	4490(1)	9990(3)	8208(1)	100(1)
	O(1)	3606(2)	6266(7)	6649(3)	97(1)
	C(1)	471(3)	-88(13)	6879(5)	99(2)
	C(2)	563(4)	-1481(11)	6175(6)	113(2)
	C(3)	1191(3)	-784(7)	5950(3)	66(1)
	C(4)	1609(2)	1414(7)	6553(3)	60(1)
	C(5)	2293(2)	2809(7)	6548(3)	55(1)
	C(6)	2534(3)	2081(9)	5737(3)	73(1)
	C(7)	2670(2)	4695(8)	7214(3)	59(1)
	C(8)	3331(3)	6356(8)	7264(3)	65(1)
	C(9)	3675(2)	8199(7)	8100(3)	57(1)
	C(10)	3410(2)	8989(7)	8816(3)	58(1)
	C(11)	3878(3)	10939(9)	9412(4)	82(1)
	C(12)	4485(4)	11668(10)	9195(4)	92(2)
8c	Br(1)	3931(1)	4303(1)	6998(1)	50(1)
	S (1)	1188(1)	-887(1)	5627(1)	65(1)
	S(2)	569(1)	2903(1)	3472(1)	56(1)
	N(1)	3271(1)	1636(1)	6205(2)	33(1)
	N(2)	3607(1)	250(1)	6811(2)	38(1)
	N(3)	3942(2)	-2929(2)	6110(4)	95(1)
	C(1)	1303(2)	-1804(2)	4271(4)	67(1)
	C(2)	1902(2)	-1692(2)	3138(4)	63(1)
	C(3)	2295(1)	-852(1)	3311(3)	50(1)
	C(4)	1978(1)	-332(1)	4643(3)	42(1)
	C(5)	2240(1)	587(1)	5169(3)	36(1)
	C(6)	3005(1)	767(1)	6038(2)	33(1)
	C(7)	1766(1)	1314(1)	4686(3)	38(1)
	C(8)	2037(1)	2215(1)	4960(2)	34(1)
	C(9)	2805(1)	2355(1)	5665(2)	36(1)
	C(10)	1523(1)	3006(1)	4523(3)	41(1)
	C(11)	1698(1)	3890(1)	4921(3)	48(1)
	C(12)	1042(2)	4462(2)	4370(4)	67(1)
	C(13)	405(2)	4027(2)	3587(4)	67(1)
	C(14)	4049(1)	1642(1)	7010(3)	41(1)
	C(15)	4245(1)	797(1)	7389(3)	42(1)
	C(16)	3596(1)	-724(1)	7135(3)	45(1)
	C(17)	4096(1)	-1212(1)	5751(3)	49(1)
	C(18)	4012(2)	-2175(1)	5937(4)	61(1)

Координаты (×10⁴) и эквивалентные изотропные параметры (Å² × 10³) неводородных атомов в структурах 1 и 8с

получить его четвертичную соль – бромид (*E*)-4-оксо-N,N,N-триэтил-2,4ди(2-тиенил)-2-бутен-1-аммония (**3**). При выдерживании раствора дитиенилбромкетона **1** и амина в бензоле при комнатной температуре соль **3** образуется с выходом 44%. В схожих условиях, но с бо́льшими выходами (61–90%) получены четвертичные соли пиридиния, имидазолия, бензимидазолия и 1,2,4-триазолия – бромиды 1-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]пиридиния (**4**), 1-R-3-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]-1H-имидазол-3-ия **5а–е**, 3-R-1-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]-3H-бензимидазол-1-ия **6а,b** и 1-метил-4-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]-1H-1,2,4-триазол-4-ия (**7**) соответственно. Строение солей **3**–7 подтверждается данными их спектров ЯМР ¹Н и ИК (табл. 4 и 5), которые согласуются с таковыми для соответствующих четвертичных солей,

Таблица 2

Соеди- нение	Угол	ω, град.	Угол	ф, град.
1	C(7)-C(5)-C(4)	121.9(3)	C(3)-C(4)-C(5)-C(7)	-174.2(4)
	C(7)-C(5)-C(6)	122.0(4)	S(1)-C(4)-C(5)-C(7)	7.3(5)
	C(4)-C(5)-C(6)	116.1(4)	C(3)-C(4)-C(5)-C(6)	7.7(5)
	C(5)-C(6)-Br(1)	108.4(3)	S(1)-C(4)-C(5)-C(6)	-170.9(3)
	C(5)–C(7)–C(8)	121.1(4)	C(7)–C(5)–C(6)–Br(1)	-94.4(4)
	O(1)-C(8)-C(9)	118.8(4)	C(4)–C(5)–C(6)–Br(1)	83.7(4)
	O(1)-C(8)-C(7)	123.2(4)	C(4)-C(5)-C(7)-C(8)	-176.2(4)
	C(9)-C(8)-C(7)	118.0(3)	C(5)-C(7)-C(8)-C(9)	-176.8(3)
	C(5)-C(4)-S(1)	123.0(3)	O(1)-C(8)-C(9)-C(10)	169.3(4)
	C(3)-C(4)-C(5)	128.2(4)	C(7)-C(8)-C(9)-C(10)	-11.0(6)
	C(10)-C(9)-C(8)	131.3(3)	O(1)-C(8)-C(9)-S(2)	-4.0(5)
	C(8)-C(9)-S(2)	118.1(3)	C(7)-C(8)-C(9)-S(2)	175.8(3)
			C(8)-C(9)-C(10)-C(11)	-174.5(4)
8c	C(1)-N(1)-C(5)	122.82(16)	C(1)-C(2)-C(8)-C(9)	-7.4(3)
	C(1)-N(1)-C(7)	127.85(16)	C(1)-C(2)-C(8)-S(1)	175.2(2)
	C(5)-N(1)-C(7)	109.32(16)	C(3)-C(4)-C(12)-C(13)	106.2(2)
	C(5)-N(2)-C(6)	108.83(16)	C(3)-C(4)-C(12)-S(2)	-71.9(2)
	C(3)-C(4)-C(5)	116.83(17)	C(5)-N(2)-C(16)-C(17)	104.5(2)
	N(2)-C(5)-N(1)	105.93(16)	C(6)-N(2)-C(16)-C(17)	-80.1(2)
	N(2)-C(5)-C(4)	134.36(18)	N(2)-C(16)-C(17)-C(18)	-173.6(2)
	N(1)-C(5)-C(4)	119.71(16)		
	C(5)-C(4)-C(12)	122.42(17)		
	C(1)-C(2)-C(3)	118.50(17)		
	C(2)-C(1)-N(1)	119.35(17)		
	C(7)-C(6)-N(2)	108.84(18)		
	C(6)-C(7)-N(1)	107.02(17)		

Некоторые валентные (ш) и торсионные (ф) углы молекул соединений 1 и 8с

Строение молекул соединений 1(a) и 8с (b)

Таблица З

Некоторые длины связей (l) молекул соединений 1 и 8с

Связь	<i>l</i> , нм	Связь	<i>l</i> , нм	
Соедине	ние 1	Соединение 8с		
Br(1)-C(6)	1.964(4)	N(1)-C(1)	1.363(2)	
O(1)–C(8)	1.216(5)	N(1)-C(5)	1.367(2)	
C(4)–C(5)	1.454(6)	N(1)-C(7)	1.380(2)	
C(5)–C(7)	1.346(5)	N(2)–C(5)	1.354(2)	
C(5)–C(6)	1.493(5)	N(2)–C(6)	1.376(3)	
C(7)–C(8)	1.468(6)	C(1)–C(2)	1.355(3)	
C(8)–C(9)	1.464(6)	C(2)–C(3)	1.423(3)	
S(1)-C(1)	1.661(7)	C(2)–C(8)	1.474(3)	
S(1) - C(4)	1.689(4)	C(3)–C(4)	1.369(3)	
S(2)-C(12)	1.700(6)	C(4)–C(5)	1.406(3)	
S(2)-C(9)	1.710(4)	C(4)–C(12)	1.478(3)	
		C(6)–C(7)	1.324(3)	

полученных в реакциях азолов с γ -бромдипнонами [6, 7]. Точное отнесение сигналов ароматических протонов в спектрах ЯМР ¹Н солей **3**–7 сделано на основании данных двумерного спектра COSY HH соединения 7.

Известно, что при взаимодействии 1-(4-оксо-2,4-дифенил-2-бутенил)пиридиниевых солей с основаниями [11, 12] образуются 1,2-дизамещённые индолизины. И в нашем случае, очевидно, имеет место аналогичная трансформация: при нагревании пиридиниевой соли **4** в этаноле в присутствии поташа или триэтиламина происходит внутримолекулярная циклизация. Однако спектр ЯМР ¹Н продукта реакции и данные хромато-массспектрометрии, указывают на образование смеси, а попытки разделить её перекристаллизацией или хроматографически оказались безуспешными.

Практически без образования побочных продуктов протекает циклизация солей азолия 5–7 при нагревании их с морфолином в этаноле. Продуктами реакции являются бромиды 1-R-6,8-ди(2-тиенил)-1Н-имидазо[1,2-*a*]пиридин-4-ия **8а–е**, 10-R-7,9-ди(2-тиенил)-10Н-пиридо[1,2-*a*]бензимидазол-5-ия **9а,b** и 1-метил-6,8-ди(2-тиенил)-1Н-[1,2,4]триазоло[4,3-*a*]пиридин-4-ия (**10**) соответственно. Структура соединений **8–10** определялась по данным их ИК и ЯМР ¹Н спектров (табл. 4 и 6), в которых найден ряд аналогий со спектрами соответствующих диарилпроизводных [6, 7], а именно – в положении сигналов ароматических (H-5, H-7 для **8а–е, 10** и H-6, H-8 для **9а,b**) и алифатических (заместителей при N-1) протонов

Таблица 4

Соединение	ν, cm ⁻¹
3	3080, 2974, 2941, 1630 (C=O), 1565, 1413, 1242, 770, 736
4	3025, 1634 (C=O), 1586, 1575, 1409, 1231, 1071, 817, 761, 677
5a	3048, 1631 (C=O), 1580, 1415, 1242, 1155, 744, 732, 629
5b	3058, 2986, 1633 (C=O), 1583, 1407, 1239, 1225, 816, 755, 713
5c	3031, 2252 (CN), 1631 (C=O), 1572, 1410, 1234, 1158, 727
5d	3064, 1639 (C=O), 1580, 1415, 1234, 1152, 845, 820, 708, 638
5e	3081, 3031, 1625 (C=O), 1561, 1410, 1242, 1175, 1071, 993, 747, 724
6a	3014, 1625 (C=O), 1572, 1410, 1245, 741
6b	3014, 1631 (C=O), 1575, 1415, 1253, 1192, 825, 744, 713, 699
7	3008, 1631 (C=O), 1578, 1410, 1242, 1150, 816, 705, 624
8 a	3036, 2986, 1541, 1301, 884, 850, 820, 733, 705
8b	3036, 2958, 1580, 1513, 1290, 1248, 887, 853, 758, 708
8c	3081, 3048, 2963, 2902, 2247 (CN), 1538, 1510, 1290, 1248, 850, 733,
	713, 699
8d	3042, 1536, 1505, 1446, 1273, 1242, 733, 719, 705
8e	3036, 2975, 1653 (C=C), 1533, 1505, 1284, 1245, 951, 730, 702
9a	3014, 1536, 1516, 1483, 1312, 1239, 844, 755, 744, 699
9b	3019, 1508, 1480, 1454, 1441, 1225, 741, 685
10	3036, 2969, 1555, 1435, 1287, 1245, 829, 822, 738, 708
11	2975, 2678, 1435, 1399, 1169, 1035, 817, 716
12	2975, 1594, 1547, 1471, 1429, 1399, 848, 761, 713

ИК спектры соединений 3-12

азолопиридиниевого фрагмента в спектрах ЯМР ¹Н. Для точного отнесения сигналов ароматических протонов и подтверждения структуры солей **8–10** были записаны двумерные спектры COSY HH, NOESY, HMQC и HMBC соединения **8a**. Резонанс атомов углерода фрагмента имидазо[1,2-*a*]-пиридина в бромиде 1-метил-6,8-ди(2-тиенил)имидазопиридиния (**8a**) наблюдается в тех же областях, что и у соответствующего 6,8-дифенилза-мещённого производного [6]. Окончательным подтверждением структу-ры циклических продуктов **8–10** являются данные PCA бромида 6,8-ди-(2-тиенил)-1-(2-цианоэтил)-1Н-имидазо[1,2-*a*]пиридин-4-ия (**8c**) (рис. 1*b*, табл. 2 и 3).

925

Таблица 5

Co-Химические сдвиги (ДМСО-d₆), δ, м. д. (J, Гц) еди-2H, c, Другие не-1H (c) Ароматические протоны + Н-3' C(1')H₂ сигналы ние 2 4 5 1 3 3* 8.15 (1H, д, ³*J* = 3.2, H-3"'); 8.07 (1H, д, 5.06 3.39 (6Н, кв, _ ${}^{3}J = 4.5, \text{H-5'''}$; 7.86 (1H, μ , ${}^{3}J = 3.5,$ $^{3}J = 6.6$, CH₂); H-3"); 7.79 (1Н, д, ³*J* = 4.8, Н-5"); 7.52 1.28 (9Н, т, (1Н, с, Н-3'); 7.27 (1Н, м, Н-4""); 7.22 $^{3}J = 6.6$, CH₃) (1Н, м, Н-4") 9.28 (2Н, д, ³*J* = 6.0, Н-2,6); 8.64 (1Н, т, 6.33 4* ³*J* = 8.0, H-4); 8.20–8.15 (3H, м, H-3,5,3'''); 8.03 (1H, д, ${}^{3}J$ = 4.8, H-5'''); 7.96 (1H, д, ${}^{3}J = 3.5, \text{H-3''}; 7.72 (1\text{H}, \text{J}, {}^{3}J = 5.0, \text{H-5''});$ 7.70 (1Н, с, Н-З'); 7.28 (1Н, м, Н-4""); 7.16 (1Н, м, Н-4") 9.25 8.25 (1H, д, ${}^{3}J$ = 3.5, H-3'''); 8.12 (1H, д, 5.75 3.83 (3H, c, 5a (H-2) $^{3}J = 5.0, \text{H-5'''}$); 7.88 (1H, д, $^{3}J = 3.5,$ NCH₃) H-3"); 7.83 (1H, д, ³*J* = 5.0, H-5"); 7.82 (1H, c, H-4); 7.68 (1H, c, H-5); 7.64 (1H, c, Н-3'); 7.32 (1Н, м, Н-4'''); 7.21 (1Н, м, H-4") 9.33 8.25 (1Н, д, ³*J* = 3.5, Н-3""); 8.12 (1Н, д, 5.75 5b 4.19 (2Н, кв, ${}^{3}J = 5.0, \text{H-5'''}); 7.87 (1\text{H}, \text{д}, {}^{3}J = 3.5,$ (H-2) $^{3}J = 7.5$ H-3"); 7.83 (1H, μ , ${}^{3}J = 5.0$, H-5"); 7.81 NCH₂); (2H, c, H-4,5); 7.64 (1H, c, H-3'); 7.32 (1H, 1.37 (3Н, т, $^{3}J = 7.5$, CH₃) м, Н-4""); 7.21 (1Н, м, Н-4") 8.28 (1Н, д, ³*J* = 3.5, Н-3""); 8.14 (1Н, д, 5c 9.40 5.80 4.52 (2Н, т, $^{3}J = 6.5$, (H-2) ${}^{3}J = 5.0, \text{H-5'''}); 7.90 (1\text{H}, \text{д}, {}^{3}J = 3.5,$ H-3"); 7.87 (1H, д, ${}^{3}J$ = 5.0, H-5"); 7.85 $-CH_2CN$; (2Н, м, Н-4,5); 7.67 (1Н, с, Н-3'); 7.34 3.20 (2Н, т, (1Н, м, Н-4""); 7.23 (1Н, м, Н-4") $^{3}J = 6.5$ NCH_2-) 9.49 8.25 (1Н, д, ³*J* = 3.5, Н-3'''); 8.12 (1Н, д, 5.78 5.42 (2H, c, 5d ³*J* = 5.0, H-5"'); 7.84 (2Н, м, H-3",5"); 7.81 (H-2) NCH₂) (1H, c, H-4); 7.77 (1H, c, H-5); 7.64 (1H, c, Н-3'); 7.37 (3Н, м, Н-3""-5""); 7.31 (3Н, м, Н-4"",2"",6""); 7.21 (1Н, м, Н-4") 9.58 5.78 5e 8.27 (1Н, м, Н-3"); 8.23 (1Н, с, Н-4); 7.30 (1Н, м, (H-2) 8.13 (1H, д, ${}^{3}J = 5.0$, H-5'''); 7.95 (1H, с, NCH=); 5.89 Н-5); 7.87 (1Н, м, Н-3"); 7.84 (1Н, д, (1Н, д. д, ${}^{3}J = 5.0, \text{H-5''}$; 7.66 (1H, c, H-3'); 7.32 $^{3}J = 16.0,$ $^{2}J = 1.5$, (1Н, м, Н-4"'); 7.22 (1Н, м, Н-4") $=C\underline{H}_{A}H_{B});$ 5.37 (1Н, д. д, $^{3}J = 8.5$, $^{2}J = 1.5$, $=CH_{A}H_{B}$ 4.06 (3H, c, 9.76 8.31 (1Н, д, ³*J* = 3.5, Н-3""); 8.19 (1Н, д, 6.06 6a ${}^{3}J = 8.0, \text{H-4}$; 8.13 (1H, д, ${}^{3}J = 5.0, \text{H-5'''}$); (H-2) NCH₃) 8.00 (1H, μ , ${}^{3}J$ = 8.0, H-7); 7.86 (1H, μ , ${}^{3}J = 3.5, \text{H-3''}; 7.80 (1\text{H}, \text{д}, {}^{3}J = 5.0, \text{H-5''});$ 7.77 (1Н, с, Н-3'); 7.72 (2Н, м, Н-5,6); 7.33 (1Н, м, Н-4""); 7.17 (1Н, м, Н-4")

Спектры ЯМР ¹Н четвертичных солей 3–7

Окончание таблицы 5

1	2	3	4	5
6b	10.08	8.29 (1H, д, ³ <i>J</i> = 3.5, H-3""); 8.13 (1H, д,	6.14	5.76 (2H, c,
	(H-2)	${}^{3}J = 5.0, \text{H-5'''}; 8.10 (1\text{H}, \text{д}, {}^{3}J = 8.0, \text{H-4});$		NCH ₂)
7	9.36	7.91 (1H, π , ${}^{3}J$ = 8.0, H-7); 7.84 (1H, π , ${}^{3}J$ = 3.5, H-3"); 7.80 (1H, π , ${}^{3}J$ = 5.0, H-5"); 7.75 (1H, c, H-3'); 7.68 (1H, π , ${}^{3}J$ = 8.0, H-6); 7.62 (1H, π , ${}^{3}J$ = 8.0, H-5); 7.32 (6H, μ , H-4", H-2""–H-6""); 7.18 (1H, μ , H-4") 10.17 (1H, c, H-3); 8.27 (1H, π , ${}^{3}J$ = 3.5,	5.80	4.04 (3H, c,
	(H-5)	H-3"'); 8.13 (1H, $\exists J = 5.0, H-5$ "'); 7.93 (1H, $\exists J = 3.5, H-3$ "); 7.87 (1H, $\exists J = 5.0, H-5$ "); 7.66 (1H, c, H-3'); 7.32 (1H, M, H-4"); 7.24 (1H, M, H-4")		NCH ₃)

* Спектр ЯМР ¹Н зарегистрирован в смеси ДМСО- d_6 -CCl₄, 1:1, на приборе Varian Mercury 400 (400 МГц).

Кристаллы соединения 8с представляют собой соль органического катиона с анионом брома. Исходя из анализа длин связей в бициклическом фрагменте, можно заключить, что положительный заряд локализован преимущественно на атоме N(2). Об этом свидетельствуют альтернирование связей С-С в пиридиновом цикле (связи С(1)-С(2) 1.355(3) и С(3)-С(4) 1.369(3) Å значительно короче связей С(2)-С(3) 1.423(3) и С(4)-С(5) 1.406(3) Å), а также некоторое укорочение связи N(2)-C(5) до 1.354(2) Å по сравнению с N(2)-C(6) 1.376(3) Å. Тиофеновый цикл S(1)…C(11) лежит практически в плоскости бициклического фрагмента (торсионный угол С(1)-С(2)-С(8)-С(9) -7.4(3)°). Цианоэтильный заместитель имеет арконформацию (торсионный угол N(2)-C(16)-C(17)-C(18) -173.56(19)°), что приводит к сильному развороту тиофенового кольца S(2)…C(12) относительно бицикла (торсионный угол C(5)-C(4)-C(12)-C(13) -68.4(3)°) вследствие стерических затруднений (укороченные внутримолекулярные контакты C(16A)…C(12) 2.57 и H(17A)…C(13) 2.78 Å при сумме ван-дерваальсовых радиусов 2.87 Å [9]). Следствием значительной стерической напряжённости является также заметное отклонение связей C(4)-C(12) и N(2)-C(16) от плоскости бицикла (торсионные углы N(1)-C(5)-C(4)-C(12) 168.59(18)°, N(1)-C(5)-N(2)-C(16) 174.04(16)°). В кристалле анион брома связан с катионами серией аттрактивных укороченных межмолекулярных контактов Br(1)…H(1) 2.66, Br(1)…H(9) 3.04, Br(1)…H(6) [1-x, 0.5+y, 1.5-z] 2.92, Br(1)…H(13) [x, 0.5-y, 0.5+z] 2.90 и Br(1)…H(17B) [1-x, 0.5+y, 1.5-z] 2.74 Å (сумма ван-дер-ваальсовых радиусов 3.13 Å [13]).

Изменение условий циклизации солей имидазолия 5, а именно – замена растворителя (этанол на ацетон) или основания (морфолин на триэтиламин), приводит к образованию смесей продуктов внутримолекулярной конденсации: кротоновой типа 8 и альдольной типа 13. Присутствие гидроксипроизводных 13 в смеси продуктов зарегистрировано методом ЯМР ¹Н – по наличию характерных для таких структур [7] сигналов метиленовой группы в области 3.61–3.76 м. д. в виде двух дублетов АВ-спиновой

Спектры ЯМР ¹ Н (бромидов азоло[а]пиридиния 8–12
------------------------------	---------------------------------

	Химические сдвиги (ДМСО-d ₆), δ, м. д. (<i>J</i> , Гц)					
еди- нение	Сигналы пиридинового цикла	Ароматические протоны	Другие сигналы			
1	2	3	4			
8a*	9.45 (1Н, д, ³ <i>J</i> = 1.7, Н-5); 8.26 (1Н, д, ³ <i>J</i> = 1.7, Н-7)	8.49 (1H, π , ${}^{3}J$ = 2.2, H-3); 8.28 (1H, π , ${}^{3}J$ = 2.2, H-2); 7.92 (1H, π , ${}^{3}J$ = 5.2, H-5"); 7.84 (1H, π , ${}^{3}J$ = 3.7, H-3'); 7.75 (1H, π , ${}^{3}J$ = 5.0, H-5'); 7.49 (1H, π , ${}^{3}J$ = 3.5, H-3"); 7.30 (1H, π , π , ${}^{3}J$ = 3.5, ${}^{3}J$ = 5.2, H-4"); 7.23 (1H, π , π , ${}^{3}J$ = 3.7, ${}^{3}J$ = 5.0, H-4')	3.54 (3H, c, NCH ₃)			
8b	9.41 (1H, c, H-5); 8.25 (1H, c, H-7)	8.49 (1H, μ , ${}^{3}J$ = 1.5, H-3); 8.34 (1H, μ , ${}^{3}J$ = 1.5, H-2); 7.92 (1H, μ , ${}^{3}J$ = 4.0, H-5"); 7.83 (1H, M, H-3'); 7.74 (1H, μ , ${}^{3}J$ = 4.0, H-5'); 7.51 (1H, M, H-3"); 7.30 (1H, M, H-4"); 7.22 (1H, M, H-4')	3.94 (2Н, кв, ³ <i>J</i> = 7.5, NCH ₂); 1.60 (3Н, т, ³ <i>J</i> = 7.5, CH ₃)			
8c	9.46 (1H, с, H-5); 8.33 (1H, м, H-7) **	8.53 (1H, д, ³ <i>J</i> = 1.5, H-3); 8.33 (1H, м, H-2) **, 7.97 (1H, м, H-5"); 7.86 (1H, с, H-3'); 7.78 (1H, м, H-5'); 7.56 (1H, с, H-3"); 7.33 (1H, м, H-4"); 7.25 (1H, м, H-4')	4.22 (2H, T, ${}^{3}J = 6.5$, -CH ₂ CN); 2.91 (2H, T, ${}^{3}J = 6.5$, NCH ₂ -)			
8d	9.48 (1H, c, H-5); 8.24 (1H, c, H-7)	8.57 (1H, д, ³ <i>J</i> = 1.5, H-3); 8.31 (1H, д, ³ <i>J</i> = 1.5, H-2); 7.83 (1H, м, H-3'); 7.80 (1H, д, ³ <i>J</i> = 4.0, H-5"); 7.75 (1H, д, ³ <i>J</i> = 4.0, H-5"); 7.30 (1H, м, H-3"); 7.24 (4H, м, H-4',4",3"',5"'); 7.18 (1H, м, H-4"'); 6.80 (2H, м, H-2"',6"')	5.31 (2H, c, NCH ₂)			
8e	9.43 (1H, c, H-5); 8.37 (1H, c, H-7)	8.63 (1H, c, H-3); 8.57 (1H, c, H-2); 7.93 (1H, д, ³ <i>J</i> = 5.0, H-5"); 7.87 (1H, м, H-3'); 7.77 (1H, д, ³ <i>J</i> = 5.0, H-5'); 7.42 (1H, м, H-3"); 7.30 (1H, м, H-4"); 7.24 (1H, м, H-4')	6.43 (1H, \exists , \exists , \exists , \exists) J = 15.5, J = = 8.5, NCH=); 5.79 (1H, \exists , \exists) $J = 15.5, = C\underline{H}_AH_B;$ (1H, \exists , $J = 8.5, = CH_A\underline{H}_B)$			
9a	9.95 (1H, c, H-6); 8.51 (1H, c, H-8)	8.93 (1H, д, ³ <i>J</i> = 8.0, H-4); 8.12 (1H, д, ³ <i>J</i> = 8.0, H-1); 7.96 (2H, м, H-5",3'); 7.92 (1H, т, ³ <i>J</i> = 8.0, H-2); 7.80 (2H, м, H-3,5'); 7.51 (1H, м, H-3"); 7.34 (1H, м, H-4"); 7.28 (1H, м, H-4')	3.64 (3H, c, NCH ₃)			
9b	10.04 (1H, c, H-6); 8.52 (1H, c, H-8)	8.99 (1H, μ , ${}^{3}J$ = 8.0, H-4); 7.98 (1H, M, H-3'); 7.83 (5H, M, H-1–H-3, H-5',5"); 7.28 (2H, M, H-3",4"); 7.23 (3H, M, H-4',3"',5"'); 7.15 (1H, M, H-4"'); 6.96 (2H, M, H-2"',6"')	5.49 (2H, c, NCH ₂)			
10	9.40 (1H, c, H-5); 8.53 (1H, c, H-7)	9.76 (1H, c, H-3); 7.96 (1H, д, ³ <i>J</i> = 4.0, H-5"); 7.92 (1H, м, H-3'); 7.79 (1H, д, ³ <i>J</i> = 4.0, H-5'); 7.52 (1H, м, H-3"); 7.33 (1H, м, H-4"); 7.25 (1H, м, H-4')	3.76 (3H, c, NCH ₃)			
11	9.23 (1H, π , ³ J = 1.0, H-5); 8.26 (1H, π , ³ J = 1.0, H-7)	8.70 (1H, c, H-2); 8.14 (1H, π , ${}^{3}J$ = 2.5, H-3"); 8.07 (1H, π , ${}^{3}J$ = 4.5, H-5"); 8.03 (1H, π , ${}^{3}J$ = 2.5, H-3'); 7.92 (1H, π , ${}^{3}J$ = 5.0, H-5'); 7.45 (1H, m , H-4"); 7.35 (1H, m , H-4')	2.89 (3H, c, CH ₃)			

928

Окончание таблицы б

1	2	3	4
12	10.23 (1H, c, H-1);	9.27 (1H, д, ${}^{3}J$ = 8.0, H-9); 8.58 (1H, д, ${}^{3}J$ = 8.0, H-6); 8.22 (1H, м, H-3');	_
	8.86 (1H, c, H-3)	8.12–7.95 (5H, м, H-7,8,5',3", 5"); 7.48 (1H, м, H-4"); 7.38 (1H, м, H-4')	

 $\overline{}$ Спектр ЯМР ¹Н зарегистрирован в смеси ДМСО-d₆–CCl₄, 1:1, на приборе Varian Mercury 400 (400 МГц).

** Наложение сигналов Н-7 и Н-2.

системы с ${}^{2}J = 17.0$ Гц. Как и соответствующие диарилпроизводные [7], соединения **13** неустойчивы и очень легко теряют молекулу воды.

Менее осно́вные 2-метил-1,3-тиазол и 1,3-бензтиазол медленнее реагируют с дитиенилбромкетоном 1 – реакция протекает 4 сут (тогда как соли 3–7 образуются в течение 24–48 ч), а четвертичные соли тиазолия и бензотиазолия легче превращаются в циклические продукты – уже на стадии алкилирования в спектрах ЯМР ¹Н продуктов зарегистрировано присутствие бромидов 3-метил-6,8-ди(2-тиенил)[1,3]тиазоло[3,2-*a*]пиридин-4-ия (11) или 2,4-ди(2-тиенил)пиридо[2,1-*b*][1,3]бензотиазол-10-ия (12) соответственно. Поэтому синтез соединений 11 и 12 осуществлялся без выделения промежуточных продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений зарегистрированы на приборе Perkin–Elmer Spectrum ВХ в таблетках КВг. УФ спектр соединения **1** получен на приборе UV-vis Spectrometer Lambda 20 в метаноле. Спектры ЯМР ¹Н записаны на приборе Bruker Avance DRX 500 (500 МГц). Эксперименты по двумерной корреляционной спек-троскопии выполнены на приборе Varian Mercury 400 (400 и 100 МГц для ¹Н и ¹³С соответственно) в ДМСО-d₆, внутренний стандарт ТМС. Контроль чистоты полу-ченных соединений осуществлялся с помощью ТСХ на пластинках Silufol UV-254 и масс-спектрометрически методом ВЖХ на приборе Agilent 1100 Series, с селек-тивным детектором Agilent LC/MSD SL (образец вводился в матрице CF₃CO₂H, ионизация ЭУ). Физико-химические характеристики и данные элементного анали-за синтезированных соединений представлены в табл. 7.

1,3-Ди(2-тиенил)-2-бутен-1-он (2). К раствору 19 г (150 ммоль) метилтиенилкетона в 50 мл абсолютного этанола прибавляют по каплям при перемешивании 14.4 мл (200 ммоль) тионилхлорида при комнатной температуре. Продолжают перемешивание 30 мин. Прибавляют 100 мл воды и 50 мл 50% раствора соды. Затем прибавляют 100 мл хлороформа и отделяют нижний слой. Раствор в хлороформе сушат над Na₂SO₄ и отгоняют растворитель. Остаток фракционируют в вакуме. Выход 21 г (60%). Т. кип. 215–220 °C (15 мм рт. ст.) (т. кип. 180 °C (3 мм рт. ст.) [14]). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 8.03 (1H, д. ³*J* = 4.0, H-3'); 7.96 (1H, д. ³*J* = 5.0, H-5'); 7.72 (2H, м, H-3",5"); 7.34 (1H, с, H-2); 7.23 (1H, м, H-4'); 7.18 (1H, м, H-4''); 2.59 (3H, с, CH₃).

(Z)-4-Бром-1,3-ди(2-тиенил)-2-бутен-1-он (1). К раствору 11.7 г (50 ммоль) 2-бутен-1-она 2 в 50 мл безводного тетрахлорметана прибавляют 8.9 г (50 ммоль) N-бромсукцинимида. Смесь нагревают до кипения, прибавляют 0.3 г пероксида бензоила и кипятят 1–1.5 ч. Охлаждают и отфильтровывают сукцинимид. Растворитель упаривают, остаток перекристаллизовывают из 2-пропанола. Выход 13.8

Таблица 7

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %		Т. пл °С*	Вы- ход.	
нение	формула	Br N S		S	,	%
3	C ₁₈ H ₂₄ BrNOS ₂	<u>19.35</u> 19.28	<u>3.41</u> 3.38	<u>15.42</u> 15.47	115–118 (разл.)	44
4	C ₁₇ H ₁₄ BrNOS ₂	<u>20.30</u> 20.37	<u>3.59</u> 3.57	<u>16.40</u> 16.35	191–192	61
5a	$\mathrm{C_{16}H_{15}BrN_2OS_2}$	<u>20.23</u> 20.21	<u>7.12</u> 7.09	<u>16.20</u> 16.22	192–195	90
5b	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{BrN}_{2}\mathrm{OS}_{2}$	<u>19.51</u> 19.52	<u>6.86</u> 6.84	<u>15.65</u> 15.67	173–175	86
5c	$\mathrm{C}_{18}\mathrm{H}_{16}\mathrm{BrN}_{3}\mathrm{OS}_{2}$	<u>18.35</u> 18.40	<u>9.68</u> 9.67	<u>14.80</u> 14.76	155–156	51
5d	$C_{22}H_{19}BrN_2OS_2$	<u>16.98</u> 16.95	<u>5.97</u> 5.94	<u>13.59</u> 13.60	158–160	81
5e	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{BrN}_{2}\mathrm{OS}_{2}$	<u>19.65</u> 19.62	<u>6.89</u> 6.88	<u>15.75</u> 15.74	174–176	88
6a	$\mathrm{C}_{20}\mathrm{H}_{17}\mathrm{BrN}_{2}\mathrm{OS}_{2}$	<u>17.93</u> 17.94	<u>6.32</u> 6.29	$\frac{14.43}{14.40}$	203–205	79
6b	$\mathrm{C}_{26}\mathrm{H}_{21}\mathrm{BrN}_{2}\mathrm{OS}_{2}$	<u>15.34</u> 15.32	<u>5.38</u> 5.37	$\frac{12.31}{12.30}$	191–193	76
7	$\mathrm{C}_{15}\mathrm{H}_{14}\mathrm{BrN}_{3}\mathrm{OS}_{2}$	<u>20.15</u> 20.16	$\frac{10.63}{10.60}$	<u>16.20</u> 16.18	187–189	75
8 a	$C_{16}H_{13}BrN_2S_2$	<u>21.20</u> 21.18	<u>7.45</u> 7.42	<u>17.03</u> 17.00	344–347 (разл.)	92
8b	$\mathrm{C_{17}H_{15}BrN_2S_2}$	<u>20.41</u> 20.42	<u>7.18</u> 7.16	<u>16.41</u> 16.39	238–241	88
8c	$C_{18}H_{14}BrN_3S_2$	<u>19.22</u> 19.19	<u>10.08</u> 10.09	<u>15.45</u> 15.40	239–241	63
8d	$C_{22}H_{17}BrN_2S_2$	<u>17.64</u> 17.62	<u>6.18</u> 6.18	<u>14.13</u> 14.14	233–235 (разл.)	85
8e	$C_{17}H_{13}BrN_2S_2$	<u>20.55</u> 20.52	<u>7.22</u> 7.20	<u>16.45</u> 16.47	288–291	90
9a	$C_{20}H_{15}BrN_2S_2$	<u>18.74</u> 18.70	<u>6.54</u> 6.55	<u>15.06</u> 15.01	269–271	87
9b	$C_{26}H_{19}BrN_2S_2$	<u>15.89</u> 15.87	<u>5.59</u> 5.56	<u>12.73</u> 12.74	243–245	80
10	$C_{15}H_{12}BrN_3S_2$	<u>21.14</u> 21.12	<u>11.13</u> 11.11	<u>16.96</u> 16.95	252—254 (разл.)	84
11	$C_{16}H_{12}BrNS_3$	<u>20.22</u> 20.26	<u>3.57</u> 3.55	$\frac{24.41}{24.39}$	219–220	63
12	$C_{19}H_{12}BrNS_3$	<u>18.52</u> 18.56	$\frac{3.26}{3.25}$	$\frac{22.36}{22.35}$	282–284	67

Физико-химические свойства и данные элементного анализа соединений 3–12

* Растворители для перекристаллизации: Me₂CO (соединение **3**), MeCN (соединение **4**), MeNO₂ (соединения **5а–е**, **6а**,**b** и 7) и AcOH (соединения **8а–е**, **9а**,**b** и 10–12).

(88%). Т. пл. 102–103 °С (2-PrOH) (т. пл. 98 °С [8]). УФ спектр, λ_{max} , нм (ϵ ·10⁻³): 264 (24.63), 280 (23.54), 348 (12.84). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 8.15 (1H, д, ³J = 3.0, H-3'); 8.05 (1H, д, ³J = 4.0, H-5'); 7.83 (1H, д, ³J = 3.5, H-3"); 7.80 (1H, д, ³J = 4.0, H-5"); 7.41 (1H, с, H-2); 7.28 (1H, м, H-4'); 7.23 (1H, м, H-4"); 5.08 (2H, с, CH₂).

Кристаллографические данные. Кристаллы 1 моноклинные, $C_{12}H_9BrOS_2$, при 293 К: a = 18.283(2), b = 5.2739(4), c = 14.6632(11) Å, $\beta = 116.883(9)^\circ$, V = 1261.08(19) Å³, $M_r = 313.22$, Z = 4, пространственная группа Cc, $d_{выч} = 1.650$ мг/м³, μ (Мо $\kappa\alpha$) = 3.565 мм⁻¹, F(000) = 624. Параметры элементарной ячейки и интенсивности 6251 отражения (3062 независимых, $R_{int} = 0.032$) измерены на дифрактометре Xcalibur 3 (Мо $\kappa\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 60^\circ$). Структура расшифрована прямым методом по комплексу программ SHELXTL [15]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = 1.2 U_{eq}$ неводородного атома, связанного с данным водородным. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.071$ по 3022 отражениям ($R_1 = 0.036$ по 1396 отражениям с $F > 4\sigma(F)$, S = 0.77). Некоторые валентные и торсионные углы и длины связей приведены в табл. 2 и 3. Регистрационный номер в Кембриджском банке структурных данных ССDС 740758.

Бромид (Е)-4-оксо-N,N,N-триэтил-2,4-ди(2-тиенил)-2-бутен-1-аммония (3). К раствору 0.5 г (1.6 ммоль) бромкетона **2** в 20 мл бензола прибавляют 0.3 мл (2.1 ммоль) триэтиламина и выдерживают при комнатной температуре 24 ч. Выпавший осадок отфильтровывают, промывают ацетоном.

Бромиды 1-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]пиридиния (4), 1-R-3-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]-1Н-имидазол-3-ия 5а-е, 3-R-1-[(*E*)-4оксо-2,4-ди(2-тиенил)-2-бутенил]-3Н-бензимидазол-1-ия 6а,b и 1-метил-4-[(*E*)-4-оксо-2,4-ди(2-тиенил)-2-бутенил]-1Н-1,2,4-триазол-4-ия (7) получают по методике синтеза продукта 3, используя 2.0 ммоль пиридина или 1-алкилазола. Время реакции – 48 ч.

Бромиды 1-R-6,8-ди(2-тиенил)-1Н-имидазо[1,2-а]пиридин-4-ия 8а-е. Смесь 1.0 ммоль соли 5а-е и 2 мл морфолина в 10 мл этанола нагревают 1 ч. После охлаждения отфильтровывают выпавший осадок и промывают ацетоном.

Соединение 8a. Спектр ЯМР ¹³С, δ, м. д.: 137.1 (С-8а); 136.9 (С-2'); 134.6 (С-7); 132.6 (С-2"); 132.3 (С-3"); 130.1 (С-5"); 129.6 (С-4'); 129.3 (С-2); 128.8 (С-5'); 128.2 (С-4"); 127.9 (С-3'); 125.5 (С-5); 124.2 (С-6); 120.95 (С-8); 115.9 (С-3); 37.4 (СН₃).

Кристаллографические данные. Кристаллы 8с моноклинные, $C_{18}H_{14}BrN_3S_2$, при 293 К: a = 16.4323(3), b = 14.8654(3), c = 7.3236(2) Å, $\beta = 92.853(2)^\circ$, V = 1786.74(7) Å³, $M_r = 416.35$, Z = 4, пространственная группа $P2_1/c$, $d_{выч} = 1.548$ мг/м³, μ (Мо $\kappa\alpha$) = 2.538 мм⁻¹, F(000) = 840. Параметры элементарной ячейки и интенсив-ности 25 680 отражений (5173 независимых, $R_{int} = 0.042$) измерены на дифракто-метре Xcalibur 3 (Мо $\kappa\alpha$ -излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 60^\circ$). Структура расшифрована прямым методом по ком-плексу программ SHELX-97 [15]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{iso} = 1.2$ U_{eq} неводородного атома, связанного с данным водородным. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводо-родных атомов до $wR_2 = 0.0637$ по 5153 отражениям ($R_1 = 0.036$ по 2993 отраже-ниям с $F > 4\sigma(F)$, S = 0.860). Некоторые валентные и торсионные углы и длины связей приведены в табл. 2 и 3. Регистрационный номер в Кембриджском банке структурных данных ССDC 740757.

Бромиды 10-R-7,9-ди(2-тиенил)-10Н-пиридо[1,2-*а*]бензимидазол-5-ия 9а,b и 1-метил-6,8-ди(2-тиенил)-1Н-[1,2,4]триазоло[4,3-*а*]пиридин-4-ия (10) получают по методике синтеза продуктов 5, используя соли бензимидазолия 6а,b или триазолия 7.

Соединение 9а. Спектр ЯМР ¹³С, б, м. д.: 140.1 (С-9а); 139.2 (С-8); 136.2 (С-2'); 134.1 (С-10а); 132.3 (С-2"); 131.9 (С-3"); 130.2 (С-5"); 129.8 (С-4'); 129.1 (С-5'); 128.4 (С-4а); 128.0 (С-4"); 127.8 (С-3'); 126.7 (С-2); 125.4 (С-6); 125.2 (С-3); 123.9 (С-7); 120.3 (С-9); 115.3 (С-4); 113.2 (С-1); 33.6 (СН₃).

Соединение 10. Спектр ЯМР ¹³С, б, м. д.: 140.9 (С-8а); 138.2 (С-7); 136.6 (С-3); 135.7 (С-2'); 132.1 (С-3''); 131.0 (С-2''); 130.1 (С-5''); 129.2 (С-4'); 128.8 (С-5'); 128.2 (С-4''); 128.0 (С-3'); 125.2 (С-6); 122.7 (С-5); 119.7 (С-8); 40.0 (СН₃).

Бромид 3-метил-6,8-ди(2-тиенил)[1,3]тиазоло[3,2-а]пиридин-4-ия (11) и 2,4-ди(2-тиенил)пиридо[2,1-b][1,3]бензотиазол-10-ия (12). К раствору 0.5 г (1.6 ммоль) бромкетона 1 в 20 мл бензола прибавляют 2.0 ммоль 2-метил-1,3тиазола или 1,3-бензотиазола. Смесь выдерживают 4 дня при комнатной температуре. Выпавший осадок отфильтровывают, промывают ацетоном. К суспензии твёрдого вещества в 15 мл ацетона прибавляют 2 мл триэтиламина и нагревают 1 ч. После охлаждения отфильтровывают выпавший осадок и промывают ацетоном.

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. Г. Ким, Н. П. Брисюк, *XIC*, 1155 (1991). [*Chem. Heterocycl. Comp.*, **27**, 921 (1991)].
- 2. Э. М. Гизатулина, В. Г. Карцев, *XГС*, 1587 (1993). [*Chem. Heterocycl. Comp.*, **29**, 1369 (1993)].
- 3. Е. Сулоева, М. Юре, Э. Гудриниеце, *ХГС*, 1299 (1999). [*Chem. Heterocycl. Comp.*, **35**, 1121 (1999)].
- F. Delgado, M. M. Linares, R. Alajarin, J. J. Vaquero, J. Alvarez-Builla, Org. Lett., 5, 4057 (2003).
- J. Agejas, A. M. Cuadro, M. Pastor, J. J. Vaquero, J. L. Garcia-Navio, J. Alvarez-Builla, *Tetrahedron*, 51, 12425 (1995).
- 6. L. Potikha, V. Kovtunenko, A. Turelyk, A. Turov, A. Tolmachev, *Synth. Commun.*, **38**, 2016 (2008).
- 7. Л. М. Потиха, А. Р. Турелик, В. А. Ковтуненко, А. А. Туров, *XГС*, 95 (2010). [*Chem. Heterocycl. Comp.*, **46**, 82 (2010)].
- 8. О. Г. Кулинкович, А. В. Кельин, П. В. Сенин, *ЖОрХ*, **31**, 1166 (1995).
- 9. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- 10. R. Faragher, T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1, 336 (1976).
- 11. Л. М. Потиха, А. Р. Турелик, В. А. Ковтуненко, А. А. Туров, *XTC*, 1478 (2009). [*Chem. Heterocycl. Comp.*, 45, 1184 (2009)].
- 12. Y. Tamura, N. Tsujimoto, Y. Sumida, M. Ikeda, Tetrahedron, 28, 21 (1972).
- 13. O. Meth-Cohn, Tetrahedron Lett., 16, 413 (1975).
- И. С. Овсянников, В. П. Мелкозеров, В. Я. Сосновских, А. А. Вшивков, Ю. Г. Ятлюк, Е. А. Хрусталева, А. Л. Суворов, А. с. СССР 1705275; *Chem. Abstr.*, 117, 130924 (1992).
- 15. G. M. Sheldrick, Acta Crystallogr., A64, 112 (2008).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: potikha_l@mail.ru Поступило 01.07.2009

^аИнститут монокристаллов НАН Украины, Харьков 61001, Украина e-mail: shishkin@xray.isc.kharkov.com