Светлой памяти Ревы Сафаровича Сагитуллина посвящаем

С. Ступникова, Е. Петушкова, Д. Танаев, В. Лусис*, Д. Муцениеце

СИНТЕЗ И АЛКИЛИРОВАНИЕ ПРОИЗВОДНЫХ 4-АРИЛ-5-ОКСО-1Н-2,3,4,5-ТЕТРАГИДРОИНДЕНО[1,2-*b*]ПИРИДИНОВ

При восстановлении 4-фенил-5-оксо-1Н-4,5-дигидроиндено[1,2-*b*]пиридинов триэтилсиланом в трифторуксусной кислоте получены соответствующие 1,2,3,4-тетрагидроиндено[1,2-*b*]пиридины, причём преобладающим является изомер с *транс*-расположением заместителей у атомов С(2), С(3), С(4). Алкилирование тетрагидроинденопиридинов в анионной форме приводит к образованию N- и C(4a)-алкилпроизводных.

Ключевые слова: 5-оксо-4,5-дигидро-1Н- и 2,3,4,5-тетрагидро-1Н-индено[1,2-*b*]пиридины, N- и C(4a)-алкилирование 5-оксо-2,3,4,5-тетрагидро-1Н-индено[1,2-*b*]пиридина, восстановление триэтилсиланом.

Восстановление 1,4-дигидропиридинов типа эфиров Ганча триэтилсиланом в среде трифторуксусной кислоты в зависимости от условий реакции приводит к образованию *транс*-изомеров соответствующих 1,2,3,4-тетрагидропиридинов или пиперидинов [1]. Известно только несколько представителей 1,2,3,4-тетрагидроиндено[1,2-*b*]пиридинового ряда, полученных сложным путём с применением фотосинтеза, хотя они начинают привлекать внимание как потенциальные противопаразитные препараты [2]. Нами показано, что восстановление 4-арил-5-оксо-4,5-дигидро-1H-индено[1,2-*b*]пиридинов **1а–h** до соответствующих тетрагидроинденопиридинов также можно осуществлять Et₃SiH в CF₃COOH. В этих условиях селективно восстанавливается связь C(2)=C(3) и главным продуктом реакции является *транс*-изомер 1,2,3,4-тетрагидроинденопиридинов **2а–h**. Только в одном случае (при восстановлении соединения **2b**) удалось выделить продукт восстановления связи C(4a)=C(9b) – соединение **5** с низким выходом (5 %).

Можно было ожидать образования *транс*-изомера в результате восстановления, поскольку протонирование енаминного фрагмента, как и присоединение гидрид-иона, генерируемого Et₃SiH, может происходить с обеих сторон плоскости пиридинового кольца и *транс*-расположение всех объёмистых заместителей у атомов C(2), C(3), C(4) является энергетически наиболее выгодным. Как минорные продукты восстановления выделены *цис*-изомеры **За–h**. Остальные два возможных при восстановлениялении связи C(2)=C(3) диастереоизомера не обнаружены.

Протонирование енаминного фрагмента при атоме С(3) приводит к образованию циклического иона иммония. Благодаря наличию двойных

 $\begin{array}{l} \textbf{1-4 a-c } R^2 = R^3 = R^4 = H, \ \textbf{a} \ R = COMe, \ R^1 = H; \ \textbf{b} \ R = CO_2Et, \ R^1 = H; \ \textbf{c} \ R = CO_2Pr-\textit{i}; \\ R^1 = H; \ \textbf{1-3 } \textbf{d} \ R = CO_2Me, \ R^1 = Me, \ R^2 = R^3 = R^4 = H; \ \textbf{1-4 } \textbf{e} \ R = CO_2Et, \ R^1 = NH_2, \\ R^2 = R^3 = R^4 = H; \ \textbf{1-3 } \textbf{f} \ R = CO_2Et, \ R^1 = R^2 = R_3 = H, \ R^4 = NO_2; \ \textbf{g} \ R = CO_2Me, \ R^1 = R^2 = H, \\ R^3 = OMe, \ R^4 = OEt; \ \textbf{h} \ R = CO_2Et, \ R^1 = R^4 = H, \ R^2 = R^3 = Cl \end{array}$

связей C=C и C=N конформация пиридинового цикла сравнительно плоская: атомы кольца формируют два плоских фрагмента C(3)-C(2)=N-C(9b) и C(4)-C(4a)=C(9b)-N, концевые атомы C(3) и C(4) которых сдвинуты в противоположные стороны усредненной плоскостью цикла поворотом вдоль ординарной связи C(9b)-N. Такая конформация цикла значительно уменьшает диэдрический угол CH₃-C(2)-C(3)-R(H), что делает конформации с аксиально расположенным заместителем у С(3) более выгодным из-за уменьшения гош-взаимодействия Me/3-R. Более предпочтительны конформация В при протонировании со стороны 4-фенильного заместителя и конформация С при протонировании со стороны противоположной заместителю в положении 4. Конформация В обеспечивает свободный подход гидридносящего агента к атому С(2), в то время как в конформации С приближению реагента препятствует аксиально расположенная группа 4-Рh. Этими пространственными факторами лимитируется соотношение диастереомеров *транс>>цис*, а ничтожной долей конформаций А и **D** объясняется отсутствие других стереоизомеров.

Интересно отметить, что заместитель в инденовой части молекулы влияет на соотношение *mpahc/цис*-изомеров. Если сравнить выход *mpahc*и *цис*-изомеров продуктов восстановления соединений **2b** и **2f**, то соотношение *mpahc/цис*-изомеров равно 72:12 и 86:4. Восстановление дигидроинденопиридинов с Et₃SiH/CF₃COOH сопровождается частичным окислением производного дигидропиридина до пиридина, хотя восстановление

проводится в атмосфере аргона. Тетрагидроинденопиридины под действием кислорода воздуха не окисляются до инденопиридинов, а подвергаются перегруппировке, о которой будет сообщено отдельно. Следовательно, источником окисленной формы является исходный дигидропиридин и окислителем его может быть остаточный кислород воздуха в реакционной среде. Нам не удалось предотвратить эту побочную реакцию ни простым продуванием реакционного сосуда аргоном, ни повторным замораживанием/вакуумированием/заполнением аргоном. Можно предположить, что наряду с Et_3SiH донором гидрид-иона сможет быть и дигидро-инденопиридин, при этом превращаясь в инденопиридин. Косвенно эту гипотезу подтверждает отсутствие окисленной формы в случае восстановления инденопиридинов, имеющих акцепторные заместители в индановом кольце соединений **1f** и **1h**, так как такое замещение должно понизить восстановительную способность дигидропиридина.

Восстановлению подвергается 3-ацетилпроизводное дигидроинденопиридина **2a** так же, как и эфиры дигидроинденопиридин-3-карбоновой кислоты, но восстановить соответствующее 3-цианопроизводное с Et₃SiH в трифторуксусной кислоте нам не удалось.

Структура диастереомеров **2а–h** и **3а–h**, а также продукта восстановления **5** доказана при помощи ЯМР спектроскопии и РСА (соединения **2b**, **3b** и **5**, рис. 1–3 соответственно). Так в спектрах ЯМР ¹Н *транс*-изомеров **2а–h** наблюдаются большие КССВ протонов пиридинового остова $J_{2,3} \approx J_{3,4} =$ = 9.4–10.0 Гц, что хорошо согласуется с антиперепланарным расположением протонов H(2), H(3) и H(4). Следовательно, все объемистые группы у тетрагидропиридинового кольца занимают экваториальное положение. КССВ изомеров **3а–h** находятся в пределах $J_{2,3} = 3.3–3.6$, а $J_{3,4} = 6.3–6.7$ Гц, что соответствует *цис*-расположению протонов H(2), H(3) и H(4). Увеличенное значение константы $J_{3,4}$ указывает на уменьшение диэдрического угла H–C(3)–C(4)–H из-за уплощенной конформации цикла.

Рис. 1. Структура этилового эфира (2*R**,3*S**,4*R**)-2-метил-5-оксо-4-фенил-2,3,4,5-тетрагидро-1Н-индено[1,2-*b*]пиридин-3-карбоновой кислоты (**2b**)

Рис. 2. Структура этилового эфира (2*R**,3*R**,4*R**)-2-метил-5-оксо-4-фенил-2,3,4,5-тетрагидро-1Н-индено[1,2-*b*]пиридин-3-карбоновой кислоты (**3b**)

Рис 3. Структура этилового эфира (4*R**,4*aR**,9*bS**)-2-метил-5-оксо-4-фенил-4,4a,5,9bтетрагидро-1Н-индено[1,2-*b*]пиридин-3-карбоновой кислоты (**5**)

Алкилирование тетрагидроинденопиридина **2b** иодметаном, аллилбромидом или этиловым эфиром бромуксусной кислоты проводилось в ДМФА в присутствии гидрида натрия. При действии NaH на тетрагидроинденопиридин **2b** образуется анион, амбидентные свойства енаминкетонного фрагмента которого сходны с таковыми анионов дигироинденопиридинов [3]. Взаимодействие аниона тетрагидропиридина с алкилирующим агентом приводит к образованию смеси продуктов N- и C-алкилирования **7а,b** и **8а–с**. Аналогично проведено метилирование диастереомера **3b**, основным продуктом этой реакции является N-изомер **10**.

7 a R = Me, b R = CH₂CO₂Et; 8 a R = Me, b R = CH₂CO₂Et, c R = CH₂CH=CH₂

Пространственное расположение заместителей продукта алкилирования **8** определено на основании результатов эксперимента двумерной корреляционной спектроскопии NOESY. В спектре отчетливо наблюдалось взаимодействие между 4а-аллилзаместителем и протоном H(4) и полностью отсутствовал соответствующий кросс-пик с группой Ph. Следовательно, заместитель R у атома C(4a) присоединен со стороны плоскости цикла, противоположной заместителю 4-Ph. В спектре соединений **7a,b** КССВ $J_{2,3} \approx J_{3,4} = 2.3-3.0$ Гц, что нехарактерно для *транс*расположения заместителей у атомов C(2), C(3) и C(4).

При восстанавлении 1-метил-5-оксо-4,5-дигидроиндено[1,2-*b*]пиридина 9 также селективно восстанавливается связь C(2)=C(3) и главным продуктом реакции является *транс*-изомер 1,2,3,4-тетрагидроинденапиридина 7а, доля *цис*-изомера 10 значительно увеличена по сравнению с N-неза-мещенными аналогами.

Строение *цис*-1-метил-1,2,3,4-тетрагидроинденопиридина **10** доказано ЯМР ¹Н спектрами – значения КССВ соединения **10** близки к таковым Nнезамещенных аналогов **3а-h** ($J_{2,3} = 3.3-3.6$, а $J_{3,4} = 6.3-6.7$ Гц). Как упоминалось выше, противоположно этому КССВ N-метил-*транс*-изомера **7а** сильно отличаются от измеренных КССВ родственных соединений **2а-h**. Это объясняется тем, что конформации цикла с экваториальными замести- телями у C(2)–C(4) атомов группы N–CH₃ и 2-CH₃ занимают близкое к заслоненному положение. Невыгодное пространственное взаимодей- ствие уменьшается поворотом вокруг связи N–C(2) и, следовательно, приводит к конформации тетрагидропиридиногого цикла с аксиальным расположением заместителей C(2) и C(3).

1067

Таблица 1

Соеди-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Тпп⁰С	Выход,
нение	Dpyrro φopmynu	С	Н	Ν	1. m., e	%
2b	C ₂₂ H ₂₁ NO ₃	<u>75.96</u> 76.06	<u>6.08</u> 6.09	$\frac{4.04}{4.03}$	227–227.5	23
2c	C ₂₃ H ₂₃ NO ₃	<u>76.18</u> 76.43	<u>6.23</u> 6.41	<u>3.81</u> 3.88	230	67
2d	$C_{22}H_{21}NO_3$	<u>75.62</u> 76.06	<u>5.98</u> 6.09	<u>3.93</u> 4.03	345-347	80
2e	$C_{22}H_{22}N_2O_3$	<u>72.51</u> 72.91	<u>5.59</u> 6.12	<u>7.39</u> 7.73	193–195	50
2f	$C_{22}H_{20}N_2O_5$	<u>67.32</u> 67.34	<u>5.07</u> 5.14	<u>7.09</u> 7.14	148	86
2g	C ₂₄ H ₂₅ NO ₅	$\frac{70.44}{70.75}$	<u>6.12</u> 6.18	<u>3.32</u> 3.44	116-118	83
3 a	$C_{21}H_{19}NO_2$	<u>79.70</u> 79.47	<u>6.15</u> 6.03	<u>4.20</u> 4.41	158–159	24
3b	$C_{22}H_{21}NO_3$	<u>75.80</u> 76.06	<u>6.03</u> 6.09	<u>3.98</u> 4.03	251–252	12
3c	C ₂₃ H ₂₃ NO ₃	<u>76.21</u> 76.43	<u>6.26</u> 6.41	<u>3.67</u> 3.88	212	6
3f	$C_{22}H_{20}N_2O_5$	<u>67.09</u> 67.34	<u>5.32</u> 5.14	<u>6.92</u> 7.14	148	4
4c	C ₂₃ H ₁₉ NO ₃	<u>76.99</u> 77.29	<u>5.30</u> 5.36	<u>3.75</u> 3.92	124	17
4 e	$C_{22}H_{22}N_2O_3$	<u>73.58</u> 73.73	<u>4.84</u> 5.06	<u>7.61</u> 7.82	262–265	11
5	$C_{22}H_{21}NO_3$	<u>75.82</u> 76.06	<u>6.02</u> 6.09	<u>3.98</u> 4.03	201	5
7a	C ₂₃ H ₂₃ NO ₃	<u>76.42</u> 76.43	<u>6.45</u> 6.41	<u>3.77</u> 3.88	168–170	35*, 65**
7b	C ₂₆ H ₂₇ NO ₅	<u>71.84</u> 72.04	<u>6.27</u> 6.28	<u>3.09</u> 3.23	148–150	14
8a	C ₂₃ H ₂₃ NO ₃	<u>76.29</u> 76.43	<u>6.42</u> 6.41	<u>3.81</u> 3.88	140-141	27
8b	C ₂₆ H ₂₇ NO ₅	<u>71.86</u> 72.04	<u>6.24</u> 6.28	<u>3.10</u> 3.23	140-141	61
8c	C ₂₅ H ₂₅ NO ₃	<u>77.41</u> 77.49	<u>6.49</u> 6.50	<u>3.58</u> 3.60	77–79	54
10	C ₂₃ H ₂₃ NO ₃	<u>76.01</u> 76.43	<u>6.41</u> 6.41	<u>3.79</u> 3.88	149–150	48*, 32**

Физико-химические характеристики синтезированных соединений

* Выход в реакции алкилирования. ** Выход в реакции восстановления.

Спектры ЯМК ¹Н синтезированных соединений

Соеди-	Химические сдвиги, б, м. д. (Ј, Гц) *
1	2
2a	1.30 (3H, д, <i>J</i> = 6.5, 2-CH ₃); 1.72 (3H, с, COCH ₃); 2.78 (1H, д. д, <i>J</i> = 9.5, <i>J</i> = 9.4, H-3); 3.12 (1H, д. к, <i>J</i> = 9.4, <i>J</i> = 6.5, H-2); 3.91 (1H, д, <i>J</i> = 9.5, H-4); 5.27 (1H, уш. с, NH); 6.87–7.82 (9H, м, Ar)
2b	1.01 (3H, т, <i>J</i> = 7.0, OCH ₂ C <u>H</u> ₃); 1.33 (3H, д, <i>J</i> = 6.4, 2-CH ₃); 2.53 (1H, т, <i>J</i> = 9.7, H-3); 3.80 (1H, м, H-2); 3.97 (2H, к, <i>J</i> = 7.0, OC <u>H</u> ₂ CH ₃), 4.01(1H, д, <i>J</i> = 9.7, H-4); 5.31 (1H, уш. с, NH); 7.00–7.38 (9H, м, Ar)
2c	0.86 (3H, д, $J = 6.3$, CH(C <u>H</u> ₃) ₂); 1.15 (3H, д, $J = 6.3$, CH(C <u>H</u> ₃) ₂); 1.35 (3H, д, $J = 6.4$, 2-CH ₃); 2.48 (1H, д. д, $J = 9.8$, $J = 9.7$, H-3); 3.90 (1H, м, H-2); 4.01 (1H, д, $J = 9.8$, H-4); 4.89 (1H, септ, $J = 6.3$, C <u>H</u> (CH ₃) ₂); 5.47 (1H, уш. с, NH); 7.02–7.35 (9H, м, Ar)
2d	1.18 (3H, д, <i>J</i> = 6.4, 2-CH ₃); 2.33 (3H, с, 6-CH ₃); 2.43-2.51 (1H, м, H-3); 3.43 (3H, с, OCH ₃); 3.69–3.78 (1H, м, H-2); 3.83 (1H, д, <i>J</i> = 9.4, H-4); 6.98–7.07 (3H, м, Ar); 7.10–7.24 (4H, м, Ar); 7.34 (1H, д, <i>J</i> = 7.0, Ar); 8.60 (1H, уш. с, NH)
2e	1.00 (3H, T, $J = 7.1$, OCH ₂ CH ₃); 1.32 (3H, d , $J = 6.5$, 2-CH ₃); 2.50 (1H, d . d , $J = 9.9$, $J = 9.8$, H-3); 3.76–4.05 (3H, M, OCH ₂ CH ₃ , H-2); 4.25 (1H, M, H-4); 4.98 (2H, yu. c, NH ₂); 5.05 (1H, yu. c, NH); 6.50 (2H, M, H-7,8); 6.90–7.53 (6H, M, Ar)
2f	1.02 (3H, т, J = 7.1, OCH ₂ C <u>H</u> ₃); 1.40 (3H, д, J = 6.5, 2-CH ₃); 2.55 (1H, т, J = 10.0, J = 9.8, H-3); 3.85–4.08 (3H, м, OC <u>H</u> ₂ CH ₃ , H-2); 4.10 (1H, д, J = 10.0, H-4); 7.13–7.66 (8H, м, Ar)
2g	1.30 (3H, π , $J = 6.4$, 2-CH ₃); 1.41 (3H, π , $J = 7.0$, CH ₂ CH ₃); 2.52 (1H, π , $J = 9.6$, H-3); 3.52 (3H, c, COOCH ₃); 3.81–3.95 (4H, M, H-2, OCH ₃); 4.02 (1H, π , $J = 9.6$, H-4); 4.14–4.41 (2H, M, CH ₂ CH ₃); 6.20 (1H, yui. c, NH); 6.65 (1H, π , $J = 7.7$, H-7); 7.04 (1H, π , $J = 7.7$, H-6); 7.09–7.37 (5H, M, Ar)
2h,3h	0.83 (0.5H, T, $J = 7.1$, <i>cis</i> -OCH ₂ CH ₃); 1.01 (2.5H, T, $J = 7.1$, <i>trans</i> -OCH ₂ CH ₃); 1.31 (2.5H, J , $J = 6.5$, <i>trans</i> -2-CH ₃); 1.40 (0.5H, J , $J = 6.9$, <i>cis</i> -2-CH ₃); 2.51 (0.83H, T, $J = 9.6$, <i>trans</i> -H-3); 3.06 (0.17H, M, <i>cis</i> -H-3); 3.67–4.08 (3.83H, M, <i>trans</i> -H-2, <i>cis</i> -H-2, <i>trans</i> -H-4, <i>cis</i> -OCH ₂ CH ₃ , <i>trans</i> -OCH ₂ CH ₃); 4.22 (0.17H, J , $J = 6.6$, <i>cis</i> -H-4); 5.47 (0.17H, ym. c, NH); 5.52 (0.83H, ym. c, NH); 7.08–7.38 (7H, M, H-6,9, Ar)
3 a	1.37 (3H, д, <i>J</i> = 6.5, 2-CH ₃); 1.91 (3H, с, COCH ₃); 3.30 (1H, м, H-3); 3.94 (1H, м, H-2); 4.28 (1H, д, <i>J</i> = 6.5, H-4); 5.23 (1H, уш. с, NH); 7.04–7.67 (9H, м, Ar)
3b	0.85 (3H, т, <i>J</i> = 7.0, OCH ₂ C <u>H</u> ₃); 1.41 (3H, д, <i>J</i> = 6.8, 2-CH ₃); 3.08 (1H, д. д, <i>J</i> = 6.6, <i>J</i> = 3.5, H-3); 3.74 (2H, м, OC <u>H</u> ₂ CH ₃); 3.98 (1H, м, H-2); 4.26 (1H, д, <i>J</i> = 6.6, H-4); 5.22 (1H, уш. с, NH); 7.02–7.42 (9H, м, Ar)
3c	0.65 (3H, π , $J = 6.3$, CH(C <u>H</u> ₃) ₂); 1.05 (3H, π , $J = 6.3$, CH(C <u>H</u> ₃) ₂); 1.40 (3H, π , $J = 6.9$, 2-C <u>H</u> ₃); 3.04 (1H, π , $J = 6.6$, $J = 3.6$, H-3); 3.96 (1H, κ . π , $J = 6.9$, $J = 3.6$, H-2); 4.23 (1H, π , $J = 6.6$, H-4); 4.62 (1H, cent, $J = 6.3$, C <u>H</u> (CH ₃) ₂); 5.27 (1H, ym.c, NH); 7.02–7.42 (9H, m , Ar)
3d	1.21 (3H, д, <i>J</i> = 6.8, 2-CH ₃); 2.37 (3H, с, 6-CH ₃); 3.03 (1H, д.д, <i>J</i> = 6.4, <i>J</i> = 3.5, H-3); 3.15 (3H, с, OCH ₃); 3.86–3.94 (1H, м, H-2); 4.12 (1H, д, <i>J</i> = 6.4, H-4); 6.99–7.07 (3H, м, Ar); 7.08–7.23 (4H, м, Ar); 7.31 (1H, д, <i>J</i> = 7.0, Ar); 8.27 (1H, уш. с, NH)
3e	0.73 (3H, T, $J = 7.0$, OCH ₂ CH ₃); 1.20 (3H, π , $J = 6.8$, 2-CH ₃); 2.97 (1H, π , π , $J = 6.3$, $J = 3.3$, H-3); 3.52–3.69 (2H, M, OCH ₂ CH ₃); 3.79–3.90 (1H, M, H-2); 4.09 (1H, π , $J = 6.3$, H-4); 5.75 (2H, yu. c, NH ₂); 6.55 (1H, π , $J = 8.2$, Ar); 6.75 (1H, π , $J = 6.8$, Ar); 6.93–7.24 (6H, M, Ar); 8.03 (1H, yu. c, NH)
3f	0.86 (3H, т, <i>J</i> = 7.1, OCH ₂ C <u>H</u> ₃); 1.45 (3H, д, <i>J</i> = 6.9, 2-CH ₃); 3.10 (1H, д. д, <i>J</i> = 6.7, <i>J</i> = 3.6, H-3); 3.76 (2H, м, OC <u>H</u> ₂ CH ₃); 4.00 (1H, м, H-2); 4.28 (1H, д, <i>J</i> = 6.7, H-4); 7.08–8.03 (9H, м, NH, Ar)

1069

1	2
3g	1.33 (3H, d_{J} = 6.8, 2-CH ₃); 1.39 (3H, t_{J} = 7.0, CH ₂ CH ₃); 3.03–3.08 (1H, m_{J}
	[H-3); 3.26 (3H, c, COOCH ₃); 3.84 (5H, c, OCH ₃); 3.90–3.96 (1H, M, H-2);
	$4.16-4.33$ (3H, M, CH ₂ CH ₃ , H-4); 6.23 (1H, yiii. c, NH); 6.64 (1H, μ , $J = 7.6$, H-7);
	7.05 (1H, d, J = 7.6, H-6); 7.10-7.26 (5H, M, Ar)
4c	0.97 (3H, \exists , $J = 6.3$, CH(C <u>H</u> ₃) ₂); 2.68 (3H, c, 2-CH ₃); 4.93 (1H, cent, $J = 6.3$,
	С <u>Н</u> (СН ₃) ₂); 7.32–7.94 (9Н, м, Аг)
4e	0.93 (3H, T, $J = 7.1$, CH_2CH_3); 2.68 (3H, c, 2-CH ₃); 4.02 (2H, κ , $J = 7.1$,
	<u>СН</u> ₂ СН ₃); 5.50 (2H, уш. с, NH ₂); 6.62 (1H, д. д, $J = 6.0, J = 2.4, H-7$);
	7.19-7.48 (7Н, м, Аг)
5	1.12 (3H, T , $J = 7.1$, CH_2CH_3); 2.55 (3H, c, 2-CH ₃); 3.32 (1H, T , $J = 7.4$, $J = 7.1$,
	H-4a); 3.98 (2H, м, C <u>H</u> ₂ CH ₃); 4.65 (1H, д, <i>J</i> = 7.4, H-4); 4.94–5.06 (2H, м, NH,
	Н-9b); 6.73-6.78 (5H, м, Ar); 7.10-7.17 (2H, м, H-6,8); 7.46-7.51 (2H, м,
	H-7,9)
7a	0.90 (3H, д. $J = 7.1, 2$ -CH ₃); 1.22 (3H, т. $J = 7.1, OCH_2CH_3$); 1.14 (1H, т. $J = 2.3,$
	H-3); 3.60 (3H, c, N–CH ₃); 3.91 (1H, M, H-2); 4.12 (1H, K, $J = 7.1$, OCH ₂ CH ₃);
	4.14 (1H, к, <i>J</i> = 7.1, OC <u>H</u> ₂ CH ₃); 4.57 (1H, м, H-4); 7.10–7.50 (9H, м, Ar)
7b	0.98 (3H, д. $J = 7.1, 2$ -CH ₃); 1.21 (3H, т. $J = 7.1, OCH_2CH_3$); 1.29 (3H, т. $J = 7.1, $
	ОСH ₂ CH ₃); 3.11 (1H, т, <i>J</i> = 3.0, H-3); 3.98 (1H, к. д, <i>J</i> = 7.1, <i>J</i> = 3.0, H-2); 4.13
	$(2H, \kappa, J = 7.1, OCH_2CH_3); 4.27 (1H, \kappa, J = 7.1, OCH_2CH_3); 4.28 (1H,$
	OCH_2CH_3 ; 4.33 (1H, π , $J = 18.5$, CH_2CO); 4.54 (1H, π , $J = 3.0$, H-4); 4.76 (1H,
	д, <i>J</i> = 18.5, CH ₂ CO); 7.05 (1H, м, Ar); 7.14–7.35 (7H, м, Ar); 7.45 (1H, м, Ar)
8a	1.26 (3H, T, $J = 7.0$, OCH ₂ CH ₃); 1.49 (3H, c, 4a-CH ₃); 1.64 (3H, π , $J = 6.6$, 2-CH ₃);
	2.64 (1H, μ , μ , $J = 9.9$, $J = 5.1$, H-3); 3.64 (1H, μ , $J = 5.1$, H-4); 4.05–4.29 (1H,
	м, H-2) и (2H, к, J = 7.0, OC <u>H</u> ₂ CH ₃); 6.86 (2H, м, Ar); 7.05 (3H, м, Ar);
	7.49–7.78 (3Н, м, Н-7,8,9); 8.11 (1Н, м, Н-6)
8b	0.87 (3Н. т. <i>J</i> = 7.1. ОСН ₂ СН ₃); 1.28 (3Н. т. <i>J</i> = 7.1. ОСН ₂ СН ₃); 1.68 (3Н. д.
	$J = 7.1, 2 - CH_3$; 2.77 (1H, $\pi, \pi, J = 10.0, J = 4.0, H-3$); 3.21 (1H, $\pi, J = 16.0, J = 10.0, J = 10.$
	CH ₂ CO); 3.42 (1H, д, J = 16.0, CH ₂ CO); 3.64 (1H, д, J = 4.0, H-4); 3.79 (2H, к,
	<i>J</i> = 7.1, OC <u>H</u> ₂ CH ₃); 4.18 (1H, к. д, <i>J</i> = 10.0, <i>J</i> = 6.5, H-2); 4.23 (2H, к, <i>J</i> = 7.1,
	ОС <u>H</u> ₂ CH ₃); 6.85 (2H, м, Ar); 6.99 (3H, м, Ar); 7.48 (2H, м, Ar); 7.67 (1H, д. д. д,
	<i>J</i> = 7.6, <i>J</i> = 6.0, <i>J</i> = 2.4, H-8); 8.07 (1H, д. д. д, <i>J</i> = 7.6, <i>J</i> = 6.0, <i>J</i> = 2.4, H-7)
8c	1.25 (3H, т, <i>J</i> = 7.1, OCH ₂ C <u>H</u> ₃); 1.63 (3H, д, <i>J</i> = 6.6, 2-CH ₃); 2.66 (1H, д. д.
	<i>J</i> = 9.9, <i>J</i> = 5.2, H-3); 2.74 (1H, д. д, <i>J</i> = 14.0, <i>J</i> = 7.0, C <u>H</u> ₂ CH=); 2.90 (1H, д. д,
	$J = 14.0, J = 7.0, CH_2CH=$; 3.63 (1H, $\pi, J = 5.2, H-4$); 4.17 (1H, $\kappa, \pi, J = 9.9$,
	$J = 6.6, \text{ H-2}$); 4.20 (2H, к, $J = 7.1, \text{ OCH}_2\text{CH}_3$); 4.84 (1H, д. д, $J = 9.9, J = 1.8,$
	CH ₂ =); 5.01 (1H, \exists , \exists , $J = 16.9$, $J = 1.8$, CH ₂ =); 5.31 (1H, \exists , \exists , T , $J = 16.9$, $J = 9.9$,
	<i>J</i> = 7.0, CH=); 6.85 (2H, м, Ar); 7.03 (3H, м, Ar); 7.53 (2H, м, Ar); 7.70 (1H,
	д. д. д, <i>J</i> = 7.6, <i>J</i> = 6.0, <i>J</i> = 2.2, H-7); 8.08 (1H, д, <i>J</i> = 7.6, H-6)
10	1.18 (3H, д, $J = 6.8$, 2-CH ₃); 1.29 (3H, т, $J = 7.1$, OCH ₂ CH ₃); 3.29 (1H, д. д.
	J = 6.2, J = 3.9, H-3; 3.57 (3H, c, N-CH ₃); 3.80 (1H, M, H-2); 4.19 (2H, M,
	ОС <u>H</u> ₂ CH ₃); 4.65 (1H, д, <i>J</i> = 6.2, H-4); 7.11–7.49 (9H, м, Ar)

^{*} Спектры соединений **2а-с,е,f,h, 3а-с,f,h, 4с,е, 5, 7а,b, 8а-с** (в CDCl₃) снимали на аппарате Varian Mercury 200 (200 МГц); соединений **2,3d** (в ДМСО) и **2g, 3е,g** (в CDCl₃) – на аппарате Varian Mercury 400 (400 МГц).

Таблица З

Спект	nы ЯMR	¹³ C cr	интези	пованных	соелинений
Chent		0.01	amicon	JODAIIIDIA	сосдинении

Соеди- нение	Химические сдвиги, б, м. д. (Ј, Гц)*
2b	14.25 (CH ₂ <u>C</u> H ₃); 19.46 (CH ₃); 41.99 (C-4); 50.74 (C-2); 56.93 (C-3); 60.91 (<u>C</u> H ₂ CH ₃); 103.69 (C-4a); 117.07; 120.64; 126.99; 127.94; 128.47; 130.50; 130.54; 136.10; 136.61; 140.86; 162.09; 173.01 (<u>C</u> OOCH ₂); 189.08 (C=O)
2c	19.43 (CH ₃); 21.26 (CH(<u>C</u> H ₃) ₂); 22.00 (CH(<u>C</u> H ₃) ₂); 42.06 (C-4); 50.80 (C-2); 57.01 (C-3); 68.37 (<u>C</u> H(CH ₃) ₂); 104.12; 116.75; 120.74; 126.98; 128.04; 128.45; 130.50; 130.52; 136.12; 136.51; 140.73; 172.49; 189.05 (<u>C</u> OOPr-2); 201.95 (C=O)
2e	14.03 (CH ₂ <u>C</u> H ₃); 19.50 (CH ₃); 41.95 (C-4); 50.43 (C-2); 56.71 (C-3); 60.60 (<u>C</u> H ₂ CH ₃); 103.61 (C-4a); 106.96; 114.03; 120.30; 126.82; 127.73; 128.21; 131.42; 136.87; 140.74; 143.36; 159.57; 172.87 (<u>C</u> OOCH ₂); 192.07 (C=O)
2f	14.09 (CH ₂ <u>C</u> H ₃); 19.27 (CH ₃); 42.05 (C-4); 50.76 (C-2); 50.81 (C-3); 61.65 (<u>C</u> H ₂ CH ₃); 119.60 (C-4a); 121.79; 127.99; 128.31; 129.10; 132.44; 133.28; 135.55; 144.45; 147.10; 161.20; 163.62; 167.68 (<u>C</u> OOCH ₂); 187.54 (C=O)
2g	15.9; 19.6; 41.7; 50.1; 51.7; 55.9; 56.5; 69.3; 103.4; 111.4; 116.9; 126.5; 126.6; 127.5; 128.2; 129.2; 140.6; 141.6; 155.3; 160.5; 173.3 (COOMe); 187.70 (C=O)
3 a	18.08 (COCH ₃); 31.19 (CH ₃); 40.90 (C-4); 52.42 (C-2); 56.34 (C-3); 117.26 (C-4a); 120.46; 127.05; 128.10; 128.42; 128.76; 130.50; 136.17; 138.54; 143.65; 162.77; 164.10; 176.71 (COCH ₃); 208.40 (C=O)
3b	20.84 (CH ₂ <u>C</u> H ₃); 21.27 (CH ₃); 39.33 (C-4); 40.58 (C-2); 40.63 (C-3); 45.70 (<u>C</u> H ₂ CH ₃); 116.35 (C-4a); 126.10; 127.48; 127.55; 128.36; 128.47; 128.77; 132.01; 145.36; 149.48; 152.97; 155.38; 174.20(<u>C</u> OOCH ₂); 192.89 (C=O)
3c	18.36 (CH ₃); 21.34 (CH(<u>C</u> H ₃) ₂); 22.03 (CH(<u>C</u> H ₃) ₂); 42.21 (C-4); 50.04 (C-2); 51.78 (C-3); 67.59 (<u>C</u> H(CH ₃) ₂); 101.93 (C-4a); 116.78; 120.52; 126.90; 128.02; 128.94; 130.40; 130.42; 136.29; 136.84; 138.80; 163.64; 169.41 (<u>C</u> OOPr-2); 189.53 (C=O)
3e	14.1; 18.1; 49.3; 51.3; 59.3; 98.6; 108.2; 120.1; 126.3; 127.6; 129.0; 131.2; 137.5; 140.5; 143.8; 162.1; 169.8 (COOEt); 191.3 (C=O)
3f	14.56 (CH ₂ CH ₃); 19.18 (CH ₃); 41.77 (C-4); 51.10 (C-2); 56.23 (C-3); 60.85 (\underline{CH}_2CH_3); 102.90 (C-4a); 121.69; 124.10; 127.09; 128.40; 128.63; 132.96; 138.15; 141.38; 143.85; 161.13; 164.22; 166.88 (COOCH ₃); 172.75 (C=O)
3g	15.8; 18.4; 40.1; 49.1; 50.8; 51.4; 55.9; 69.4; 101.3; 111.2; 116.7; 126.6; 127.0; 127.8; 128.4; 129.6; 138.7; 141.5; 155.3; 162.0; 170.0 (COOMe); 188.0 (C=O)

^{*} Спектры соединений **2с,b** и **3а,с,f** (в CDCl₃) снимали на аппарате Varian Mercury 200 (200 МГц); спектры соединений **3e** (в ДМСО) и **2e,f,g, 3b,g** (в CDCl₃) – на аппарате Varian Mercury 400 (400 МГц).

Получение N-метилтетрагидроинденапиридина 7а двумя независимыми способами – восстановлением дигидроиндено[1,2-*b*]пиридина 9 и алкилированием тетрагидроинденопиридина 2b – является дополнительным подтверждением его пространственной структуры.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ¹³С получены на приборах Varian Mercury 200 и 400 МГц, внутренний стандарт ТМС, масс-спектры на – масс-спектрометре Q-TOF micro (Micromass). Рентгеноструктурное исследование выполнено на автоматическом рентгенодифрактометре Bruker-Nonius Карра, используя ССD детектор. Для препаративной колоночной хроматографии применялся силикагель марки Acros Kieselgel (0.035–0.070 мм).

Синтез 5-оксо-4-фенил-1H-2,3,4,5-тетрагидроиндено[1,2-*b*]пиридинов 2а–h, 3а–h, 7а, 10 (общая методика). К раствору 4.30 ммоль дигидропиридинов 1а–h, 9 в 5 мл трифторуксусной кислоты приливают 1.0 мл триэтилсилана. Полученную реакционную смесь перемешивают в атмосфере аргона в течение 1 ч и выливают на смесь 100 г льда и 15 г бикарбоната. Образовавшийся осадок отфильтровывают, сушат и делят на хроматографической колонке. В результате выделяют *цис*и *транс*-изомеры **3а–c, f, 10** и **2а–g, 7а**. Для разделения используют следующие элюенты: этилацетат–петролейный эфир, 6:1, метиленхлорид–ацетон, 20:1, метиленхлорид–петролейный эфир–ацетон, 9:7:1. Выделяют *цис*-изомеры **3d,e,g** используя повторную хроматографию, их выходы не превышают 5% (**3d,** т. пл. 348–347 °C, **3g** т. пл. 191–193 °C, **3e** т. пл. 176–178 °C (спекание); 178–180 °C (плавление); **3d** *m/z* 348 [M+1]⁺; **3e** *m/z* 363 [M+1]⁺. Смесь **2h,3h** *транс-* и *цис*-изомеров (в отношении 5:1) разделить не удалось, суммарный выход составил 66%. Соединение **2a** выделено с выходом 45%, *m/z* 318 [M+1]⁺.

Алкилирование (2*R**,3*S**,4*R**)-5-оксо-4-фенил-1H-2,3,4,5-тетрагидроиндено[1,2-*b*]пиридинов (общая методика). К раствору 4.30 ммоль тетрагидроинденопиридина 2b и 3b в 15 мл ДМФА при перемешивании прибавляют суспензию 0.26 г гидрида натрия в минеральном масле (60%). Перемешивают еще 0.5 ч, затем к реакционной смеси приливают 12.90 ммоль алкилирующего агента. За ходом реакции следят с помощью TCX. По окончании реакции реакционную смесь выливают в водный раствор хлорида натрия. Образовавшийся маслянистый осадок отделяют, сушат и делят на хроматографической колонке (силикагель). Выделенные С- и N-изомеры 8а-с и 7а,b, 10 разделяют, используя следующие элюенты: этилацетат–петролейный эфир, 1:1, и петролейный эфир–ацетон, 4:1.

Авторы благодарят С. Белякова за проведение РСА.

СПИСОК ЛИТЕРАТУРЫ

- 1. U. Rosentreter, Synthesis, 2, 210 (1985).
- 2. C. Taberez, C. Waterman, A. L. Rapp, P. Moyna, G. Moyna, *Tetrahedron Lett.*, 50, 7128 (2009)
- 3. Д. Муцениеце, С. Ступникова, В. Лусис, *ХГС*, 1071 (2001). [*Chem. Heterocycl. Comp.*, **37**, 982 (2001)].

Латвийский институт органического синтеза Рига LV-1006, Латвия e-mail: lusis@osi.lv Поступило 17.06.2010