А. В. Добрыднев,* Т. А. Воловненко, А. В. Туров, Ю. М. Воловенко

СИНТЕЗ И СВОЙСТВА 3-ГЕТАРИЛИЛИДЕН-2-ОКСО-3-ЦИАНОПРОПИЛЭТАНТИОАТОВ И 4-ГЕТАРИЛИЛИДЕН-3-ОКСО-4-ЦИАНОБУТИЛЭТАНТИОАТОВ

Ацилированием гетарилацетонитрилов и гетарилилиденацетонитрилов хлорангидридом ацетилмеркаптоуксусной кислоты получены 3-гетарилилиден-2-оксо-3-цианопропилэтантиоаты. При их взаимодействии с основаниями образуются 2-амино-3-гетарил-4(5H)-оксотиофены или 2-гетарилилиден-3-оксо-4-сульфанилбутаннитрилы. Ацилированием гетарилацетонитрилов хлорангидридом 3-ацетилмеркаптопропионовой кислоты получены 4-гетарилилиден-3-оксо-4-цианобутилэтантиоаты, при деацетилировании которых образуются 2-гетарилилиден-3-оксо-5-сульфанилпентаннитрилы.

Ключевые слова: 2-амино-3-гетарил-4(5Н)-оксотиофены, гетарилацетонитрилы, гетарилилиденацетонитрилы, 2-гетарилилиден-3-оксо-4сульфанилбутаннитри-лы, 2-гетарилилиден-3-оксо-5-сульфанилпентаннитрилы, 4гетарилилиден-3-оксо-4-цианобутилэтантиоаты, 3-гетарилилиден-2-оксо-3цианопропилэтантиоаты, ланта-ноидные сдвигающие реагенты, хлорангидрид 3ацетилмеркаптопропионовой кислоты, хлорангидрид ацетилмеркаптоуксусной кислоты, стереоселективный синтез.

Ранее нами было осуществлено взаимодействие гетарилацетонитрилов 1a,b с хлорангидридом ацетилмеркаптоуксусной кислоты (2) и изучены спектральные свойства полученных 3-гетарилилиден-2-оксо-3-цианопропилэтантиоатов 3a,b [1–3]. В данной работе мы расширили ряд ацилируемых субстратов: в реакцию были вовлечены гетарилацетонитрилы 1c-e (схема 1), а также гетарилиденацетонитрилы 4a-f (табл. 1), полученные алкилированием соединений 1a-c,f диалкилсульфатами с последующей обработкой водным раствором NaOH (схема 2). Соединения 4a,c,d были получены ранее по методу, описанному в работах [4–6].

Схема 1

1–3 a–c $R + R^1 = CH=CH=CH=CH;$ **1,3 a** X = NMe, **b** X = S, **c** $X = NCHF_2$; **d** $R + R^1 = CH=C(Me)-C(Me)=CH$, X = NMe, **e** $R = R^1 = H$, $X = NCH_2Ph$

Схема 2

4 a-e R + R¹ = CH=CH–CH=CH, a R² = Me, X = NMe, b R² = Et, X = NMe, c R² = Me, X = S, d R² = Et, X = S, e R² = Me, X = NCHF₂; 1f, 4f R + R¹ = CH=C(Me)–CH=CH, X = NMe; 4f R² = Me

На соотношение образующихся (Z)- и (E)-изомеров соединений **4b**,e,f влияет электроотрицательность заместителей при атомах азота и в ароматическом ядре, а также природа гетероатома в X.

Строение изомеров и их соотношение были установлены по данным спектров ЯМР ¹Н. Так, продукты **4**с,**d** образуются исключительно в виде (*Z*)-изомеров, в которых группа CN находится в *транс*-положении относительно фрагмента NR². Из соединения 1а образуется симметричный продукт 4a, а остальные несимметричные азотсодержащие гетарилилиденацетонитрилы были выделены в виде смесей: **4**е 1:1.67 (*E:Z*), **4b** 1:1.46 (*E:Z*) и **4f** 1:1.1 (*E:Z*), в которых преобладает изомер с *транс*-положением нитрильной группы относительно фрагмента NR² (табл. 2).

В ИК спектрах соединений **4а–f** присутствует интенсивная полоса поглощения в области 2175–2150 см⁻¹, характерная для сопряженной нитрильной группы [7], а также полосы валентных колебаний сопряженной связи С=С при 1600–1588 см⁻¹. В спектрах ЯМР ¹Н, записанных в ДМСО-d₆, наблюдается узкий синглет протона группы =СНСN в области 3.53–4.15 м. д.

При ацилировании соединений 4a-f хлорангидридом 2 с высоким выходом как из (*Z*)-, так и (*E*)-изомера получается один продукт реакции 5a-f (схема 3).

Схема 3

5а-f $X = R - R^2$, см. соединения **4а**-f соответственно (схема 2)

Конфигурация 3-гетарилилиден-2-оксо-3-цианопропилэтантиоатов **5b,d,e** была установлена методом спектроскопии ЯМР ¹Н с помощью лантаноидных сдвигающих реагентов (ЛСР).

Так, применение $Eu(FOD)_3^*$ показало, что в этих соединениях группа CN находится в *транс*-положении относительно фрагмента X (см. формулу **5а–f** на схеме 3). Близость структур соединений **5b,d** и **5c,f**, соответственно, позволяет предположить, что последние имеют подобную конфигурацию.

S-Ацилпроизводные **3а**–е и **5а**,**b**,**e**,**f** под действием оснований (щелочь, первичные, вторичные амины) деацетилируются и образовавшиеся меркаптонитрилы претерпевают внутримолекулярную циклизацию.

^{*} FOD – 2,2-диметил-6,6,7,7,8,8,8-гептафторооктан-3,5-дион 1098

Таблица 1

Характеристики синтезированных соединений Найдено, % Т. пл., Соеди-Брутто-Выход, Вычислено, % °C * нение формула %** Ν S 1 2 3 4 5 6 3c $C_{14}H_{11}F_2N_3O_2S$ 12.97 10.02 206 80 13.00 9.92 239-240 72 3d C₁₆H₁₇N₃O₂S 13.40 10.13 13.32 10.17 $C_{16}H_{15}N_3O_2S$ 13.30 10.22 143-145 30 3e 13.41 10.23 4b 21.03 90-92 76 $C_{12}H_{13}N_3$ _ 21.09 $C_{11}H_9F_2N_3$ 142-143 59 4e <u>19.06</u> _ 19.00 4f $C_{12}H_{13}N_3$ 20.98 158-160 80 21.09 C₁₅H₁₅N₃O₂S 142 60 5a 13.89 10.61 13.94 10.64 (72)5b $C_{16}H_{17}N_3O_2S$ 13.31 10.06 144 80 13.32 10.17 (67) 21.11 225 75 5c $C_{14}H_{12}N_2O_2S_2$ 9.14 9.20 21.07 (70)<u>20.10</u> 184-185 79 5d $C_{15}H_{14}N_2O_2S_2$ 8.73 8.80 20.14 (65) 5e $C_{15}H_{13}F_{2}N_{3}O_{2}S \\$ 12.40 <u>9.58</u> 154 78 12.46 9.50 140-142 40 $C_{16}H_{17}N_3O_2S$ 13.27 10.15 5f 13.32 10.17 11.35 240-241 86 6c $C_{12}H_9F_2N_3OS$ 14.94 11.40 14.94 (с разл.) $C_{14}H_{15}N_3OS$ 80 6d 15.31 11.80 >300 11.73 15.37 6e $C_{14}H_{13}N_3OS$ 15.54 11.70 122-124 65 15.49 11.82 $C_{13}H_{14}ClN_3OS$ 14.30 10.91 >300 85 7a 14.21 10.84 C14H16ClN3OS >300 75 7b 10.27 <u>13.52</u> 13.56 10.35 42 7c C13H12ClF2N3OS 12.59 9.60 245-246 12.67 9.66 (с разл.)

13.49

13.56

10.60

10.68

10.24

10.14

<u>9.80</u>

9.65

<u>13.99</u>

13.94

10.41

10.35

<u>24.</u>37

24.44

22.08

23.20

22.00

22.08

10.57

10.64

7d

8a

8b

9

12a

C₁₄H₁₆ClN₃OS

 $C_{12}H_{10}N_2OS_2 \\$

 $C_{13}H_{12}N_2OS_2$

 $C_{14}H_{14}N_2OS_2 \\$

 $C_{15}H_{15}N_3O_2S$

78

75

80

71

60

(50)

256-257

(с разл.)

180-182

(с разл.)

177

165-166

201-202

Окончание таблицы 1

Схема 4

1	2	3	4	5	6
12b	$C_{16}H_{14}N_2O_2S$	<u>9.40</u>	10.82	142	57
		9.39	10.75		(52)
13 a	C ₁₃ H ₁₃ N ₃ OS	16.24	<u>12.48</u>	198–199	82
		16.20	12.36		
13b	$C_{14}H_{12}N_2OS$	10.87	<u>12.46</u>	153	78
		10.93	12.51		

* Растворители для перекристаллизации: *n*-BuOH (соединения **3b**,**d**, **5d**, **6c**,**d**); 2-PrOH (соединения **3e**, **4b**,**e**,**f**, **5a**,**b**,**e**,**f**, **6e**, **8a**,**b**, **9**, **12a**,**b**, **13a**,**b**); НОАс (соединение **5c**), водный 2-PrOH (соединеия **7a**–**d**).

** В скобках указан выход образца, полученного из синтезированных в данной работе соединений – ацилированием соединений **8а,b** и **13а,b** и алкилированием соединения **3а**.

При этом из соединений 3a-e (с фрагментом N(3)H) образуются соответствующие замещенные оксотиофены 6a-e, а в случае соединений 5a,b,e,f (с фрагментом N(3)R²) продукты циклизации удается выделить в виде солей 7a-d.

6а-е R, R¹, X см. соединения **За**-е (схема 1). 7 а-с R + R¹ = CH=CH–CH=CH, а R² = Me, X = NMe, b R² = Et, X = NMe, c R² = Me, X = NCHF₂; d R + R¹ = CH=C(Me)–CH=CH, R² = Me, X = NMe

Соединения 6а и 6b были получены нами ранее [2, 3].

Деацетилирование соединений **5**с,**d**, в отличие от соединения **3**с, не сопровождается циклизацией, а при подкислении щелочного раствора выделяются 2-гетарилилиден-3-оксо-4-сульфанилбутаннитрилы **8**а,**b** (схема 5).

8a,b $R + R^1 = CH=CH-CH=CH$, **a** $R^2 = Me$, **b** $R^2 = Et$

1100

Таблица 2

Спектральныне характеристики синтезированных соединений

Со- еди- не-	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н, б, м. д. (<i>J</i> , Гц)	Масс- спектр, <i>m/z</i>
ние*			$[M+H]^+$
1	2	3	4
3c	3131.65 (N–H); 2196.07 (C≡N); 1683.91 (C=O) _{SAc} , 1630.76 (C=O)	2.38 (3H, c, COCH ₃); 4.09 (2H, c, CH ₂); 7.34 (2H, M, H-5,6); 7.62 (1H, M, H-4); 7.72–7.74 (1H, M, H-7); 8.28 (1H, T, ${}^{2}J$ = 57.6, CHF ₂); 13.63 (1H, ym. c, NH)	324.0
3d	3187.67 (N–H); 2190.47 (C≡N); 1700.69 (C=O) _{SAc} , 1586.01 (C=O)	2.32 (3H, c, 6-CH ₃); 2.35 (3H, c, 5-CH ₃); 2.37 (3H, c, COCH ₃); 3.93 (3H, c, NCH ₃); 4.04 (2H, c, CH ₂); 7.32 (1H, c, H-7); 7.37 (1H, c, H-4); 13.08 (1H, c, NH)	316.0
3e	3215.68 (N–H); 2179.27 (C≡N); 1692.30 (C=O) _{SAc} , 1580.41 (C=O)	2.33 (3H, с, COCH ₃); 3.94 (2H, с, CH ₂); 5.49 (2H, с, NCH ₂); 7.08–7.37 (7H, м, C ₆ H ₅ , H-4,5); 13.05 (1H, уш. с, NH)	314.0
4b	2150.61 (C=N)	(<i>E</i>)-Изомер. 1.13 (3H, т, <i>J</i> = 6.8, CH ₂ C <u>H₃</u>); 3.62 (1H, с, CHCN); 3.69 (3H, с, NCH ₃); 3.84 (2H, к, <i>J</i> = 6.8, NCH ₂); 7.05 (2H, м, H-4,7); 7.17 (2H, м, H-5,6)	200.0
	2173.66 (C=N)	(<i>Z</i>)-Изомер. 1.29 (3H, т, <i>J</i> = 6.8, CH ₂ C <u>H₃</u>); 3.28 (3H, с, NCH ₃); 3.53 (1H, с, CHCN); 4.25 (2H, к, <i>J</i> = 6.8, NCH ₂); 7.05 (2H, м, H-4,7); 7.17 (2H, м, H-5,6)	
4e	2156.24 (C≡N)	(<i>E</i>)-Изомер. 3.32 (3H, с, NCH ₃); 3.88 (1H, с, CHCN); 7.05 (1H, м, H-4); 7.17 (2H, м, H-5,6); 7.31 (1H, м, H-7); 8.03 (1H, т, ² <i>J</i> = 58.0, CHF ₂)	222.0
	2173.66 (C=N)	(<i>Z</i>)-Изомер. 3.73 (3H, с, NCH ₃); 4.15 (1H, с, CHCN); 7.05 (1H, м, H-4); 7.17 (2H, м, H-5,6); 7.31 (1H, м, H-7); 7.72 (1H, т, ² <i>J</i> = 57.2, CHF ₂)	
4f	2151.26 (C=N)	2.36 (3H, c, 5-CH ₃); 3.26 (3H, c, N(3)CH ₃); 3.34 (1H, c, CHCN); 3.69 (3H, c, N(1)CH ₃); 6.81 (1H, д, <i>J</i> = 8.0, H-4); 6.92 (2H, м, H-6,7)	200.4
5a	2173.66 (C≡N); 1683.91 (C=O) _{SAc} , 1602.79 (C=O)	2.37 (3H, c, COCH ₃); 3.75 (6H, c, NCH ₃); 4.00 (2H, c, CH ₂); 7.45 (2H, м, H-4,7); 7.71 (2H, м, H-5,6)	302.0
5b	2173.66 (C≡N); 1686.71 (C=O) _{SAc} , 1602.79 (C=O)	1.45 (3H, T, $J = 6.8$, CH ₂ CH ₃); 2.37 (3H, c, COCH ₃); 3.70 (3H, c, NCH ₃); 3.99 (2H, c, COCH ₂); 4.42 (2H, κ , $J = 6.8$, CH ₂ CH ₃); 7.48 (2H, κ , H-4,7); 7.78 (2H, κ , H-5,6)	316.0
5c	2184.87 (C≡N); 1695.10 (C=O) _{SAc} , 1613.98 (C=O)	2.39 (3H, c, COCH ₃); 4.15 (2H, c, CH ₂); 4.19 (3H, c, NCH ₃); 7.40 (1H, τ , $J = 8.0$, H-5); 7.56 (1H, τ , $J = 8.0$, H-6); 7.72 (1H, π , $J = 8.0$, H-4); 7.91 (1H, π , $J = 8.0$, H-7)	305.2
5d	2190.47 (C≡N); 1681.11 (C=O) _{SAc} , 1613.98 (C=O)	1.54 (3H, T, $J = 7.2$, CH ₂ CH ₃); 2.39 (3H, c, COCH ₃); 4.16 (2H, c, CH ₂); 4.81 (2H, κ , $J = 7.2$, CH ₂ CH ₃); 7.39 (1H, T, $J = 8.0$, H-5); 7.55 (1H, T, $J = 8.0$, H-6); 7.74 (1H, π , $J = 8.0$, H-4); 7.91 (1H, π , $J = 8.0$, H-7)	318.8

Продолжение таблицы 2

1	2	3	4
5e	2184.87 (C≡N);	2.37 (3H, c, COCH ₃); 3.85 (3H, c, NCH ₃); 4.04	338.0
	$1695.10 (C=O)_{SAc}$	$(2H, c, CH_2); 7.51-7.54 (2H, M, H-5,6); 7.56$	
	1605.59 (C=O)	(1H, T, $J = 50.5$, CHF ₂); /./4 (1H, $\exists, J = 7.6$, H-4): 7 83 (1H $\exists, J = 7.4$ H-7)	
5f	2168.06 (C≡N):	2.37 (3H, c, COCH ₂): 2.5 (3H, c, 5-CH ₂): 3.72	316.0
	1686.71 (C=O) _{SAc} ,	(3H, c, N(3)CH ₃); 3.73 (3H, c, N(1)CH ₃); 3.99	
	1602.79 (C=O)	(2H, с, CH ₂); 7.27 (1H, д, J = 8.0, H-6); 7.53	
		(1H, c, H-4); 7.60 (1H, d, J = 8.0, H-7)	
6c	3187.67 (N–H) _{ac} ,	3.79 (2H, c, CH ₂); $7.27-7.30$ (2H, M, H-5,6); 7.61, 7.67 (2H, M, H,4.7); 7.95 (1H, $\pm 2L = 58.0$	282.0
	1588.81 (C=O)	$(211, M, 11-4, 7), 7.55 (111, 1, 5 - 58.0, CHF_{3}); 9.31 (1H, VIII, c. NH); 9.49 (1H, VIII, c. NH)$	
6d	3327 73 (N_H)	$2 32 (3H + C_{12}) + 2 36 (3H + C_{22}) + 3 69$	274.2
ou	3254.90 (N-H) _{ac} ,	$(5H, c, NCH_3, CH_2); 7.14 (1H, c, H-7); 7.28$	2/4.2
	1611.18 (C=O)	(1Н, с, Н-4); 8.98 (2Н, уш. с, NH ₂)	
6e	3372.54 (N–H) _{ас} ,	3.61 (2H, c, SCH ₂); 5.31 (2H, c, NCH ₂);	272.2
	3249.29 (N–H) _{сим} ,	6.95–7.04 (4Н, м, 4,5-Н, CH ₂ C ₆ <u>H</u> ₅ -3,5); 7.20–	
	1611.18 (C=O)	7.25 (3H, M, $CH_2C_6H_5$ -2,4,6); 8.55 (1H, YIII. C, NH): 8 72 (1H VIII C NH)	
7a	3512.60 (N-H) _{act}	3.90 (6H. c. 2NCH ₃): 3.96 (2H. c. CH ₃): 7.66	260.0
	3260.50 (N-H) _{сим} ,	(2Н, м, J=3.2, H-4,7); 7.99 (2Н, м, J = 3.2,	
	1622.37 (C=O)	H-5,6)	
7b	3422.96 (N-H) _{ac} ,	1.42 (3H, T, $J = 6.8$, NCH ₂ C <u>H₃</u>); 3.86 (3H, c,	274.0
	3109.24 (N–H) _{сим} ,	NCH ₃); 3.92 (2H, c, SCH ₂); 4.42 (2H, M, NCH ₂); 7 63 (2H, M, H 4.7); 8 01 (2H, M, H 5.6); 0.50	
	1041.95 (C-O)	(1H. c. NH): 9.77 (1H. c. NH)	
7c	3428.57 (N–H) _{ac} ,	3.95 (3H, c, NCH ₃); 3.96 (2H, c, CH ₂); 7.74 (2H,	296.0
	3126.05 (N-H) _{сим} ,	м, H-4,7); 7.89 (1H, т, ² J = 55.6, CHF ₂); 7.96	
	1630.76 (C=O)	(1Н, м, Н-5); 8.09 (1Н, м, Н-6); 9.76 (1Н, с,	
	2424 17 (01 11)	(11, 0, 01), $(11, 0, 01)$	274 12
7 d	3434.17 (N–H) _{ac} , 3204.48 (N–H)	2.58 (3H, c, 5-CH ₃); 3.82 (3H, c, N(3)CH ₃); 3.83 (3H, c, N(1)CH ₃); 3.93 (2H, c, CH ₃); 7.45 (1H)	2/4.13
	1639.16 (С=О)	д, J = 8.0, H-6); 7.76 (1H, с, H-4); 7.83 (1H, д,	
		J = 8.0, H-7); 9.38 (1H, c, NH); 9.61 (1H, уш. с,	
0	25(5 02 (G H)		2(2.0
8a	2565.82 (S-H); 2190 47 (C=N).	2.55 (1H, T, $J = 8.0$, SH); 3.65 (2H, π , $J = 8.0$, CH ₂ S): 4.20 (3H c NCH ₂): 7.40 (1H T $J = 8.0$	263.0
	1616.78 (C=O)	H-5); 7.55 (1H, т, <i>J</i> = 8.0, H-6); 7.73 (1H, д,	
		<i>J</i> = 8.0, H-4); 7.93 (1H, д, <i>J</i> = 8.0, H-7)	
8b	2565.82 (S–H);	1.53 (3H, т, <i>J</i> = 7.2, CH ₂ C <u>H₃</u>); 2.59 (1H, т,	277.5
	2196.07 (C≡N);	$J = 8.0, \text{ SH}$; 3.65 (2H, $\pi, J = 8.0, \text{ CH}_2\text{S}$); 4.80	
	1630.76 (C=O)	(2H, K, $J = 7.2$, NC <u>H</u> ₂ CH ₃); 7.40 (1H, T, $J = 8.0$, H-5): 7.56 (1H T, $J = 8.0$ H-6): 7.75 (1H T	
		J = 8.0, H-4); 7.93 (1H, д, J = 8.0, H-7)	
9	2184.87 (C≡N);	1.25 (3H, т, <i>J</i> = 7.2, CH ₂ C <u>H₃</u>); 2.59 (2H, к,	291.2
	1616.78 (C=O)	$J = 7.2, CH_2CH_3$; 3.55 (2H, c, CH ₂ S); 4.17 (3H,	
		c, NCH ₃); 7.37 (1H, T, $J = 8.0$, H-5); 7.53 (1H, T, J = 8.0, H-6); 7.60 (1H, T, $J = 8.0$, H-5); 7.53 (1H, T,	
		$J = 0.0, \text{ II-0}, 7.09 (1\text{III}, \mu, J = 0.0, \text{II-4}), 7.08 (1\text{II}, \mu, J = 0.0, \text{II-4}), 7.08 (1\text{II}, \mu, J = 0.0, \text{II-4}), 7.08 (1\text{II}, \mu, J = 0.0, \text{II-6}), 7.09 (1\text{II}, \mu, J = 0.0, \text{II-6}), 7.08 (1\text$	
12a	3193.27 (N–H):	2.31 (3H, c, COCH ₃); 2.91 (2H. T. $J = 6.8$	302.2
	2190.47 (C≡N);	CH ₂ S); 3.13 (2H, T , $J = 6.8$, COCH ₂); 3.96 (3H,	
	1686.71 (C=O) _{SAc} ,	с, NCH ₃); 7.26 (2H, м, H-5,6); 7.51 (1H, д,	
	1591.00 (C=O)	J = 8.0, H-/; /.00 (1H, $J, J = 8.0, H-4$), 13.32 (1H vm c NH)	
	l i i i i i i i i i i i i i i i i i i i	(, <i>j</i> •, · · · · <i>j</i>	

Окончание таблицы 2

1	2	3	4
12b	3434.17 (N–H); 2190.47 (C=N); 1683.91 (C=O) _{SAc} , 1633.56 (C=O)	2.32 (3H, c, COCH ₃); 2.97 (2H, T, $J = 6.8$, CH ₂ S); 3.14 (2H, T, $J = 6.8$, COCH ₂); 7.32 (1H, π , $J = 9.2$, H-3); 7.50 (1H, T, $J = 7.6$, H-6); 7.76 (1H, T, $J = 7.6$, H-7); 7.87 (1H, π , $J = 7.6$, H-8); 7.89 (1H, π , $J = 7.6$, H-5); 8.37 (1H, π , $J = 9.2$, H-4); 15.50 (1H, ym. c, NH)	299.2
13a	2560.22 (S–H); 2179.27 (C≡N); 1597.20 (C=O)	2.02 (1H, т, <i>J</i> = 8.0, SH); 2.76 (2H, к, <i>J</i> = 8.0, CH ₂ S); 2.94 (2H, т, <i>J</i> = 8.0, COCH ₂); 3.98 (3H, с, NCH ₃); 7.23 (2H, м, H-5,6); 7.52 (1H, д, <i>J</i> = 8.0, H-7); 7.66 (1H, д, <i>J</i> = 8.0, H-4); 13.38 (1H, уш. с, NH)	260.0
13b	2521.00 (S-H); 2196.07 (C=N); 1630.76 (C=O)	2.11 (1H, r, $J = 8.0$, SH); 2.82 (2H, κ , $J = 8.0$, CH ₂ S); 3.14 (2H, r, $J = 8.0$, COCH ₂); 7.32 (1H, π , $J = 9.2$, H-3); 7.50 (1H, r, $J = 7.6$, H-6); 7.76 (1H, r, $J = 7.6$, H-7); 7.87 (1H, π , $J = 7.6$, H-8); 7.89 (1H, π , $J = 7.6$, H-5); 8.37 (1H, π , $J = 9.2$, H-4); 15.59 (1H, yu. c, NH)	257.2

* Соединения выделены в виде смеси (Z)- и (E)-изомеров 4b,e,f.

** Молекулярные ионы имеют вид $[M + H]^+$ (для соединений 3с–е, 4b,f,e, 5а–f, 6с–е, 8а,b, 9, 12а,b, 13а,b) и $[M - Cl]^+$ для соединений 7а–d).

Такое различие определяется, очевидно, разным пространственным расположением групп CN и SN в первоначально образующихся тиолах, которое определяется характером фрагмента X и замещением при атоме N(3). Так, при X = NMe, NCHF₂ (в тиолах из соединений **5a,b,e,f**) это расположение благоприятно для циклизации, а при X = S (в тиолах из соединений **5c,d**) – неблагоприятно. Лёгкость образования циклических продуктов **6а–е** из соединений **3а–е** с фрагментом N(3)H (в том числе и при X = S в соединении **3b**) указывает на решающее влияние этого фрагмента на циклизацию, вероятно, благодаря возникающей между ним и группой C=O BBC, возможной при *цис*-расположении фрагмента CN относительно фрагмента X.

Строение соединиений **8а,b** подтверждают их спектральные характеристики (табл. 2). Так, в их спектрах ЯМР ¹Н присутствует сигнал протонов группы CH₂ тиогликолевого остатка (дублет при 3.65 м. д.) и протона группы SH (триплет при 2.55–2.60 м. д.). В ИК спектрах наблюдается слабая полоса поглощения валентных колебаний группы SH при 2565 см⁻¹. Кроме того, обработка соединений **8а,b** ацетилхлоридом приводит к образованию ацилпроизводных **5с,d**, а обработка тиола **8а** этилиодидом – к продукту алкилирования **9**.

Соединение **3a** способно вступать в реакции алкилирования по фрагменту с NH алкилгалогенидами (MeI, EtI) в среде ДМФА в присутствии K₂CO₃ с образованием соединений **5a**,**b** соответственно.

Взаимодействие гетарилацетонитрилов **1a** и **10** с хлорангидридом 3-ацетилмеркаптопропионовой кислоты **11** приводит к 4-гетарилилиден-3-оксо-4-цианобутилэтантиоатам **12a**,**b** (схема 7).

1a, **12 a** X = NMe; **10**, **12 b** X = CH=CH

Подобно 3-гетарилилиден-2-оксо-3-цианопропилэтантиоатам **3а–е** соединения **12а,b** существуют в таутомерной форме, при которой возникает BBC между фрагментом NH гетероцикла и сопряженной карбонильной группой ацильного фрагмента CH₂COCH₂.

Как и в случае соединений **5с**, d деацетилирование ацетатов **12а**, b сопровождается не циклизацией, а образованием 2-гетарилилиден-3-оксо-5-сульфанилпентаннитрилов **13а**, b (схема 8). Спектры ЯМР ¹Н продуктов **13а**, b как и спектры соединений **8а**, b содержат характерный сигнал протона группы SH (триплет в области 2.0–2.1 м. д.), а в ИК спектрах наблюдается слабая полоса поглощения валентных колебаний группы SH при 2560 см⁻¹. Совершенно аналогично, обработка меркаптопроизводных **13а**, b ацетилхлоридом в среде ДМФА, приводит к ацетилированию сульфгидрильной группы, в результате чего регенерируется первоначальная структура соединений **12а**, b.

Схема 8

Таким образом, удлинение углеводородной цепи ацилирующего агента с защищенной меркаптогруппой в конечном итоге приводит к неспособности внутримолекулярной циклизации образующихся тиолов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений проводили методом TCX на пластинках Silufol UV-254 в системе хлороформметанол, 9:1. Спектры ЯМР ¹Н измерены на спектрометре Varian Mercury 400 (400 МГц) в ДМСО-d₆, внутренний стандарт ТМС. ИК спектры получены на приборе Perkin–Elmer BX в таблетках KBr, масс-спектры – на приборе Agilent 1100 Series с детектором Agilent LC/MSD SL. Температуры плавления измерены на малогабаритном нагревательном столе Boetius с наблюдательным устройством PHMK 05 фирмы VEB Analytic.

3-Гетарилилиден-2-оксо-3-цианопропилэтантиоаты За-е, 5а-f и 4-гетарилилиден-3-оксо-4-цианобутилэтантиоаты 12а,b (общая методика). К раствору 5 ммоль гетарилацетонитрила **1а-е, 10** или гетарилилиденацетонитрила **4а-f** в 5 мл ДМФА при температуре 25 °С добавляют 5.5 ммоль хлорангидрида ацетилмеркаптоуксусной кислоты **2** или хлорангидрида 3-ацетилмеркаптопропионовой кислоты **11**. Реакционную смесь выдерживают 12 ч при комнатной температуре, затем выпавший осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают из соответствующего растворителя (табл. 1).

Гетарилилиденацетонитрилы 4а-f (общая методика). Смесь 10 ммоль гетарилацетонитрила **1а-c,f** и 11 ммоль соответствующего диалкилсульфата выдерживают 40 мин при 70 °C. Затем реакционную массу растворяют в 10 мл воды и при перемешивании добавляют раствор 25 ммоль NaOH в 20 мл воды. Выпавший осадок отфильтровывают, промывают холодной водой, сушат и перекристаллизовывают.

2-Амино-3-гетарил-4(5Н)-оксотиофены ба-е (общая методика). К раствору 5 ммоль соединения **За-е** в 5 мл ДМФА добавляют 10 ммоль водного раствора аммиака и выдерживают 24 ч при температуре 30–40 °C. Осадок отфильтровыают, промывают водой, сушат и перекристаллизовывают.

Хлориды 2-амино-4(5H)-оксотиофенгетарений-3-ил 7а-d (общая методика). К раствору 5 ммоль соединения 5а,b,e,f в 10 мл ДМФА добавляют 10 ммоль водного раствора NaOH в 2 мл воды и выдерживают 24 ч при температуре 30–40 °C. В реакционную смесь добавляют водный раствор HCl до слабокислой реакции, упаривают и перекристаллизовывают остаток.

2-(3-Алкил-2,3-дигидро-1,3-бензотиазол-2-илиден)-3-оксо-4-сульфанилбутаннитрилы 8а,b и 2-гетарилилиден-3-оксо-5-сульфанилпентаннитрилы 13а,b (общая методика). К суспензии 5 ммоль соединения **6е,f** или **12а,b** в 15 мл МеОН при температуре 60 °C и перемешивании добавлют 10 ммоль MeONa в 10 мл MeOH. После полной гомогенизации реакционной смеси к ней добавляют водный раствор HCl до кислой реакции, выпавший осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают.

2-(3-Метил-2,3-дигидро-1,3-бензотиазол-2-илиден)-3-оксо-4-этилсульфанилбутаннитрил (9). К суспензии 5 ммоль соединения **8a** в 15 мл МеОН при температуре 60 °С и перемешивании добавлют 10 ммоль МеОNa в 10 мл МеОН. После полной гомогенизации и охлаждения реакционной смеси к ней, при переме-шивании, добавляют 10 ммоль этилиодида. Через 8 ч выпавший осадок продукта **9** отфильтровывают, промывают метанолом, сушат и перекристаллизовывают.

Ацилирование 2-(3-алкил-2,3-дигидро-1,3-бензотиазол-2-илиден)-3-оксо-4сульфанилбутаннитрилов 8а,b и 2-гетарилилиден-3-оксо-5-сульфанилпентаннитрилов 13а,b (общая методика). К раствору 5 ммоль нитрила 8а,b или 13а,b в 5 мл ДМФА добавлют 5.5 ммоль АсСІ. Реакционную смесь выдерживают 12 ч при комнатной температуре, выпавший осадок отфильтровывают, промывают водой, сушат и перекристаллизовывают. Получают соединения 5с, d или 12a,b, соответственно, идентичные образцам, синтезированным, как описано выше. Депрессии точки плавления смешанной пробы не наблюдается.

Алкилирование 3-(1-метил-2,3-дигидро-1Н-бензоимидазол-2-илиден)-2-оксо-3-цианопропилэтантиоата 3а (общая методика). К раствору 5 ммоль соединения 3а в 20 мл ДМФА добавлют 20 ммоль мелкодисперсного K₂CO₃ и 10 ммоль соответствующего алкилиодида. Реакционную смесь перемешивают 12 ч при температуре 50 °C, охлаждают до комнатной температуры, фильтруют, фильтрат упаривают, остаток перекристаллизовывают. Получают соединения 5a,b соответственно, идентичные образцам, синтезированным, как описано выше. Депрессии точки плавления смешанной пробы не наблюдается.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. М. Воловенко, Т. А. Воловненко, А. В. Добрыднев, *XГС*, 1314 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1137 (2006)].
- Ю. М. Воловенко, Т. А. Воловненко, А. В. Добрыднев, *XГС*, 680 (2006). [*Chem. Heterocycl. Comp.*, 42, 594 (2006)].
- 3. Ю. М. Воловенко, Т. А. Воловненко, *XIC*, 202 (2005). [*Chem. Heterocycl. Comp.*, **41**, 173 (2005)].
- 4. Л. М. Ягупольский, М. М. Кульчицкий, А. Я. Ильченко, *ЖОрХ*, **10**, 1321 (1974).
- 5. М. И. Руднев, В. П. Курбатов, Н. К. Чуб, О. А. Осипов, *ЖОХ*, **58**, 2334 (1988).
- 6. P. D. Frank, D. Kendall, US Pat. 2542401; Chem. Abstr., 45, 10109 (1951).
- Ю. М. Воловенко, И. П. Купчевская, С. В. Литвиненко, Ф. С. Бабичев, Укр. хим. журн., 57, 419 (1991).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина e-mail: pierrot@gala.net Поступило 17.04.2009