Л. А. Каюкова*, М. А. Оразбаева, Г. И. Гаппарова, К. М. Бекетов, А. А. Еспенбетов, М. Ф. Фасхутдинов, Б. Т. Ташходжаев^а

БЫСТРЫЙ КИСЛОТНЫЙ ГИДРОЛИЗ 5-АРИЛ-3-(β-ТИОМОРФОЛИНОЭТИЛ)-1,2,4-ОКСАДИАЗОЛОВ

При кислотном гидролизе ряда 5-арил-3-(β-тиоморфолиноэтил)-1,2,4-оксадиазолов получены замещенные бензойные кислоты и гидрат 2-амино-8-тиа-1аза-5-азониаспиро[4.5]дец-1-енхлорида, структура которого доказана спектральными методами и РСА.

Ключевые слова: 5-арил-3-(β-тиоморфолиноэтил)-1,2,4-оксадиазолы, гидрат 2-амино-8-тиа-1-аза-5-азониаспиро[4.5]дец-1-енхлорида, замещённые бензойные кислоты, кислотный гидролиз, РСА.

Возможность существования О-ароил-β-аминопропиоамидоксимов и 5-арил-3-(β-аминоэтил)-1,2,4-оксадиазолов в виде стабильных оснований и гидрохлоридов была продемонстрирована нами в предыдущих работах, в которых описаны β-пиперидиновые, β-морфолиновые и β-бензимидазолсодержащие производные; они не претерпевали структурных изменений при выделении из реакционной смеси, перекристаллизации, получении физико-химических и спектральных данных, характеристик PCA [1–3].

Цель настоящей работы – изучение реакции хлористого водорода с 5-арил-3-(β-тиоморфолиноэтил)-1,2,4-оксадиазолами **1а**-е, полученными дегидратацией О-ароил-β-(тиоморфолино)пропиоамидоксимов **2а**-е. Последние синтезированы ацилированием β-(тиоморфолино)пропиоамидоксима (**3**) хлорангидридами замещённых бензойных кислот [4, 5] (схема 1).

1,2 a X = p-MeO, b X = p-Me, c X = H, d X = p-Br, e X = m-Cl

Эфирный раствор HCl со следами влаги добавляют по каплям при комнатной температуре к спиртовым растворам 5-арил-3-(β -тиоморфолиноэтил)-1,2,4-оксадиазолов **1а**-е до pH 2. Во всех случаях сразу после добавления раствора хлористого водорода выпадает осадок малорастворимого в этаноле гидрата 2-амино-8-тиа-1-аза-5-азониаспиро[4.5]дец-1-енхлорида (**4**), после упаривания фильтратов выделяют соответствующие замещённые бензойные кислоты **5а**-е (табл. 1–3).

Образование соединения **4** можно представить как ряд стадий кислотного гидролиза и внутримолекулярной гетероциклизации через промежуточные продукты **1**.HCl – **1**.2HCl·2H₂O – **1**.HCl·2H₂O (схема 2) в процессе взаимодействия оснований 1,2,4-оксадиазолов **1а**–е с неосушенным HCl. Мы полагаем, что решающим является образование аммониевого соединения **1**.HCl и продукта гидролиза **1**.2HCl·2H₂O при атаке атома кислорода гидроксонийхлорида на атом N(2) и кислорода молекулы воды на атом C(5) 1,2,4-оксадиазольного цикла соединений **1а**–е. Стабилизация положительного

Таблица 1

Сое- Брутто- ди- формула] B	<u>Найдено, %</u> ычислено, '	<u>)</u> %	Т. пл., °С*	R_{f}	Выход
нение		С	Н	Hlg	·C*	,	, %
3	$C_7H_{15}N_3OS$	<u>44.20</u> 44.42	<u>8.10</u> 7.99	_	170	0.54	92
3 . ∙2HCl	$C_7H_{17}Cl_2N_3OS$	<u>32.50</u> 32.06	<u>6.46</u> 6.53	<u>27.30</u> 27.04	178	0.07	98
4**	C ₇ H ₁₆ ClN ₃ OS	a)37.10; b)37.88; c)37.23; d)37.84; e)37.74 37.25	<u>a)7.52;</u> <u>b)7.40;</u> <u>c)6.56;</u> <u>d)6.95;</u> <u>e)6.86</u> 7.14	a)15.02; b)15.24; c)15.41; d)15.80; e)16.03 15.71	302	0.09	40–47
5a	$C_8H_8O_3$	$\frac{63.00}{63.15}$	<u>5.90</u> 5.30	-	180 (181–186)	0.75	43
5b	$C_8H_8O_2$	<u>70.20</u> 70.57	<u>6.33</u> 5.92	-	178 (179–182)	0.76	45
5c	$C_7H_6O_2$	<u>68.93</u> 68.85	<u>5.06</u> 4.95	_	112 (121–123)	0.79	41
5d	$C_7H_5BrO_2$	<u>42.20</u> 41.83	$\frac{3.04}{2.51}$	<u>39.55</u> 39.75	247 (251–256)	0.81	40
5e	C ₇ H ₅ ClO ₂	<u>53.90</u> 53.70	<u>3.70</u> 3.22	<u>23.03</u> 22.64	150 (154–157)	0.82	43

Физико-химические характеристики соединений 3, 3 · 2HCl, 4 и бензойных кислот 5а–е

* В скобках приведены литературные данные [Каталог Acros Organics (2004-2005)].

^{**} В графе "Найдено" приведены данные элементного анализа соединения 4, соответствующие его синтезам из производных 1а-е.

5 a X = p-OMe, b X = p-Me, c X = H, d X = p-Br, e X = m-Cl

Cxema 2

Таблица 2

и 5а-е
4
3, 3-2HCI,
соединений
спектры
ЯИ

	V _{O-H} (c)	3459	3268	81; 3382	3133–3400	3130–3422	3069–3414	3080-3431	3069–3382	
	v_{N-H} (c)	3092; 3153; 3279	I	3137; 3229; 338	I	I	I	I	I	
	V _{N(+)-} н (ср)	I	2525; 2628; 2851; 2934; 2989	I	I	Ι	I	I	I	
тки КВг)	v _{C-S} (c)	779	719	668	I	I	I	I	I	
v, ð, см ⁻¹ (таблет	V _{C-0} (04. C)	Ι	I	Ι	1286; 1320	1286; 1320	1293; 1327	1296; 1323	1260; 1303	
	δ _{0-H}	1421	cp 1409 cp	I	1418 c	1418	cp 1424	cp 1427	cp 1419 c	
	Vc=c	I	I	Ι	1612	оч. с 1602	cp 1602	cp 1610	cp 1600	cb
	$\begin{array}{c} \delta_{N-H,} \\ \delta_{N(+)-H,} \\ \delta_{O(-H)_2} \end{array}$	1598 cp	1632 сл	1610 оч. с	I	I	I	I	Ι	
	V _{C=N} (04. c)	1659	1688	1657	I	I	I	I	I	
	V _{С=О} (оч. с)	I	I	I	1677	1677	1678	1679	1698	
	Соеди- нение	3	3.2HCl	4	5a	5b	5c	5d	5e	

ς
а
Ц
И
5
0
а
Ε

4 и 5а-е
3-2HCI,
ŕ
соединений
Η
JMR
Спектры

LI)	COOH, ym. c	Ι	I	I	12.62	12.79	1296	13.19	13.35
	C ₆ H ₄ X	I	I	I	3.82 (3H, c); 7.01 (2H, M); 7.88 (2H, M)	2.85 (3H, c); 7.29 (2H, m); 7.83 (2H, m)	7.47–7.96 (5H, m)	7.74 (2H, m); 7.85 (2H, m)	7.52–7.90 (4H, м)
	NOH (3); N(+)H (3·2HCl); H ₂ O (4)	8.74 (ym. c)	8.94 (уш. с) и 11.10 (уш. с)	3.37 (2Н, уш. с)	I	I	I	I	I
)-d ₆), δ, м. д. (<i>J</i> ,	NH ₂ , (2Н, уш. с)	5.40	I	7.48	I	I	Ι	I	I
ские сдвиги (ДМСС	β-CH ₂ (3 и 3 ·2HCl); C(4)H ₂ (4)	*	* * 	3.88 (2H, T, $J = 7.0$)	I	I	I	I	I
Химичес	α-CH ₂ (3 и 3 ·2HCl); C(3)H ₂ (4)	2.08 (2H, T , $J = 7.0$)	* * 	*	I	I	I	I	I
	$S(CH_2)_2$	2.55 (6Н, м) *	3.04 (6H, _M)**	2.88 (2H, m); 3.14 (4H, m)*	I	I	I	I	I
	N(CH ₂) ₂ (3 и 3 ·2HCl) или N(+)(CH ₂) ₂ (4)	2.64 (4H, m)	3.45 (6H, M) **	3.62 (2H, M); 3.74 (2H, M)	I	I	I	I	I
	Соеди- нение	3	3.2HCl	4	5a	5b	5с	5d	5e

* В соединении **3** сигналы протонов групп β-CH₂ совпадают с сигналами протонов группы S(CH₂)₂, а в соединении **4** сигналы протонов группы C(3)H₂ совпадают с сигналами протонов группы S(CH₂)₂ при δ 3.14 м. д. ** Сигналы протонов групп α-CH₂ и β-CH₂ совпадают с сигналами протонов групп S(CH₂)₂ и N(+)(CH₂)₂.

заряда на аммонийном атоме азота тиоморфолинового цикла неподелённой электронной парой оксимного атома азота и отщепление молекулы воды в 1·HCl·2H₂O завершает гетероциклизацию с образованием спиросоединения 4.

Соединение 4 плохо растворимо в реакционной среде – растворе HCl в смеси EtOH с H_2O – при комнатной температуре и представляет собой высокоплавкий белый осадок. При упаривании фильтрата выделены соответствующие замещенные бензойные кислоты **5а**–е, идентифицированные по спектральным характеристикам и температурам плавления (табл. 1–3). Спироазонийхлорид **4** – изомер гидрохлорида амидоксима **3**·HCl, причём структуре последнего не противоречат данные ИК и ЯМР ¹Н спектров соединения **4**.

Температуры плавления соединений **3**, **3**·2HCl и **4** равны 170, 178 и 303 °C соответственно. Характеристичные полосы валентных и деформационных колебаний приведены в табл. 2. При переходе от соединения **3** к **3**·2HCl и **4** в спектрах ЯМР ¹H наблюдаются смещения сигналов протонов групп α -CH₂ и β -CH₂ от δ 2.08 и 2.55 (**3**) к 3.04 и 3.45 (**3**·2HCl) и к 3.14 (C(3)H₂) и 3.88 м. д. (C(4)H₂) соединения **4**. Кроме того, сигналы протонов метиле- новых групп N(+)(CH₂)₂ и S(CH₂)₂, тиоморфолинового цикла соединения **4** находятся в более низких полях по сравнению с одноименными сигналами соединений **3** и **3**·2HCl и распадаются на две группы мультиплетных сигналов при δ 3.74, 3.62 и 2.88, 3.14 м. д. интенсивностью в два протона (табл. 3).

Резкое отличие физико-химических и спектральных характеристик соединения 4 от соответствующих данных β-(тиоморфолино)пропиоамидоксима (3) и его дигидрохлорида 3·2HCl привело к необходимости получения PCA для этого образца.

РСА установлено, что исследованное соединение **4** представляет собой гидрат 2-амино-8-тиа-1-аза-5-азониаспиро[4.5]дец-1-енхлорида. На рис. 1 представлено строение двух кристаллографически независимых катионов (**A** и **B**), связанных между собой межмолекулярными водородными связями с хлорид-анионами и молекулами воды.

Тиоморфолиновые циклы в гидратах хлорида аммония **A** и **B** в пределах погрешностей фактически изоструктурны и имеют конформации *кресла*, а имидазолидиновые циклы – конформации *конверта* и являются зеркальными отображениями друг друга (табл. 4).

Посредством системы водородных связей в кристаллах соединения **4** образуются слои, параллельные плоскости *ab* (рис. 2). Геометрия межмолекулярных взаимодействий представлена в табл. 5.

Рис. 1. Ассоциация соединения **4** (независимая часть), приведена нумерация неводородных атомов

Рис. 2. Кристаллическая структура соединения 4

Таблица 4

Некоторые торсионные (ф) углы в структуре 4

Угол	ф, град.	Угол	ф, град.
Имидазолидиновый ц	икл	Тиоморфолиновый ц	икл
N(10A)-N(1A)-C(2A)-C(3A)	-5(2)	N(10A)-C(5A)-C(6A)-S(7A)	60.7(17)
N(1A)-C(2A)-C(3A)-C(4A)	-8(2)	C(5A)-C(6A)-S(7A)-C(8A)	-55.8(13)
C(2A)-C(3A)-C(4A)-N(10A)	15.2(17)	C(6A)–S(7A)–C(8A)–C(9A)	58.1(14)
C(3A)-C(4A)-N(10A)-N(1A)	-18.4(17)	S(7A)-C(8A)-C(9A)-N(10A)	-63.9(16)
C(2A)-N(1A)-N(10A)-C(4A)	14.7(17)	C(8A)-C(9A)-N(10A)-C(5A)	58.7(18)
N(10B)–N(1B)–C(2B)–C(3B)	-0.4(18)	C(6A)-C(5A)-N(10A)-C(9A)	-57.9(19)
N(1B)-C(2B)-C(3B)-C(4B)	16(2)	N(10B)-C(5B)-C(6B)-S(7B)	64.6(16)
C(2B)-C(3B)-C(4B)-N(10B)	-24.3(17)	C(5B)–C(6B)–S(7B)–C(8B)	-55.3(14)
C(8B)-C(9B)-N(10B)-N(1B)	174.0(13)	C(6B)–S(7B)–C(8B)–C(9B)	56.9(15)
C(2B)-N(1B)-N(10B)-C(4B)	-16.4(16)	S(7B)-C(8B)-C(9B)-N(10B)	-65.1(17)
		C(8B)-C(9B)-N(10B)-C(4B)	-67.2(18)
		C(6B)–C(5B)–N(10B)–C(9B)	-63.9(18)

Таблица 5

Связь*		Угол		
Child	D–H	H····A	D…A	D−H…A, град.
O(1W)····Cl(1)i			3.12 (1)	
O(1W)…Cl(2)i			3.08(1)	
O(2W)…Cl(1)i			3.12(1)	
O(2W)…Cl(2)i			3.12(1)	
C(3A)–H(3AD)····O(1W)i	0.97	1.99	3.37(2)	94.9
C(3B)–H(3BD)…O(2W)i	0.97	2.01	3.31(2)	90.5
N(3B)-H(3BC)····Cl(1)ii	0.86	2.41	3.26(1)	170.6
N(3A)-H(3AC)…Cl(2)iii	0.86	2.44	3.30(1)	174.3

Межмолекулярные взаимодействия в структуре соединения 4

* Коды симметрии: (i) *x*, *y*, *x*; (ii) 1–*x*, 0.5+*y*, 0.5–*z*; (iii) –*x*, –0.5+*y*, 0.5–*z*.

Таблица б

Брутто-формула	C ₇ H ₁₄ ClN ₃ OS
Параметры ячейки	
<i>a</i> , Å	10.166(2)
b, Å	11.060(2)
<i>c</i> , Å	19.610(4)
Пространственная группа	P212121
Объём элементарной ячейки, V , $Å^3$	2204.9(8)
Z (две независимые формульные единицы в ячейке)	8
Плотность кристаллов, $\rho_{\text{выч}}$, г/см ³	1.348
Коэффициент поглощения, µ, мм ⁻¹	4.598
<i>F</i> (000)	944
Число отснятых отражений	1885
Число отражений для расчёта	1221
GooF	1.008
Окончательный <i>R</i> -фактор [<i>I</i> >2 σ (<i>I</i>)]	$R_1 = 0.0666, \ wR_2 = 0.1992$
Остаточная электронная плотность, эл. ${\rm \AA}^3$	0.658 и -0.325
	1

Кристаллографические параметры и экспериментальные данные для соединения 4

Таблица 7

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
N(1A)-C(2A)	1.272(19)	C(6A)–S(7A)	1.790(16)	C(3B)–C(4B)	1.51(2)
N(1A)-N(10A)	1.463(18)	S(7A)–C(8A)	1.79(2)	C(4B)-N(10B)	1.48(2)
C(2A)–N(3A)	1.312(19)	C(8A)–C(9A)	1.56(2)	C(5B)–C(6B)	1.50(2)
C(2A)–C(3A)	1.50(2)	C(9A)-N(10A)	1.49(2)	C(5B)-N(10B)	1.525(16)
C(3A)–C(4A)	1.50(2)	N(1B)-C(2B)	1.320(19)	C(6B)-S(7B)	1.813(15)
C(4A)-N(10A)	1.559(18)	N(1B)-N(10B)	1.490(18)	S(7B)–C(8B)	1.800(17)
C(5A)-N(10A)	1.457(17)	C(2B)–N(3B)	1.345(18)	C(8B)–C(9B)	1.50(3)
C(5A)–C(6A)	1.53(2)	C(2B)–C(3B)	1.46(2)	C(9B)-N(10B)	1.541(18)

Длины связей (d) соединения 4

Таблица 8

Валентные углы (ω) соединения 4

Угол	ω, град.	Угол	ω, град.
C(2A)-N(1A)-N(10A)	108.7(12)	C(2B)-N(1B)-N(10B)	104.1(12)
N(1A)-C(2A)-N(3A)	124.1(15)	N(1B)-C(2B)-N(3B)	119.9(15)
N(1A)-C(2A)-C(3A)	115.4(15)	N(1B)-C(2B)-C(3B)	117.2(14)
N(3A)-C(2A)-C(3A)	120.5(13)	N(3B)-C(2B)-C(3B)	122.9(13)
C(2A)-C(3A)-C(4A)	103.5(14)	C(2B)-C(3B)-C(4B)	100.5(13)
C(3A)-C(4A)-N(10A)	102.5(12)	N(10B)-C(4B)-C(3B)	103.8(12)
N(10A)-C(5A)-C(6A)	115.3(12)	C(6B)-C(5B)-N(10B)	112.4(14)
C(5A)–C(6A)–S(7A)	111.9(11)	C(5B)–C(6B)–S(7B)	112.0(11)
C(6A)–S(7A)–C(8A)	95.9(8)	C(8B)–S(7B)–C(6B)	95.8(9)
C(9A)-C(8A)-S(7A)	111.2(13)	C(9B)-C(8B)-S(7B)	113.7(13)
N(10A)-C(9A)-C(8A)	111.8(16)	C(8B)-C(9B)-N(10B)	110.2(14)
C(5A)–N(10A)–N(1A)	108.5(11)	C(4B)-N(10B)-N(1B)	107.4(12)
C(5A)–N(10A)–C(9A)	112.9(12)	C(4B)-N(10B)-C(5B)	112.8(14)
N(1A)-N(10A)-C(9A)	106.9(13)	N(1B)-N(10B)-C(5B)	103.9(12)
C(5A)–N(10A)–C(4A)	110.6(13)	C(4B)-N(10B)-C(9B)	116.7(12)
N(1A)-N(10A)-C(4A)	106.5(10)	N(1B)-N(10B)-C(9B)	105.1(12)
C(9A)-N(10A)-C(4A)	111.0(13)	C(5B)-N(10B)-C(9B)	109.9(13)

Таким образом, 1,2,4-оксадиазолы с 3-(β-тиоморфолино)этильным заместителем **1а**-е являются химически нестойкими соединениями, подверженными кислотному гидролизу с образованием гидрата 2-амино-8-тиа-1-аза-5-азониаспиро[4.5]дец-1-енхлорида (**4**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 в таблетках КВг. Спектры ЯМР ¹Н получены на приборе Мегсигу-300 (300 МГц) с внутренним стандартом ГМДС (δ 0.05 м. д.). Контроль за ходом реакции осуществляют с помощью TCX на пластинках Silicagel (Fluka) в элюенте этанол-бензол, 3:1. Растворители, используемые в эксперименте, готовят в соответствии с методиками, описанными в [6]. Выходы, результаты элементного анализа и спектральные характеристики продуктов представлены в табл. 1–3, данные РСА соединения **4** – в табл. 4–8.

Синтез β-(тиоморфолино)пропиоамидоксима (3) приведен в [4].

Получение раствора хлористого водорода в диэтиловом эфире, содержащего следы воды и использованного для кислотного гидролиза 1,2,4оксадиазолов 1а-е. Абсолютированный диэтиловый эфир насыщают газообразным HCl, который образуется при добавлении конц. H₂SO₄ к продажной сухой соли хлористого натрия. Высушивание газообразного HCl в ловушке с конц. H₂SO₄ не проводят.

Дигидрохлорид β-(тиоморфолино)пропиоамидоксима (3·2HCl). В 20 мл осушенного хлороформа растворяют 0.2 г (1.0 ммоль) β-(тиоморфолино)-пропиоамидоксима (3), затем добавляют до pH 2 эфирный раствор HCl

(хлористый водород, использованный для насыщения абсолютированного раствора диэтилового эфира, предварительно пропускают через ловушку с конц. H₂SO₄). Образующийся белый осадок дигидрохлорида **3**·2HCl отфильтровывают. В фильтрате по мере его дальнейшего упаривания в вакууме образуется осадок дигидрохлорида **3**·2HCl, все порции которого собирают и перекристаллизовывают из изопропилового спирта.

Кислотный гидролиз 5-(*м*-хлорфенил)-3-(тиоморфолиноэтил)-1,2,4-оксадиазола (1е). В 5 мл абсолютированного этанола растворяют 0.25 г (0.81 ммоль) 1,2,4-оксадиазола 1е, затем добавляют эфирный раствор хлористого водорода, содержащий следы влаги, до рН 2. Выпавший осадок отфильтровывают, перекристаллизовывают из этанола. Получают 0.073 г (0.32 ммоль, 40 %) гидрата 2-амино-8-тиа-1-аза-5-азониаспиро[4.5]дец-1-енхлорида (4) с т. пл. 302 °С. Фильтрат упаривают досуха; образуется белый осадок, после перекристаллизации которого из этанола получают 0.051 г (43 %) *м*-хлорбензойной кислоты (5е) с т. пл. 150 °С.

Гидролиз остальных 1,2,4-оксадиазолов **1а-d** выполняют аналогично.

Исследование РСА соединения 4 выполнено на дифрактометре STOE STADI-4 при комнатной температуре (Си $K\alpha$ -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование). Кристаллы 4, выращенные из изопропилового спирта, ромбические. $\rho_{выч} = 1.357$ г/см³. Структура расшифрована прямым методом. Атомы водорода при атомах азота и атомах углерода помещены в геометрически вычисленные позиции. Атомы водорода в молекулах воды не выявлены. Структура уточнена в анизотропном приближении для неводородных атомов (атомы водорода уточнялись с фиксированными позиционными и температурными параметрами) МНК с помощью комплексов программ SHELX-97 [7]. Окончательный *R*-фактор составил 0.0666 по 1221 отражению с *I*>2 σ (*I*).

Данные PCA депонированы в Кембриджском банке данных (ССDC 711438).

СПИСОК ЛИТЕРАТУРЫ

- 1. К. М. Бекетов, J. T. Welch, P. Toskano, Л. А. Каюкова, А. Л. Ахелова, К. Д. Пралиев, *Журн. структур. химии*, **45**, 540 (2004).
- Л. А. Каюкова, К. Д. Пралиев, И. С. Жумадильдаева, XTC, 253 (2003). [Chem. Heterocycl. Comp., 39, 223 (2003)].
- 3. Л. А. Каюкова, К. М. Бекетов, А. Л. Ахелова, К. Д. Пралиев, *XTC*, 1057 (2006). [*Chem. Heterocycl. Comp.*, **42**, 914 (2006)].
- 4. Л. А. Каюкова, М. А. Оразбаева, *Изв. МОН РК, НАН РК. Сер. хим.,* № 5, 37 (2007).
- 5. Л. А. Каюкова, М. А. Оразбаева, Хим. журн. Казахстана, № 1, 99 (2008).
- А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976, с. 437. [A. J. Gordon, R. A. Ford, The Chemist's Companion, Wiley, New York, London, Sidney, Toronto, 1972].
- 7. G. M. Sheldrick, SHELXS97 and SHELXL97, Univ. of Göttingen, Göttingen, 1997.

АО "Институт химических наук им. А. Б. Бектурова", Алматы 050010, Республика Казахстан e-mail: lkayukova@mail.ru Поступило 01.02.2009 После доработки 20.01.2010

^аИнститут химии растительных веществ им. С. Ю. Юнусова АН Республики Узбекистан, Ташкент 100170, Республика Узбекистан e-mail: cnc@icps.org.uz