

Химия гетероциклических соединений 2016, 52(8), 583-591

Синтез и экстракционные свойства новых 2-(фосфорилалкил)и 2-(фосфорилалкенил)замещенных 1,8- и 1,6-нафтиридинов

Георгий В. Бодрин¹, Анна Г. Матвеева^{1*}, Евгений И. Горюнов¹, Маргарита П. Пасечник¹, Ринат Р. Айсин¹, Александр Н. Туранов², Василий К. Карандашев³, Евгений Д. Савин¹, Александр С. Перегудов¹, Юлия В. Нелюбина¹, Валерий К. Брель¹

1 Институт элементоорганических соединений им. А. Н. Несмеянова РАН,

ул. Вавилова, 28, Москва 119991, Россия; e-mail: phoc@ineos.ac.ru

² Институт физики твердого тела РАН,

ул. Академика Осипьяна, 2, Черноголовка 142432, Московская обл., Россия; e-mail: turanov@issp.ac.ru

³ Институт проблем технологии микроэлектроники и особо чистых материалов РАН,

ул. Академика Осипьяна, 6, Черноголовка 142432, Московская обл., Россия; e-mail: karan@iptm.ru

Поступило 21.06.2016 Принято 27.07.2016

Новые 1,8- и 1,6-нафтиридины, содержащие фосфорильную группу в боковой цепи, синтезированы по реакции Фридлендера при взаимодействии соответствующих аминоникотиновых альдегидов и фосфорилкетонов в спирте в присутствии осно́вных катализаторов (пирролидина или КОН). Ряд фосфорилзамещенных 1,8-нафтиридинов эффективно экстрагирует уран(VI) из нейтральных водных растворов, содержащих лантаниды(III), в 1,2-дихлорэтан.

Ключевые слова: фосфорилзамещенные 1,8(1,6)-нафтиридины, реакция Фридлендера, экстрация, *f*-элементы.

Производные 1,8- и 1,6-нафтиридинов, синтезированные в последние десятилетия, привлекают внимание исследователей благодаря разнообразию их применения в биомедицине,^{1,2} катализе,³ при создании люминесцентных хемосенсоров и маркеров.⁴ Недавно также было найдено, что 2-фосфорилзамещенные 1,8-нафтиридины могут быть успешно использованы для извлечения лантанидов из карбонатных сред.⁵ Ранее нами было показано, что 2-(фосфорилалкил)замещенные 1,8- и 1,6-нафтиридины могут быть с успехом получены по реакции Фридлендера с использованием фосфорилкетонов.⁶⁻⁸

В настоящей работе реакцией Фридлендера – взаимодействием соответствующих никотиновых альдегидов с фосфорилкетонами, синтезирован ряд новых производных 1,8- и 1,6-нафтиридинов, содержащих фосфорильный фрагмент в боковой цепи. Исследована экстракция урана(VI) и лантанидов(III) из нейтральных водных растворов полученными соединениями 1b,c,e,f, 2a,b, 3, 4 (рис. 1) и выявлены закономерности влияния структуры лигандов на их экстракционную способность. Для более корректной оценки влияния строения на экстракционные параметры были исследованы экстракционные свойства описанных ранее нафтиридинов 1a, 2c. Фосфорилированные нафтиридины **1b–f**, **2b** синтезировали кипячением фосфорилкетонов **5b–f** с небольшим избытком аминоникотиновых альдегидов **6**, **7** в этаноле в атмосфере аргона в присутствии 1.20 экв. пирролидина и 0.05 экв. H_2SO_4 в качестве региоселективного катализатора⁶⁻⁹ (схема 1). Несмотря на то,

Рисунок 1. Производные 1,8- и 1,6-нафтиридинов, содержащие фосфорильный фрагмент в боковой цепи.

Схема 1

5 b R = R¹ = Ph; c R = 2-thienyl, R¹ = Ph; d R = 2-furyl, R¹ = Ph e R = n-C₅H₁₁, R¹ = Ph; f R = Ph, R¹ = *i*-Pr

что реакция Фридлендера при использовании несимметричных кетонов может протекать с образованием смеси 2- и 2,3-замещенных нафтиридинов,^{10,11} взаимодействие альдегидов **6**, **7** с фосфорилкетонами **5b–f** в этих условиях происходило с образованием только одного региоизомера (схема 1).

И лишь реакция фосфорилкетона **5a** с альдегидом **7** привела к смеси изомерных нафтиридинов **2a** и **8** (выходы по данным спектроскопии ЯМР ³¹Р 70 и 30% соответственно) (схема 2). Индивидуальные соединения **2a** и **8** удалось выделить фракционной кристаллизацией этой смеси с выходами 11 и 2% соответственно.

Схема 2

Получение нафтиридинов **3** и **4** с использованием пирролидина в качестве катализатора осложняется побочными процессами, связанными, скорее всего, с присоединением этого амина по двойной связи исходного фосфориленона **9**.¹² Поэтому в качестве катализатора был использован КОН¹³ (схема 3), хотя при этом наблюдалось частичное осмоление реакционной смеси и выходы продуктов снижались.

Схема 3

Состав и строение полученных соединений подтверждены элементным анализом и данными колебательной спектроскопии и мультиядерной спектроскопии ЯМР, а для соединения **8** – также данными РСА.

В ИК спектрах замещенных 1,8-нафтиридинов 1b-f присутствуют интенсивные полосы при 1605-1609, 1499-1503 см⁻¹ и полоса средней интенсивности при ~1550 см⁻¹, которые характерны для 1,8-нафтиридинового ядра и принадлежат смешанным колебаниям v(C-C)+v(C-N)+б(C-H).¹⁴⁻¹⁶ Со структурой 1,8-нафтиридинового фрагмента хорошо согласуется также интенсивная линия в спектрах комбинационного рассеяния (КР) при ~1370 см⁻¹ (смешанное колебание $v(C-C)+\delta(C-H)$) и линии при ~780 и ~540 см⁻¹, которые относятся к "дышащим" колебаниям нафтиридинового ядра с участием обоих атомов азота и δ(CH).¹⁶ Основные отличия колебательных частот 1,6- и 1,8-нафтиридинов обусловлены более низкой симметрией первых.14,15

Спектры нафтиридинов **2а–с** содержат основные спектральные характеристики 1,6-нафтиридинов: интенсивную ИК полосу при 1613 см⁻¹, которой в спектрах КР соответствует слабая линия, интенсивную линию КР при ~1590 см⁻¹ с менее интенсивным аналогом в ИК спектре, а также полоса поглощения при ~1550 см⁻¹ и линии КР при ~1370 и ~540 см⁻¹. В нафтиридинах **3**, **4** с двойной связью в линкере, скорее всего, происходит смешивание колебаний v(C=C) с близкими по частотам колебаниями циклов, поэтому спектры в области 1700–1600 см⁻¹ несколько отличаются от спектров нафтиридинов **1b–f**, **2а,b**, и частоту ~1610 см⁻¹ можно отнести к колебанию, содержащему вклад v(C=C).

Невозможной оказалась идентификация колебаний циклических, тиофенового и фуранового, заместителей в соединениях 1c,d, поскольку ряд их частот близок к частотам колебаний нафтиридиновых циклов, а полоса поглощения v(C-S) в области ~700 см⁻¹ перекрывается с интенсивными полосами деформационных колебаний фенильных циклов. Колебание v(P=O) имеет типичную для дифенилфосфорильной группы частоту 1185-1175 см⁻¹ во всех исследованных нафтиридинах, кроме соединения 8, которое отличается от других исследованных нафтиридинов коротким линкером (в спектре соединения 8 наблюдаются полосы при 1186 и 1168 см⁻¹). Соединение 1f содержит при атоме фосфора не фенильные, а изопропильные заместители и, соответственно, имеет более низкую частоту колебания v(P=O) -1145 см⁻¹.

Отнесение сигналов в спектрах ЯМР ¹Н и ¹³C–{¹H} к соответствующим индикаторным ядрам проводилось на основе комплекса 2D-корреляций (¹H–¹H COSY, HMQC и HMBC). В спектрах ЯМР ¹Н соединений **1b–е**, **2b**, содержащих асимметрический атом углерода в линкере –CH₂CHR–, который соединяет нафтиридиновое ядро и фосфорильную группу, сигнал протонов группы CH₂ не является спектром первого порядка и может быть интерпретирован как часть AB системы ABMX в спектрах ЯМР ¹H (М и X соответственно ядра атомов H и P фрагмента CHP(O)Ph₂) или системы ABM в спектрах ЯМР ¹H–{³¹P}. Причина наблюдаемого эффекта заключается в том, что атом углерода группы CH₂, согласно концепции Хэнсона,¹⁷ является прохиральным, а атомы водорода этого фрагмента – диастереотопными и, как следствие этого, анизохронными (т. е. имеющими различные химические сдвиги) в ахиральной среде. Необходимо отметить, что поскольку в молекулах нафтиридинов **1b–е**, **2b** содержится еще один прохиральный центр – атом фосфора, то должны быть диастереотопными и присоединенные к этому центру фенильные циклы. Это проявляется как в спектрах ЯМР ¹H, ¹H–{³¹P}, так и в спектрах ЯМР ¹³С–{¹H}, в которых наблюдается удвоение сигналов ядер атомов углерода *P*-ароматических циклов (*орто-, мета-, пара*и *ипсо-*атомы).

В случае нафтиридина 1f прохиральными становятся не только атом фосфора и метиленовый атом углерода линкера –CH₂CHPh–, но и оба α-углеродных атома изопропильных фрагментов, вследствие чего диастереотопными будут являться как сами изопропильные группы, так и заместители CH₃ у каждой из этих групп. Это создает условия для проявления в соответствующих спектрах ЯМР так называемой "двойной магнитной неэквивалентности".¹⁸ Действительно, в спектре ЯМР ¹Н соединения 1f в растворе CDCl₃ наблюдаются два мультиплета (дублеты септетов) метиновых протонов изопропильных фрагментов и четыре дублета дублетов, принадлежащих протонам метильных групп. В спектре ЯМР ${}^{1}H - {}^{31}P$ } нафтиридина 1f данные мультиплеты трансформируются соответственно в два септетных и четыре дублетных сигнала. Сходным образом эффект "двойной магнитной неэквивалентности" проявляет себя и в спектре ЯМР ${}^{13}C-{}^{1}H$ соединения 1f, в котором наблюдаются два дублета, принадлежащие ядрам анизохронных α-углеродных атомов изопропильных фрагментов, и четыре дублетных сигнала ядер углерода магнитнонеэквивалентных метильных групп этих радикалов. Таким образом, нафтиридин 1f относится к редкому типу объектов, в которых в систему прохиральных центров, определяющих существование явления "двойной магнитной неэквивалентности" в спектрах ЯМР, входят не только атомы углерода, как это обычно бывает, 18-20 но и атом пятивалентного четырхкоординированного фосфора.*

Строение нафтиридина **8** было дополнительно подтверждено методом РСА (рис. 2). Согласно полученным данным геометрические параметры соединения **8** достаточно близки к таковым ранее описанного 2-[(1-дифенилфосфорил-1-метил)этил]-1,6-нафтиридина (**10**).⁸ В обоих случаях стоит отметить цисоидное расположение группы P=O относительно нафтиридинового фрагмента. Псевдоторсионный угол OPC(14)C(15) в структуре нафтиридина **8** составляет 5.9°, а в структуре его аналога – соединения **10** – 3.0°.⁸

Рисунок 2. Общий вид соединения **8** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Экстракционные свойства нафтиридинов **1а–f**, **2а–c**, **3**, **4** в отношении *f*-элементов были изучены на примере экстракции урана(VI) и лантанидов(III) из нейтральных водных растворов в 1,2-дихлорэтан. Так как значения коэффициентов распределения, найденные для лантанидов, различаются незначительно, в дальнейшем обсуждаются только данные для европия и урана (табл. 1).

При рассмотрении связи структуры фосфорилзамещенного нафтиридина с его эффективностью при экстракции U(VI) и Eu(III) прежде всего следует отметить значительное различие свойств изомерных 1,8- и 1,6-нафтиридинов (сравните пары соединений 1a-2a, 1b-2b, 1e-2c, табл. 1). Значения $D_{\rm M}$ в этих парах различаются в несколько раз. Очевидно, что главной причиной различия экстракционных свойств в парах изомеров 1-2 являются их разные координационные свойства.

Так, известно, что фосфорилированные 1,8-нафтиридины в комплексах с солями лантанидов проявляют тридентатную ONN-координацию.²² Координационные свойства фосфорилзамещенных 1,6-нафтиридинов не исследованы, однако, исходя из их строения, можно полагать, что при комплексообразовании с лантанидами они будут взаимодействовать с катионом либо монодентатно за счет образования связи Р=O→M, либо O,N-бидентатно. Очевидно, что прочность комплексов при тридентатной координации лиганда выше, чем при моно- или бидентатной, а значит, и эффективность экстракции 1,8-нафтиридинами будет выше, чем изомерными 1,6-нафтиридинами.

Таблица 1. Экстракционные свойства 2-фосфорилзамещенных 1,8- и 1,6-нафтиридинов 1а-f, 2а-c, 3, 4

Соеди- нение	Коэффициенты распределения*		Соеди-	Коэффициенты распределения	
	$D_{ m Eu}$	$D_{ m U}$	нение	$D_{ m Eu}$	$D_{ m U}$
1a	3.9	125	2a	< 0.1	48
1b	< 0.1	5.8	2b	< 0.1	0.21
1c	< 0.1	1.5	2c	< 0.1	2.6
1e	8.9	186	3	< 0.1	1.5
1f	1.8	436	4	< 0.1	0.76

* *D*_M = [M_{org}]/[M_{aq}], где М – металл.

^{*} Впервые явление "двойной магнитной неэквивалентности" в спектрах ЯМР для систем, включающих прохиральный атом фосфора, было обнаружено М. И. Кабачником с соавторами.²¹

Комплексообразование фосфорилзамещенных 1,8- и 1,6-нафтиридинов с катионами уранила до настоящего времени не изучено. Но эффективность извлечения урана(VI) отдельными 1,8-нафтиридинами столь высока (лиганды **1a,e,f**, табл. 1), что позволяет предположить участие обоих атомов азота этого цикла в координации с катионом/катионами уранила.

Необходимо отметить, что в специально синтезированных модельных изомерах **3** и **4**, где линкером, соединяющим нафтиридиновое ядро и фосфорильную группу, является фрагмент –СН=СН–, эффективность экстракции резко снижается и становится почти одинаковой (табл. 1). По данным конформационного анализа наличие двойной связи в линкере препятствует одновременной координации фосфорильного кислорода и атома/атомов азота нафтиридинового фрагмента к одному катиону металла. Следует также указать, что значения $D_{\rm M}$ лигандов **3** и **4** (табл. 1) близки к значениям $D_{\rm M}$ фосфиноксида $(p-{\rm Tol})_2{\rm P}({\rm O}){\rm CH}_2{\rm Ph}$, определенным в тех же экспериментальных условиях: $D_{\rm Eu} < 0.1$ и $D_{\rm U} = 7.24$.

Введение заместителя R в α -положение линкера –CH₂CHR– оказывает существенное влияние на эффективность экстракции. Заместитель меняет не только липофильные свойства экстрагента, но и прочность экстрагируемых комплексов за счет изменения основности фосфорильной группы, а значит, и прочности координационной связи P=O \rightarrow M. Индукционный эффект заместителя *n*-C₅H₁₁ повышает основность фосфорильной группы (как и липофильность лиганда), тогда как введение фенильного или тиенильного* заместителя снижает основность центра P=O (сравните $D_{\rm M}$ в ряду лигандов **1а–с,е и 2а–с**).

Замена фенильных заместителей при атоме фосфора на более электронодонорные изопропильные (лиганды **1b,f**) увеличивает основность группы P=O, а значит, и прочность экстрагируемых комплексов, что, в свою очередь, увеличивает значения D_U и D_{Eu} экстрагента **1f** (табл. 1).

Полученные результаты показали, что 2-фосфорилзамещенные 1,8-нафтиридины **1а,е,f** являются эффективными и селективными экстрагентами урана и могут использоваться для извлечения микроколичеств урана из водных растворов, содержащих лантаниды.

Таким образом, по реакции Фридлендера из соответствующих никотиновых альдегидов и фосфорилзамещенных кетонов синтезирован ряд новых 2-фосфорилэтилзамещенных 1,8- и 1,6-нафтиридинов, состав и строение которых установлены элементным анализом, колебательной (ИК, КР) спектроскопией и мультиядерной (¹H, ³¹P, ¹³C) спектроскопией ЯМР. Ряд полученных 1,8-нафтиридинов эффективно экстрагируют уран из нейтральных водных растворов в 1,2-дихлорэтан, при этом эффективность экстракции зависит от природы заместителей при атоме фосфора и заместителя в α-положении этиленового линкера между нафтиридиновым ядром и фосфорильной группой.

Экспериментальная часть

ИК спектры в области 400-4000 см⁻¹ зарегистрированы на спектрометре Bruker Tensor 37 FTIR в таблетках КВг. Спектры КР в области 100-3500 см⁻¹ зарегистрированы на спектрометре Jobin-Yvon LabRAM 300, снабженном микроскопом и лазерным ССД-детектором. В качестве возбуждающей линии использована линия He-Ne-лазера с длиной волны 632.8 нм и мощностью не более 2 мВт. Спектры ЯМР ¹Н и $^{13}C-\{^{1}H\}$ соединений 1d, 2b, 8 зарегистрированы на спектрометре Bruker Avance 400 (400 и 100 МГц соответственно). Спектры ЯМР ¹Н и ¹³С-{¹H} остальных соединений зарегистрированы на спектрометре Bruker Avance 600 (600 и 125 МГц соответственно). Спектры ЯМР ${}^{1}H - {}^{31}P$ и ${}^{31}P - {}^{1}H$ зарегистрированы на спектрометре Bruker Avance 400 (400 и 162 МГц соответственно). Растворитель CDCl₃, концентрация растворов 0.025 моль/л (соединение 8) или 0.1 моль/л (остальные соединения). Внутренний стандарт в спектрах ЯМР ¹Н и ¹³С – остаточные сигналы растворителя (7.26 м. д. для ядер ¹Н, 77.0 м. д. для ядер ¹³С), внешний стандарт в спектрах ЯМР ³¹Р - 85% Н₃РО₄. Элементный анализ выполнен в Лаборатории микроанализа ИНЭОС РАН, содержание С, Н, N определено на приборе Carlo Erba 1106, содержание Р и S по известным методикам.²³ Температуры плавления определены в открытых капиллярах на приборе MPA 120 EZ-melt Automated Melting Point Apparatus (Stanford Research Systems) и не откорректированы. Использован абсолютный этанол (Scharlau), пирролидин (Acros Organics), H₂SO₄ (98%, "хч"). Все остальные растворители предварительно очищены согласно известным методикам. Контроль за ходом реакций осуществлен по спектрам ЯМР ³¹Р реакционных смесей. Фосфорилкетоны 5а-f и 9 синтезированы по описанной ранее методике,^{8,24} никотиновые альдегиды **6**, **7** – по методике.²⁵

Синтез 2-фосфорилзамещенных 1,8- и 1,6-нафти**ридинов 1b-f**, **2a,b**, **8** (общая методика).⁶⁻⁸ К смеси 2.50 ммоль фосфорилкетона 5a-f и 2.63 ммоль (1.05 экв.) аминоникотинового альдегида 6 или 7 добавляют 10 мл EtOH и 2 мл спиртового раствора, содержащего 0.26 г (3.00 ммоль, 1.20 экв.) пирролидина и 13 мг (0.13 ммоль, 0.05 экв.) H₂SO₄. Полученную смесь кипятят при перемешивании в течение 7-12 ч. При образовании осадка в реакционной смеси его отделяют, промывают и перекристаллизовывают. При отсутствии осадка по окончании реакции спирт удаляют в вакууме (12 мм рт. ст.), остаток растворяют в 20 мл CHCl₃, раствор промывают водой (3 × 20 мл), сушат над Na₂SO₄, упаривают в вакууме досуха и перекристаллизовывают. Полученный продукт высушивают в вакууме (120-140 °C, 12 мм рт. ст.) в течение 2-4 ч.

Нафтиридины $1a^7$, $2c^8$ и фосфиноксид (*p*-Tol)₂P(O)CH₂Ph²⁶ синтезированы и очищены по соответствующим методикам. Для соединения 2c зарегистрированы колебательные спектры, отсутствующие в предварительной публикации.⁸

^{*} Соединение 1d с фурильным заместителем не исследовали из-за его малой стабильности.

2-[(2-Дифенилфосфорил-2-фенил)этил]-1,8-нафтиридин (1b) получают из 0.70 г (2.01 ммоль) фосфорилкетона 5b и 0.26 г (2.13 ммоль) альдегида 6. Время реакции 9 ч. Выход 0.70 г (81%), белый мелкокристаллический порошок, т. пл. 254-256 °С (CHCl₃-EtOAc, 1:3). ИК спектр, v, см⁻¹: 1608, 1560, 1548, 1499, 1453, 1437 (Ph), 1185, 1174 (P=O), 1119, 1102, 1072, 847, 811, 753, 716, 697, 549, 534. Спектр КР, v, см⁻¹: 1604, 1593, 1372, 1193, 1048, 1038, 1029, 1000 (Ph), 811, 779, 755, 692, 617, 536. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 3.72 (1Н, д. д. д. $^{2}J = 14.6, ^{3}J = 4.4, ^{3}J_{HP} = 8.3$) и 3.78 (1Н, д. д. д, $^{2}J = 14.6, \ ^{3}J = 10.6, \ ^{3}J_{\text{HP}} = 8.5, \ \text{С<u>H</u>₂CH}; 4.75 (1H, д. д. д,$ ${}^{3}J = 5.0, {}^{3}J = 10.4, {}^{2}J_{\rm HP} = 5.4, {\rm CH}_{2}{\rm C}{\rm H}$; 7.01 (1H, T, ${}^{3}J = 6.9$, H-4 CPh); 7.05 (2H, T, ${}^{3}J = 7.3$, H-3,5 CPh); 7.06 (1H, д, ${}^{3}J = 8.7$, H-3); 7.22 (2H, т. д, ${}^{3}J = 7.5$, ${}^{4}J_{HP} = 2.3$, H-3,5 PPh); 7.31 (1H, т, ${}^{3}J$ = 7.5, H-4 PPh); 7.36 (2H, д, ${}^{3}J$ = 7.3, H-2,6 CPh); 7.41 (1H, д. д, ${}^{3}J$ = 7.9, ${}^{3}J$ = 4.2, H-6); 7.44–7.52 (5H, M, H PPh); 7.82 (1H, π , ³J = 8.2, H-4); 8.04 (1H, μ , π , ${}^{3}J = 7.9$, ${}^{4}J = 1.3$, H-5); 8.06–8.13 (2H, м, H-2,6 PPh); 9.08 (1H, д. д, ³*J* = 3.9, ⁴*J* = 1.6, H-7). Спектр ЯМР ¹H-{³¹P}, б, м. д. (*J*, Гц): 3.73 (1Н, д. д, ²J = 14.6, ³J = 5.1) и 3.78 (1Н, д. д. ²J = 14.7, ³J = 10.7, <u>СН</u>₂СН); 4.75 (1Н, д. д, ${}^{3}J = 4.8$, ${}^{3}J = 10.1$, CH₂C<u>H</u>); 7.01 $(1H, T, {}^{3}J = 6.9, H-4 CPh);$ 7.05 (2H, T, ${}^{3}J = 7.7,$ H-3,5 CPh); 7.06 (1H, π , ³*J* = 8.3, H-3); 7.22 (2H, π , ³*J* = 7.5, H-3,5 PPh); 7.31 (1H, π , ³*J* = 7.5, H-4 PPh); 7.36 (2H, d_{1} , ${}^{3}J = 7.0$, H-2,6 CPh); 7.41 (1H, d_{2} , d_{3} , ${}^{3}J = 8.0$, ³J = 4.3, H-6); 7.44–7.52 (5Н, м, Н РРh); 7.82 (1Н, д, ${}^{3}J = 8.2, \text{ H-4}$; 8.05 (1H, μ . μ , ${}^{3}J = 8.0, {}^{4}J = 1.1, \text{ H-5}$); 8.06– 8.13 (2H, м, H-2,6 PPh); 9.09 (1H, д. д. ³*J* = 3.8, ⁴*J* = 1.4, H-7). Спектр ЯМР ¹³С-{¹H}, б, м. д. (*J*, Гц): 38.8 (<u>CH</u>₂CH); 45.6 (μ , ¹*J*_{CP} = 67.4, CH₂<u>C</u>H); 121.2 (C-4a); 121.6 (C-6); 123.8 (C-3); 126.8 (π , ⁵ J_{CP} = 2.2, C-4 CPh); 128.0 (π , ${}^{3}J_{CP} = 12.2$, C-3,5 PPh); 128.1 (π , ${}^{4}J_{CP} = 1.1$, C-3,5 CPh); 128.7 (α , ${}^{3}J_{CP} = 11.1$, C-3,5 PPh); 130.1 (α , ${}^{3}J_{CP} = 5.5$, C-2,6 CPh); 130.9 (μ , ${}^{2}J_{CP} = 8.8$, C-2,6 PPh); 131.2 (д, ${}^{4}J_{CP} = 2.8$, C-4 PPh); 131.5 (д, ${}^{2}J_{CP} = 8.3$, C-2,6 PPh); 131.6 (π , ${}^{4}J_{CP} = 2.2$, C-4 PPh); 131.7 (π , ${}^{1}J_{CP} = 94.5$, C-1 PPh); 132.1 (π , ${}^{1}J_{CP} = 99.5$, C-1 PPh); 135.7 (д, ${}^{2}J_{CP} = 5.0$, C-1 CPh); 136.8 (C-4); 136.9 (C-5); 153.3 (С-7); 155.7 (С-8а); 163.4 (д, ${}^{3}J_{CP} = 13.3$, С-2). Спектр ЯМР 31 Р– $\{{}^{1}$ H}, δ , м. д.: 33.5. Найдено, %: С 76.97; Н 5.34; N 6.61; Р 7.26. $C_{28}H_{23}N_2$ OP. Вычислено, %: С 77.41; Н 5.34; N 6.45; Р 7.13.

2-{[2-Дифенилфосфорил-2-(тиофен-2-ил)]этил}-1,8-нафтиридин (1с) получают из 0.88 г (2.48 ммоль) фосфорилкетона **5с** и 0.31 г (2.53 ммоль) альдегида **6**. Время реакции 7 ч. Выход 0.60 г (55%), белый мелкокристаллический порошок, т. пл. 251–253 °C (*i*-PrOH). ИК спектр, v, см⁻¹: 1607, 1550, 1503, 1436 (Ph), 1249, 1174 (P=O), 1145, 1121, 1093, 853, 796, 727, 715, 696, 594, 564, 529. Спектр КР, v, см⁻¹: 1595, 1431, 1375, 1001 (Ph), 840, 783, 731, 669, 618, 537. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.66 (1H, д. д. д. ${}^{2}J$ = 14.5, ${}^{3}J$ = 4.8, ${}^{3}J_{\rm HP}$ = 7.4) и 3.69 (1H, д. д. д. ${}^{2}J$ = 14.5, ${}^{3}J$ = 10.7, ${}^{2}J_{\rm HP}$ = 6.3, CH₂CH); 5.10 (1H, д. д. д. ${}^{3}J$ = 3.8, ${}^{3}J$ = 4.9, H-4'); 6.92–6.95 (2H, м, H-3',5'); 7.12 (1H, д. ${}^{3}J$ = 8.3, H-3); 7.28 (2H, д. т. ${}^{3}J$ = 7.7, ${}^{4}J_{\rm HP}$ = 3.0, H-3,5 Ph); 7.34–7.38 (1H, м, H-4 Ph); 7.41 (1H, д. д. ${}^{3}J = 8.0, {}^{3}J = 4.4, H-6$); 7.43–7.48 (3H, м, H-3,4,5 Ph); 7.57–7.63 (2Н, м, Н-2,6 Рh); 7.86 (1Н, д, ³*J* = 8.2, Н-4); 8.04–8.09 (3Н, м, Н-5, Н-2,6 Ph); 9.08 (1Н, д. д. ³*J* = 4.2, ⁴J = 2.0, H-7). Спектр ЯМР ¹H-{³¹P}, δ , м. д. (J, Γ ц): 3.67 (1Н, д. д. ${}^{2}J$ = 14.2, ${}^{3}J$ = 5.0) и 3.70 (1Н, д. д, $^{2}J = 14.4, \ ^{3}J = 9.8, \ CH_{2}CH); \ 5.11 \ (1H, д. д. <math>^{3}J = 5.6,$ ³*J* = 9.7, CH₂C<u>H</u>); 6.66–6.71 (1Н, м, H-4'); 6.92–6.97 (2Н, м, H-3',5'); 7.13 (1Н, д, ³J = 8.2, H-3); 7.29 (2Н, т, ${}^{3}J = 7.4, H-3.5 \text{ Ph}); 7.36 (1H, T, {}^{3}J = 7.3, H-4 \text{ Ph}); 7.42 (1H, д. д. {}^{3}J = 8.0, {}^{3}J = 4.2, H-6); 7.44-7.49 (3H, M, M)$ H-3,4,5 Ph); 7.61 (2H, д, ${}^{3}J$ = 7.5, H-2,6 Ph); 7.87 (1H, д, ³*J* = 8.2, H-4); 8.03–8.10 (3H, м, H-5, H-2,6 Ph); 9.08 (1H, д. д. ${}^{3}J = 3.9, {}^{4}J = 1.7, H-7$). Спектр ЯМР ${}^{13}C - \{{}^{1}H\}, \delta, м. д.$ (J, $\Gamma \mu$): 39.8 (<u>CH</u>₂CH); 41.0 (μ , ¹J_{CP} = 69.7, CH₂<u>C</u>H); 121.3 (C-4a); 121.6 (C-6); 123.8 (C-3); 124.8 (π , ${}^{4}J_{CP}$ = 2.8, C-5'); 126.5 (π , ${}^{4}J_{CP}$ = 2.8, C-4'); 127.7 (π , ${}^{3}J_{\rm CP}$ = 6.6, C-3'); 128.1 (д, ${}^{3}J_{\rm CP}$ = 11.6, C-3,5 Ph); 128.8 (д, ${}^{3}J_{CP} = 11.6$, C-3,5 Ph); 131.0 (д, ${}^{2}J_{CP} = 8.8$, C-2,6 Ph); 131.3 (д, ${}^{1}J_{CP} = 95.1$, C-1 Ph); 131.5 (д, ${}^{4}J_{CP} = 3.9$, C-4 Ph); 131.5 (μ , ² J_{CP} = 8.3, C-2,6 Ph); 131.7 (μ , ¹ J_{CP} = 100.6, C-1 Ph); 131.8 (д, ${}^{4}J_{CP}$ = 2.8, C-4 Ph); 136.9 (C-4); 137.0 (C-5); 137.3 (д, ${}^{2}J_{CP}$ = 6.1, C-2'); 153.3 (уш. с, C-7); 155.7 (C-8a); 163.1 (д, ${}^{3}J_{CP} = 13.3$, C-2). Спектр ЯМР ${}^{31}P - \{{}^{1}H\}$, δ, м. д.: 32.6. Найдено, %: С 70.97; Н 4.83; N 6.35; Р 7.12; S 7.34. С₂₆Н₂₁N₂OPS. Вычислено, %: С 70.89; H 4.81; N 6.36; P 7.03; S 7.28.

2-{[2-Дифенилфосфорил-2-(фуран-2-ил)]этил}-1,8нафтиридин (1d) получают из 1.01 г (2.98 ммоль) фосфорилкетона 5d и 0.37 г (3.03 ммоль) альдегида 6. Время реакции 8 ч. Выход 0.66 г (52%), белый кристаллический порошок, т. пл. 215-216 °С (CHCl₃гексан, 1:5). ИК спектр, v, см⁻¹: 1607, 1549, 1503, 1436 (Ph), 1178 (P=O), 1148, 1122, 1101, 856, 812, 750, 728, 699, 549, 526. Спектр КР, v, см⁻¹: 1609, 1594, 1551, 1496, 1374, 1002 (Ph), 822, 797, 783, 732, 690, 645, 618, 537. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 3.65 (1Н, д. д. д, $^{2}J = 14.6, \, ^{3}J = 4.4, \, ^{3}J_{\rm HP} = 7.8$) и 3.78 (1Н, д. д. д. $^{2}J = 14.6, \, ^{2}J = 14.6, \, ^$ ${}^{3}J = 11.0, \; {}^{3}J_{\text{HP}} = 7.7, \; C\underline{\text{H}}_{2}\text{CH}$); 4.96 (1H, д. д. д, ${}^{3}J = 4.4,$ ${}^{3}J = 11.0, {}^{2}J_{\text{HP}} = 8.3, \text{CH}_{2}\text{CH}; 6.04-6.07 (2H, M, H-3',4');$ 7.10–7.12 (1Н, м, Н-5'); 7.20 (1Н, д, ³*J* = 8.3, Н-3); 7.31– 7.37 (2H, м, H-3,5 Ph); 7.39–7.49 (5H, м, H-6, H-3,4,5,4' Ph); 7.58–7.65 (2H, м, H-2,6 Ph); 7.92 (1H, д, ${}^{3}J = 8.3$, H-4); 7.96–8.03 (2H, м, H-2,6 Ph); 8.07 (1H, д. д. ${}^{3}J = 8.1$, ${}^{4}J = 1.9, \text{ H-5}$; 9.06 (1H, д. д. ${}^{3}J = 4.3, {}^{4}J = 1.9, \text{ H-7}$). Спектр ЯМР ¹H-{³¹P}, б, м. д. (*J*, Гц): 3.66 (1Н, д. д, ${}^{2}J = 14.6, {}^{3}J = 4.0$) и 3.77 (1H, д. д. ${}^{2}J = 14.6, {}^{3}J = 11.0,$ CH₂CH); 4.96 (1H, д. д. ${}^{3}J = 4.4, {}^{3}J = 10.9,$ CH₂CH); 6.04– 6.08 (2Н, м, Н-3',4'); 7.10-7.12 (1Н, м, Н-5'); 7.20 (1Н, д, ${}^{3}J = 8.2, \text{ H-3}$; 7.34 (2H, T, ${}^{3}J = 7.4, \text{ H-3,5 Ph}$); 7.38–7.49 (5H, м, H-6, H-3,4,5,4' Ph); 7.59-7.64 (2H, м, H-2,6 Ph); 7.91 (1Н, д, ³*J* = 8.3, Н-4); 7.96–8.02 (2Н, м, Н-2,6 Рh); 8.07 (1Н, д. д. ${}^{3}J = 8.1$, ${}^{4}J = 1.7$, H-5); 9.06 (1Н, д. д. ${}^{3}J = 4.2, {}^{4}J = 2.0, H-7$). Спектр ЯМР ${}^{13}C-\{{}^{1}H\}, \delta, м. д.$ (*J*, Γ_{II}): 36.6 (<u>C</u>H₂CH); 40.2 (π , ¹*J*_{CP} = 69.0, CH₂<u>C</u>H); 109.4 (π , ³*J*_{CP} = 5.9, C-3'); 110.4 (π , ⁴*J*_{CP} = 2.2, C-4'); 121.3 (C-4a); 121.6 (C-6); 123.4 (C-3); 128.1 (π , ${}^{3}J_{CP} = 12.5$, C-3,5 Ph); 128.7 ($_{\rm A}$, $^{3}J_{\rm CP}$ = 11.7, C-3,5 Ph); 131.1 ($_{\rm A}$, $^{2}J_{\rm CP}$ = 9.5, C-2,6 Ph); 131.3 ($_{\rm A}$, $^{1}J_{\rm CP}$ = 95.4, C-1 Ph); 131.5 ($_{\rm A}$, $^{2}J_{\rm CP}$ = 8.8, C-2,6 Ph); 131.6 ($_{\rm A}$, $^{4}J_{\rm CP}$ = 2.9, C-4 Ph); 131.6 ($_{\rm A}$, $^{1}J_{\rm CP}$ = 100.5, С-1 Ph); 131.8 (д, ${}^{4}J_{CP} = 2.2$, C-4 Ph); 136.9 (C-5); 137.0 (C-4); 141.9 (д, ${}^{4}J_{CP} = 2.9$, C-5'); 149.0 (д, ${}^{2}J_{CP} = 7.3$, C-2'); 153.3 (C-7); 155.7 (C-8a); 163.2 (д, ${}^{3}J_{CP} = 13.2$, C-2). Спектр ЯМР ${}^{31}P-\{{}^{1}H\}$, δ , м. д.: 31.8. Найдено, %: С 73.50; H 4.94; N 6.61; Р 7.39. С₂₆H₂₁N₂O₂P. Вычислено, %: С 73.57; H 4.99; N 6.60; Р 7.30.

2-[(2-Дифенилфосфорил)гепт-1-ил]-1,8-нафтиридин (1е) получают из 0.68 г (1.96 ммоль) фосфорилкетона 5е и 0.26 г (2.13 ммоль) альдегида 6. Время реакции 8 ч. Выход 0.58 г (63%), белый мелкокристаллический порошок, т. пл. 194-195 °С (ЕtOAc-циклогексан, 1:4). ИК спектр, v, см⁻¹: 1609, 1549, 1500, 1454, 1438 (Ph), 1371, 1307, 1263, 1179 (P=O), 1118, 1102, 1073, 854, 794, 780, 758, 714, 700, 566, 543. Спектр КР, v, см⁻¹ 1610, 1594, 1576, 1550, 1374, 1045, 1031, 1000 (Ph), 782, 693, 617, 536. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.64 (3Н, т, ${}^{3}J = 6.8$, CH₃); 0.92–1.08 (4H, м, CH₂CH₂CH₃); 1.10–1.36 (2Н, м, СН2(СН2)2СН3); 1.55-1.77 (2Н, м, СН2(СН2)3СН3); 3.31 (1Н, д. д. д. $^{2}J = 15.3$, $^{3}J = 8.2$, $^{3}J_{HP} = 12.8$) и 3.43 (1H, д. д. д, ${}^{2}J = 15.3$, ${}^{3}J = 5.4$, ${}^{3}J_{HP} = 12.0$, C<u>H</u>₂CH); 3.67– 3.73 (1Н, м, CH₂CH); 7.15-7.20 (2Н, м, H-3,5 Ph); 7.22 (1H, π , ${}^{3}J = 8.3$, H-3); 7.20–7.24 (1H, M, H-4 Ph); 7.44 (1H, π , π , ${}^{3}J = 8.0$, ${}^{3}J = 4.4$, H-6); 7.42–7.49 (3H, M, H-3,4,5 Ph); 7.79-7.84 (2H, м, H-2,6 Ph); 7.90 (1H, д, ³*J* = 8.0, H-4); 7.86–7.91 (2Н, м, H-2,6 Ph); 8.10 (1Н, д. д. ${}^{3}J = 8.0, {}^{4}J = 1.8, \text{ H-5}$); 9.10 (1H, д. д. ${}^{3}J = 4.2, {}^{4}J = 2.0,$ H-7). Спектр ЯМР ¹H-{³¹P}, б, м. д. (*J*, Гц): 0.65 (3H, т, ³*J* = 6.7, CH₃); 0.92–1.10 (4Н, м, C<u>H</u>₂C<u>H</u>₂CH₃); 1.10–1.40 (2Н, м, СН2(СН2)2СН3); 1.54-1.79 (2Н, м, СН2(СН2)3СН3); 3.31 (1Н, д. д. ${}^{2}J$ = 15.3, ${}^{3}J$ = 8.2) и 3.43 (1Н, д. д, $^{2}J = 15.3$, $^{3}J = 5.4$, C<u>H</u>₂CH); 3.66–3.74 (1H, M, CH₂C<u>H</u>); 7.15–7.20 (2H, м, H-3,5 Ph); 7.22 (1H, д, ³*J* = 8.5, H-3); 7.20–7.25 (1H, м, H-4 Ph); 7.44 (1H, д. д. ^{3}J = 7.8, ³*J* = 4.2, H-6); 7.43–7.50 (3H, м, H-3,4,5 Ph); 7.80–7.84 (2H, м, H-2,6 Ph); 7.87-7.91 (2H, м, H-2,6 Ph); 7.90 (1H, д, ${}^{3}J = 8.4$, H-4); 8.10 (1H, д. д, ${}^{3}J = 8.1$, ${}^{4}J = 1.9$, H-5); 9.10 (1Н, д. д. ³*J* = 4.2, ⁴*J* = 1.9, Н-7). Спектр ЯМР ¹³С-{¹H}, δ, м. д. (*J*, Гц): 13.8 (CH₃); 22.1 (<u>C</u>H₂CH₃); 27.2 (д, ³*J*_{CP} = 8.9, <u>CH₂(CH₂)₂CH₃); 28.2 (CH₂(CH₂)₃CH₃); 31.7 (CH₂CH₂CH₃);</u> 36.0 (д, ${}^{1}J_{CP}$ = 70.8, CH₂<u>C</u>H); 36.8 (<u>C</u>H₂CH); 121.2 (C-4a); 121.5 (C-6); 123.7 (C-3); 128.2 (μ , ${}^{3}J_{CP} = 11.1$, C-3,5 Ph); 128.5 (μ , ${}^{3}J_{CP} = 11.0$, C-3,5 Ph); 130.9 (μ , ${}^{2}J_{CP} = 8.8$, C-2,6 Ph); 131.0 (μ , ${}^{4}J_{CP} = 2.2$, C-4 Ph); 131.0 (μ , ${}^{2}J_{CP} = 8.8$, C-2,6 Ph); 131.4 (μ , ${}^{4}J_{CP} = 2.2$, C-4 Ph); 132.7 (μ , ${}^{1}J_{CP} = 94.0$, C-1 Ph); 132.9 (μ , ${}^{1}J_{CP} = 94.9$, C-1 Ph); 136.8 (C-5); 136.9 (C-4); 153.3 (C-7); 155.7 (C-8a); 164.3 (μ , ${}^{3}J_{CP} = 9.9$, C-2). Спектр ЯМР ³¹Р-{¹H}, б, м. д.: 36.4. Найдено, %: С 75.54; Н 6.77; N 6.56; Р 7.24. С₂₇Н₂₉N₂OP. Вычислено, %: С 75.68; H 6.82; N 6.54; P 7.23.

2-[(2-Диизопропилфосфорил-2-фенил)этил]-1,8-нафтиридин (1f) получают из 0.56 г (2.00 ммоль) фосфорилкетона **5f** и 0.26 г (2.13 ммоль) альдегида **6**. Время реакции 9 ч. Выход 0.55 г (75%), белый мелкокристаллический порошок, т. пл. 205–206 °С (СНСІ₃–гексан, 1:4). ИК спектр, v, см⁻¹: 1605, 1548, 1501, 1454, 1145 (P=O), 887, 857, 816, 780, 748, 702, 634, 542. Спектр КР, v, см⁻¹: 1604, 1584, 1550, 1454, 1372, 1038, 1004 (Ph), 783, 751, 537. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 0.88 (3H, д. д. ${}_3J = 7.3$, ${}^3J_{\rm HP} = 15.1$) и 1.44 (3H, д. д, ${}^3J = 7.4$,

³*J*_{HP} = 14.8, CH(C<u>H</u>₃)₂); 1.10 (3H, д. д, ³*J* = 7.3, ³*J*_{HP} = 14.5) и 1.47 (3H, д. д, ${}^{3}J = 7.2$, ${}^{3}J_{HP} = 14.5$, CH(C<u>H</u>₃)₂); 1.85 (1H, 1.47 (5H, \underline{A} , $\underline{J} = 7.2$, $J_{\text{HP}} = 14.3$, $\text{CH}(\underline{CH}_{3/2})$, 1.63 (1H, \underline{A} , centr, ${}^{3}J = 7.4$, ${}^{2}J_{\text{HP}} = 14.8$, $\underline{CH}Me_2$); 2.39 (1H, \underline{A} . centr, ${}^{3}J = 7.2$, ${}^{2}J_{\text{HP}} = 14.4$, $\underline{CH}Me_2$); 3.68 (1H, \underline{A} . \underline{A} , ${}^{2}J = 14.2$, ${}^{3}J = 11.7$, ${}^{3}J_{\text{HP}} = 5.3$) $\underline{\mu}$ 3.79 (1H, \underline{A} . \underline{A} , ${}^{2}J = 14.3$, ${}^{3}J = 3.4$, ${}^{3}J_{\text{HP}} = 5.8$, $\underline{CH}_2\text{CH}$); 4.12 (1H, \underline{A} . \underline{A} , ${}^{3}J = 11.5$, ${}^{3}J = 3.6$, ${}^{2}J_{\text{HP}} = 5.3$, $\underline{CH}_2\text{CH}$); 6.93 (1H, \underline{A} , ${}^{3}J = 8.2$, H-3); 7.10 (1H, \underline{T} , ${}^{3}J = 6.9$, H-4 Ph); 7.15 (1H, \underline{T} , ${}^{3}J = 7.4$, H-3.5 Ph); 7.39–7.43 (2H) = 4.6 (1H) (2.6 Ph) (7.8) (3H, M, H-6, H-2,6 Ph); 7.83 (1H, I, J = 7.4, H-5,5 Pfl), 7.39–7.45 (3H, M, H-6, H-2,6 Ph); 7.83 (1H, π , ${}^{3}J = 8.2$, H-4); 8.06 (1H, π , π , ${}^{3}J = 8.0$, ${}^{4}J = 1.8$, H-5); 9.07 (1H, π , π , ${}^{3}J = 4.1$, ${}^{4}J = 1.9$, H-7). Cnextp SMP ¹H–{ ${}^{31}P$ }, δ , M. π . (*J*, $\Gamma\mu$): 0.88 (3H, π , ${}^{3}J = 7.4$) и 1.44 (3H, π , ${}^{3}J = 7.4$, CH(C<u>H</u>₃)₂); 1.10 (3H, π , π) $^{3}J = 7.3$) и 1.47 (3H, д, $^{3}J = 7.3$, CH(C<u>H</u>₃)₂); 1.85 (1H, септ, ${}^{3}J = 7.3$, C<u>H</u>Me₂); 2.40 (1H, септ, ${}^{3}J = 7.4$, C<u>H</u>Me₂); 3.68 (1Н, д. д. ${}^{2}J$ = 14.2, ${}^{3}J$ = 11.6) и 3.79 (1Н, д. д. ²J = 14.2, ³J = 3.5, С<u>H</u>₂CH); 4.12 (1H, д. д, ³J = 11.6, ³*J* = 3.4, CH₂C<u>H</u>); 6.93 (1Н, д, ³*J* = 8.2, H-3); 7.10 (1Н, т. м, ³*J* = 7.2, H-4 Ph); 7.15 (1Н, т. м, ³*J* = 7.2, H-3,5 Ph); 7.38– 7.44 (3H, м, H-6, H-2,6 Ph); 7.83 (1H, д, ³*J* = 8.2, H-4); 8.06 (1H, Δ , Δ , ${}^{3}J = 8.1$, ${}^{4}J = 2.0$, H-5); 9.07 (1H, Δ , Δ , ${}^{3}J = 3.8$, ⁴J = 1.2, H-7). Спектр ЯМР ¹³С-{¹H}, δ , м. д. (J, Γ ц): 16.0 (д, ${}^{2}J_{CP}$ = 2.2, CH₃); 16.5 (д, ${}^{2}J_{CP}$ = 1.7, CH₃); 17.2 (д, ${}^{2}J_{CP} = 2.8, \text{ CH}_{3}$; 17.7 (μ , ${}^{2}J_{CP} = 2.2, \text{ CH}_{3}$); 26.6 (μ , ${}^{1}J_{CP} = 63.0, \underline{C}HMe_{2}$); 26.7 (μ , ${}^{1}J_{CP} = 59.7, \underline{C}HMe_{2}$); 39.8 ($\underline{C}H_{2}CH$); 41.8 (μ , ¹ J_{CP} = 55.8, CH₂CH); 121.1 (C-4a); 121.5 (C-6); 123.6 (C-3); 126.9 (μ , ${}^{5}J_{CP} = 1.7$, C-4 Ph); 128.4 (ym. c, C-3,5 Ph); 129.8 (μ , ${}^{3}J_{CP} = 5.0$, C-2,6 Ph); 136.6 (C-4); 137.0 (C-5); 137.2 (μ , ${}^{2}J_{CP} = 5.0$, C-1 Ph); 153.3 (C-7); 155.8 (C-8a); 163.8 (μ , ${}^{3}J_{CP} = 12.7$, C-2). Спектр ЯМР ${}^{31}P-\{{}^{1}H\}$, δ, м. д.: 56.5. Найдено, %: С 72.19; Н 7.49; N 7.64; Р 8.49. С₂₂Н₂₇N₂OP. Вычислено, %: С 72.11; Н 7.43; N 7.64; P 8.45.

2-[(2-Дифенилфосфорил)этил]-1,6-нафтиридин (2а) получают из 2.15 г (7.90 ммоль) фосфорилкетона 5а и 1.03 г (8.43 ммоль) альдегида 7. Время реакции 8 ч. Выделяют многократной кристаллизацией из смеси соединений 2а и 8. Выход 0.31 г (11%), белый мелкокристаллический порошок, т. пл. 173-174 °С (EtOAc). ИК спектр, v, см⁻¹: 1613, 1591, 1557, 1483, 1467, 1437 (Ph), 1401, 1229, 1179 (P=O), 1119, 1108, 969, 944, 854, 775, 755, 726, 695, 546. Спектр КР, v, см⁻¹: 1610, 1590, 1571, 1559, 1468, 1373, 1352, 1341, 1156, 1026, 995 (Ph), 789, 684, 675, 614, 536. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.91–2.99 (2H, м, CH₂C<u>H</u>₂P); 3.33–3.40 (2H, м, С<u>H</u>₂CH₂P); 7.38 (1H, д, ³*J* = 8.5, H-3); 7.43–7.47 (4H, м, H-3,5 Ph); 7.48-7.52 (2H, м, H-4 Ph); 7.77-7.83 (5H, м, H-8, H-2,6 Ph); 8.12 (1H, д, ${}^{3}J$ = 8.5, H-4); 8.72 (1H, д, ${}^{3}J$ = 5.9, H-7); 9.19 (1H, уш. с, H-5). Спектр ЯМР ¹H-{³¹P}, б, м. д. (*J*, Гц): 2.91–3.00 (2Н, м, CH₂CH₂P); 3.32–3.42 (2Н, м, С<u>H</u>₂CH₂P); 7.38 (1H, д, ³*J* = 8.4, H-3); 7.42–7.47 (4H, м, H-3,5 Ph); 7.48-7.53 (2H, м, H-4 Ph); 7.77-7.84 (5H, м, H-8, H-2,6 Ph); 8.12 (1H, д, ${}^{3}J = 8.4$, H-4); 8.72 (1H, д, ${}^{3}J = 5.9, \text{H-7}$; 9.19 (1H, yill. c, H-5). Cnektrp SIMP ${}^{13}\text{C} - \{{}^{1}\text{H}\},$ δ, м. д. (*J*, Гц): 28.3 (д. ¹*J*_{CP} = 71.9, CH₂CH₂P); 30.8 (д. ${}^{2}J_{CP} = 1.1, \ \underline{CH}_{2}CH_{2}P); \ 121.7 \ (C-8); \ 122.5 \ (C-4a); \ 123.2$ (C-3); 128.7 (д, ${}^{3}J_{CP} = 11.6$, C-3,5 Ph); 130.8 (д, ${}^{2}J_{CP} = 9.4$, C-2,6 Ph); 131.8 (μ , ${}^{4}J_{CP}$ = 2.2, C-4 Ph); 132.7 (μ , ${}^{1}J_{CP}$ = 99.5, C-1 Ph); 135.8 (C-4); 147.0 (C-7); 150.1 (C-8a); 152.4 (C-5); 165.6 (д, ${}^{3}J_{CP} = 13.8$, C-2). Спектр ЯМР ${}^{31}P - \{{}^{1}H\},$ δ, м. д.: 32.0. Найдено, %: С 74.01; Н 5.14; N 7.76; Р 8.57. С₂₂H₁₉N₂OP. Вычислено, %: С 73.73; Н 5.34; N 7.82; Р 8.64.

2-[(2-Дифенилфосфорил-2-фенил)этил]-1,6-нафтиридин (2b) получают из 0.87 г (2.50 ммоль) фосфорилкетона 5b и 0.31 г (2.53 ммоль) альдегида 7. Время реакции 12 ч. Выход 0.82 г (76%), белый мелкокристаллический порошок, т. пл. 183-184 °С (MeCN, затем из EtOAc). ИК спектр, v, см⁻¹: 1613, 1592, 1557, 1483, 1438 (Ph), 1400, 1175 (P=O), 1120, 1102, 1071, 845, 754, 724, 716, 697, 593, 549. Спектр КР, v, см⁻¹: 1605, 1593, 1559, 1376, 1193, 1001 (Ph), 791, 692, 617, 542. Спектр ЯМР ¹Н, δ, м. д. (*J*, Γu): 3.72 (1H, д. д. д. ${}^{2}J$ = 15.0, ${}^{3}J$ = 5.8, ${}^{3}J_{HP}$ = 8.9) и 3.74 (1H, д. д. д. ${}^{2}J$ = 14.9, ${}^{3}J$ = 8.8, ${}^{3}J_{HP}$ = 8.8, C<u>H</u>₂CH); 4.55 (1H, д. д. д. ${}^{3}J$ = 6.0, ${}^{3}J$ = 8.9, ${}^{2}J_{HP}$ = 6.7, CH₂C<u>H</u>); 7.02–7.11 (3H, м, H-3,4,5 CPh); 7.09 (1H, д, ${}^{3}J = 8.4$, H-3); 7.21-7.27 (2H, м, H-3,5 PPh); 7.29-7.36 (3H, м, H-2,6 СРh, H-4 PPh); 7.43-7.54 (5H, м, H PPh); 7.83 (1H, д, ${}^{3}J$ = 5.9, H-8); 7.91 (1H, д. д, ${}^{3}J$ = 8.4, ${}^{4}J$ = 0.6, H-4); 7.99– 8.07 (2H, м, H-2,6 PPh); 8.70 (1H, д, ³*J* = 5.9, H-7); 9.09 (1H, уш. с, H-5). Спектр ЯМР ¹H–{³¹P}, б, м. д. (*J*, Гц): 3.72 (1Н, д. д, ${}^{2}J$ = 15.1, ${}^{3}J$ = 5.8) и 3.74 (1Н, д. д, $^{2}J = 14.9, \ ^{3}J = 8.9, \ CH_{2}CH); \ 4.55 \ (1H, \ д. \ д, \ ^{3}J = 6.0,$ ³*J* = 8.7, CH₂C<u>H</u>); 7.02–7.07 (1Н, м, H-4 CPh); 7.08 (2Н, т, ^{3}J = 7.3, H-3,5 CPh); 7.09 (1H, д, ^{3}J = 8.4, H-3); 7.24 (2H, т, ³*J* = 7.5, H-3,5 PPh); 7.29–7.36 (3H, м, H-4 PPh, H-2,6 CPh); 7.43–7.53 (5H, м, H PPh); 7.83 (1H, д, ${}^{3}J = 5.9$, H-8); 7.91 (1Н, д, ${}^{3}J$ = 8.4, H-4); 8.00–8.07 (2Н, м, H-2,6 PPh); 8.70 (1Н, д, ${}^{3}J$ = 5.9, H-7); 9.09 (1Н, уш. с, H-5). Спектр ЯМР ¹³С-{¹H}, б, м. д. (*J*, Гц): 39.1 (<u>C</u>H₂CH); 45.6 (д, ${}^{1}J_{CP} = 67.5, CH_{2}CH$; 121.7 (C-8); 122.3 (C-4a); 123.9 (C-3); 127.0 (μ , ${}^{5}J_{CP} = 2.2$, C-4 CPh); 128.0 (μ , ${}^{3}J_{CP} = 11.7$, C-3,5 PPh); 128.2 (π , ${}^{4}J_{CP}$ = 2.2, C-3,5 CPh); 128.7 (π , ${}^{3}J_{CP} = 11.7$, C-3,5 PPh); 129.9 (μ , ${}^{3}J_{CP} = 5.1$, C-2,6 CPh); 131.0 (д, ${}^{2}J_{CP}$ = 8.8, C-2,6 PPh); 131.3 (д, ${}^{4}J_{CP}$ = 2.2, C-4 PPh); 131.4 (д, ${}^{2}J_{CP} = 8.8$, C-2,6 PPh); 131.7 (д, ${}^{1}J_{CP} = 94.6$, C-1 PPh); 131.7 (д, ⁴J_{CP} = 2.2, C-4 PPh); 132.0 (д, ${}^{1}J_{CP} = 100.5, C-1 PPh$); 135.3 (C-4); 135.6 (μ , ${}^{2}J_{CP} = 5.1$, С-1 СРһ); 146.8 (С-7); 150.1 (С-8а); 152.4 (С-5); 164.5 (д, ${}^{3}J_{CP}$ = 12.5, C-2). Спектр ЯМР ${}^{31}P-\{{}^{1}H\}$, δ , м. д.: 33.2. Найдено, %: С 77.27; Н 5.24; N 6.31; Р 7.09. С₂₈Н₂₃N₂OP. Вычислено, %: С 77.41; Н 5.34; N 6.45; Р 7.13.

2-[(2-Дифенилфосфорил)гепт-1-ил]-1,6-нафтиридин (**2c**). ИК спектр, v, см⁻¹: 1613, 1591, 1558, 1483, 1467, 1437 (Ph), 1403, 1374, 1339, 1311, 1232, 1179 (P=O), 1116, 844, 715, 700, 636, 568, 551, 542. Спектр КР, v, см⁻¹: 1614, 1594, 1559, 1469, 1375, 1340, 1030, 1000 (Ph), 791, 676, 618, 542.

транс-2-[(2-Дифенилфосфорил)винил]-1,8-нафтиридин (3). К раствору 0.36 г (2.94 ммоль) альдегида 6 и 0.74 г (2.74 ммоль) фосфорилкетона 9 в 5 мл ЕtOH добавляют 8 мг (0.14 ммоль) КOH в виде 20% водного раствора. Смесь кипятят в течение 3 ч, выпавший при охлаждении осадок перекристаллизовывают из ЕtOH и высушивают в вакууме (120 °C, 12 мм рт. ст.) в течение 2 ч. Выход 0.43 г (44%), белый кристаллический порошок, т. пл. 269–270 °С (ЕtOH). ИК спектр, v, см⁻¹: 1610, 1596, 1547, 1501, 1437 (Ph), 1185 (P=O), 1119, 1103, 994, 838, 822, 807, 778, 750, 743, 722, 693, 580,

549, 524, 517. Спектр КР, v, см⁻¹: 1608 (С=С), 1592, 1376, 1274, 998 (Ph), 776, 691, 614, 533. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 7.44–7.50 (5Н, м, Н-6, Н-3,5 Ph); 7.51– 7.55 (2H, м, H-4 Ph); 7.62 (1H, д, ³*J* = 8.3, H-3); 7.76–7.82 (4H, M, H-2,6 Ph); 7.82 (1H, Δ , $\Delta^{3}J = 16.9$, ${}^{3}J_{HP} = 18.3$, CH=CHP); 8.01 (1H, Δ , $\Delta^{3}J = 16.7$, ${}^{2}J_{HP} = 24.7$, CH=CHP); 8.19 (1H, Δ , $\Delta^{3}J = 8.1$, ${}^{4}J = 2.0$, H-5); 8.24 (1H, $\Delta^{3}J = 8.2$, H-4); 9.13 (1H, Δ , $\Delta^{3}J = 4.1$, ${}^{4}J = 2.1$, H-7). Спектр ЯМР ¹H-{³¹P}, б, м. д. (*J*, Гц): 7.44-7.51 (5H, м, H-6, H-3,5 Ph); 7.51–7.57 (2H, м, H-4 Ph); 7.63 (1H, д, ³*J* = 8.3, H-3); 7.77–7.82 (4Н, м, H-2,6 Ph); 7.82 (1Н, д, ${}^{3}J = 17.4, C\underline{H}=CHP$; 8.01 (1H, \exists , ${}^{3}J = 16.8, CH=C\underline{H}P$); 8.20 (1H, π , π , ${}^{3}J = 8.1$, ${}^{4}J = 1.7$, H-5); 8.24 (1H, π , ${}^{3}J = 8.2, \text{ H-4}$); 9.13 (1H, д. д. ${}^{3}J = 4.1, {}^{4}J = 1.9, \text{ H-7}$). Спектр ЯМР ¹³С-{¹H}, б, м. д. (*J*, Гц): 122.5 (С-6); 122.9 (C-4a); 123.0 (C-3); 128.2 (μ , ${}^{1}J_{CP} = 99.5$, CH=<u>C</u>HP); 128.7 (μ , ${}^{3}J_{CP} = 12.2$, C-3,5 Ph); 131.4 (μ , ${}^{2}J_{CP} = 9.9$, C-2,6 Ph); 132.1 (α , ${}^{4}J_{CP} = 2.2$, C-4 Ph); 132.5 (α , ${}^{1}J_{CP} = 105.0$, C-1 Ph); 136.9 (C-5); 138.4 (C-4); 145.2 (α , ${}^{2}J_{CP} = 3.3$, <u>C</u>H=CHP); 154.5 (C-7); 155.8 (C-8a); 160.0 (α , ${}^{3}J_{CP} = 17.7$, C-2). Cnekrp ЯМР ³¹Р-{¹H}, б, м. д.: 23.8. Найдено, %: С 74.11; Н 4.80; N 7.65; Р 8.64. С₂₂Н₁₇N₂OP. Вычислено, %: C 74.15; H 4.81; N 7.86; P 8.69.

транс-2-[(2-Дифенилфосфорил)винил]-1,6-нафтиридин (4) получают аналогично соединению 3 из 0.22 г (1.80 ммоль) альдегида 7 и 0.46 г (1.70 ммоль) фосфорилкетона 9. После нагревания в течение 3 ч растворитель упаривают в вакууме, твердый остаток обрабатывают, как описано в методике получения соединения 3. Выход 0.24 г (40%), белый мелкокристаллический порошок, т. пл. 204–206 °С (EtOAc). ИК спектр, v, см⁻¹: 1611, 1587, 1550, 1483, 1438 (Ph), 1400, 1234, 1196, 1183 (P=O), 1160, 1120, 1099, 1071, 1001, 829, 785, 755, 739, 721, 693, 561, 547, 530, 523, 513. Спектр КР, v, см⁻¹: 1620, 1610 (C=C), 1591, 1574, 1554, 1371, 1332, 1184, 1161, 1029, 1002 (Ph), 790, 693, 617, 540. Спектр ЯМР ¹Н, δ, м. д. (J, Гц): 7.49–7.54 (4H, м, H-3,5 Ph); 7.55–7.59 (2H, м, H-4 Ph); 7.68 (1H, д, ³*J* = 8.5, H-3); 7.76 (1H, д. д, ${}^{3}J = 17.0, {}^{3}J_{\text{HP}} = 18.6, C\underline{\text{H}} = \text{CHP}$); 7.80 (1H, д. д. ${}^{3}J = 17.0,$ ³*J*_{HP} = 22.9, CH=C<u>H</u>P); 7.79–7.84 (4H, м, H-2,6 Ph); 7.88 (1H, д, ³*J* = 5.9, H-8); 8.33 (1H, д, ³*J* = 8.5, H-4); 8.76 (1H, д, ${}^{3}J = 5.9, \text{H-7}$; 9.28 (1H, yiii. c, H-5). Спектр ЯМР ${}^{1}\text{H-}\{{}^{31}\text{P}\}$, δ, м. д. (*J*, Гц): 7.51 (4H, т, ³*J* = 7.3, H-3,5 Ph); 7.55–7.60 (2H, M, H-4 Ph); 7.68 (1H, π , ${}^{3}J = 8.4$, H-3); 7.76 (1H, π , ${}^{3}J = 17.0, CH = CHP$; 7.81 (1H, $\pi, {}^{3}J = 16.7, CH = CHP$); 7.80–7.84 (4H, M, H-2,6 Ph); 7.89 (1H, π , ${}^{3}J = 6.0$, H-8); 8.33 (1H, π , ${}^{3}J = 8.5$, H-4); 8.77 (1H, π , ${}^{3}J = 6.0$, H-7); 9.28 (1H, yii. c, H-5). Cnextp $\text{SMP}^{-13}\text{C}-\{^1\text{H}\}, \delta, \text{ M. } \textbf{д}. (J, \Gamma \textbf{u}):$ 122.1 (С-8); 122.8 (С-3); 123.3 (С-4а); 128.8 (д, ³*J*_{CP} = 12.2, C-3,5 Ph); 128.9 (μ , ¹ J_{CP} = 98.4, CH=<u>C</u>HP); 131.5 (μ , ${}^{2}J_{CP} = 9.9, C-2,6 Ph); 132.2 (д, {}^{1}J_{CP} = 107.3, C-1 Ph); 132.2$ (μ , ${}^{4}J_{CP} = 2.2$, C-4 Ph); 136.9 (C-4); 145.5 (μ , ${}^{2}J_{CP} = 3.3$, CH=CHP); 147.4 (C-7); 150.4 (C-8a); 152.8 (C-5); 157.1 $\overline{(\mathfrak{g}, {}^{3}J_{CP} = 17.7, C-2)}$. Спектр ЯМР ${}^{31}P - \{{}^{1}H\}, \delta, M. \mathfrak{g}.: 23.8.$ Найдено, %: С 74.05; Н 4.74; N 7.77; Р 8.55. С₂₂Н₁₇N₂OP. Вычислено, %: С 74.15; Н 4.81; N 7.86; P 8.69.

3-[(Дифенилфосфорил)метил]-2-метил-1,6-нафтиридин (8) получают после выделения из реакционной

смеси соединения 2а. Остаток, полученный после упаривания объединенных фильтратов, многократно перекристаллизовывают. Выход 50 мг (2%), белое кристаллическое вещество, т. пл. 199-200 °С (ЕtOAc-гексан). ИК спектр, v, см⁻¹: 1617, 1586, 1559, 1479, 1439, 1401, 1234, 1212, 1186, 1168, 1135, 1121, 1108, 1093, 1070, 944, 915, 831, 819, 742, 719, 691, 577, 543, 517, 506, 478, 460. Спектр КР, v, см⁻¹: 1616, 1590, 1575, 1558, 1400, 1371, 1361, 1025, 996 (Ph), 741, 682, 663, 615, 438. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.65 (3H, с, CH₃); 3.86 $(2H, \pi, {}^{2}J_{HP} = 13.5, CH_{2}); 7.47-7.54 (4H, M, H-3,5 Ph);$ 7.57-7.63 (2H, м, H-4 Ph); 7.69-7.76 (4H, м, H-2,6 Ph); 7.79 (1H, μ , ${}^{3}J = 6.0$, H-8); 7.88 (1H, μ , ${}^{4}J_{HP} = 2.8$, H-4); 8.68 (1H, μ , ${}^{3}J = 5.9$, H-7); 9.02 (1H, yui, c, H-5). Cnektr SMP ${}^{1}H - {}^{31}P$, δ , M. μ . (*J*, $\Gamma\mu$): 2.65 (3H, c, CH₃); 3.86 (2H, c, CH₂); 7.50 (4H, τ , ³*J* = 7.5, H-3,5 Ph); 7.60 (2H, τ , ${}^{3}J = 7.4$, H-4 Ph); 7.73 (4H, π , ${}^{3}J = 7.2$, H-2,6 Ph); 7.79 (1H, π , ${}^{3}J = 5.9$, H-8); 7.88 (1H, c, H-4); 8.68 (1H, π , ${}^{3}J$ = 5.9, H-7); 9.02 (1H, уш. с, H-5). Спектр ЯМР ${}^{13}C$ -{ ${}^{1}H$ }, δ, м. д. (*J*, Гц): 24.4 (СН₃); 34.8 (д, ¹*J*_{CP} = 64.9, СН₂); 6, M. d. (J, 14). 22.4 (C13), 54.8 (d, ^{5}CP - 04.9, C12), 121.2 (C-8); 122.4 (d, $^{4}J_{CP} = 1.6$, C-4a); 125.9 (d, $^{2}J_{CP} = 8.0$, C-3); 128.9 (d, $^{3}J_{CP} = 11.2$, C-3,5 Ph); 131.1 (d, $^{2}J_{CP} = 9.6$, C-2,6 Ph); 131.7 (d, $^{1}J_{CP} = 101.7$, C-1 Ph); 132.4 (d, $^{4}J_{CP} = 2.4$, C-4 Ph); 136.7 (d, $^{3}J_{CP} = 4.8$, C-4); 146.8 (C-7); 148.9 (d, ${}^{5}J_{CP} = 1.6, \text{ C-8a}$; 152.1 (C-5); 164.0 (μ , ${}^{3}J_{CP} = 4.0, \text{ C-2}$). Спектр ЯМР ³¹Р-{¹H}, б, м. д.: 28.9. Найдено, %: С 73.81; Н 5.34; N 7.77; Р 8.61. С₂₂Н₁₉N₂OP. Вычислено, %: C 73.73; H 5.34; N 7.82; P 8.64.

Рентгеноструктурное исследование соединения 8. Кристаллы соединения 8 (М 358.38), пригодные для РСА, получены путем изотермического испарения раствора в смеси EtOAc-гексан. Рентгеноструктурное исследование проведено на дифрактометре SMART АРЕХ II ССО (МоКа-излучение, графитовый монохроматор, ω-сканирование). Структура расшифрована прямым методом и уточнена методом наименьших квадратов в анизотропном полноматричном приближении по F^{2}_{hkl} . Позиции атомов водорода рассчитаны геометрически и уточнены в изотропном приближении по модели "наездник". Все расчеты проведены по комплексу программ SHELXTL PLUS.²⁷ Полный набор рентгеноструктурных данных для соединения 8 депонирован в Кембриджском банке структурных данных (депонент ССDС 1483897).

Исследование экстракционных свойств. В качестве органического растворителя используют 1,2-дихлорэтан марки "хч" без дополнительной очистки. Растворы экстрагентов концентрации 0.01 моль/л готовят по точной навеске. Исходные водные растворы U(VI) и лантанидов(III) готовят растворением соответтвующих перхлоратов в воде с последующим добавлением NH₄ClO₄. Исходная концентрация ионов металлов – $4 \cdot 10^{-6}$ моль/л, концентрация NH₄ClO₄ – 1 моль/л. Контакт фаз осуществлен при комнатной температуре на аппарате для перемешивания со скоростью 60 об/мин в течение 1 ч, что достаточно для установления постоянных значений коэффициентов распределения. Концентрацию лантанидов(III) и U(VI) в исходных и равновесных водных растворах определяют методом массспектрометрии с ионизацией пробы в индуктивно связанной плазме (ИСП-МС) с использованием массспектрометра X-7 (Thermo Elemental, США) по ранее описанной методике.²⁸ Содержание элементов в органической фазе определяют после реэкстракции 0.1 М раствором оксиэтилидендифосфоновой кислоты. Коэффициенты распределения элементов рассчитывают как отношение их концентраций в равновесных органической и водной фазах ($D_{\rm M} = [{\rm M}_{\rm org}]/[{\rm M}_{\rm aq}]$). Погрешность определения $D_{\rm M}$ не больше 5%.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 14-03-00695-а).

Список литературы

- 1. Litvinov, V. P. Adv. Heterocycl. Chem. 2006, 91, 189.
- (a) Fu, L.; Feng, X.; Wang, J.-J.; Xun, Z.; Hu, J.-D.; Zhang, J.-J.; Zhao, Y.-W.; Huang, Z.-B.; Shi, D.-Q. ACS Comb. Sci. 2015, 17, 24. (b) Zeng, L.-F.; Wang, Y.; Kazemi, R.; Xu, S.; Xu, Z.-L.; Sanchez, T. W.; Yang, L.-M.; Debnath, B.; Odde, S.; Xie, H.; Zheng, Y.-T.; Ding, J.; Neamati, N.; Long, Y.-Q. J. Med. Chem. 2012, 55, 9492. (c) Dhamodharan, V.; Harikrishna, S.; Jagadeeswaran, C.; Halder, K.; Pradeepkumar, P. I. J. Org. Chem. 2012, 77, 229. (d) Wang, H.; Wang, S.; Cheng, L.; Chen, L.; Wang, Y.; Qing, J.; Huang, S.; Wang, Y.; Lei, X.; Wu, Y.; Ma, Z.; Zhang, L.; Tang, Y. ACS Med. Chem. Lett. 2015, 6, 977. (e) Dhar, A. K.; Mahesh, R.; Jindal, A.; Devadoss, T.; Bhatt, S. Chem. Biol. Drug Des. 2014, 84, 721. (f) Mahesh, R.; Dhar, A. K.; Jindal, A.; Bhatt, S. Chem. Biol. Drug Des. 2014, 83, 583.
- (a) Griswold, A.; Bloom, S.; Lectka, T. J. Org. Chem. 2014, 79, 9830. (b) Huang, C.-Y.; Kuan, K.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2014, 33, 2831.
- (a) Lu, S.-H.; Phang, R.; Fang, J.-M. Org. Lett. 2016, 18, 1724. (b) Li, Z.; Zhao, W.; Li, X.; Zhu, Y.; Liu, C.; Wang, L.; Yu, M.; Wei, L.; Tang, M.; Zhang, H. Inorg. Chem. 2012, 51, 12444. (c) Xiao, L.; Xing, X.; Chen, Z.; Qu, B.; Lan, H.; Gong, Q.; Kido, J. Adv. Funct. Mater. 2013, 23, 1323.
- (а) Сафиулина, А. М.; Матвеева, А. Г.; Горюнов, Е. И.; Нифантьев, Э. Е.; Тананаев, И. Г. Цветные металлы 2012, 46. (b) Safiulina, А. М.; Sinegribova, О. А.; Matveeva, А. G.; Goryunov, E. I.; Grigoriev, M. S.; Nifant'ev, E. E.; Tananaev I. G. Russ. J. Inorg. Chem. 2012, 57, 108. [Журн. неорган. химии 2012, 57, 115.]
- Bodrin, G. V.; Lemport, P. S.; Matveev, S. V.; Petrovskii, P. V.; Nifant'ev, E. E. Mendeleev Commun. 2007, 17, 25.
- Lemport, P. S.; Bodrin, G. V.; Pasechnik, M. P.; Matveeva, A. G.; Petrovskii, P. V.; Vologzhanina, A. V.; Nifant'ev, E. E. Russ. Chem. Bull. 2007, 56, 1911. [*Изв. AH*, *Cep. xum.* 2007, 1846.]
- Lemport, P. S.; Bodrin, G. V.; Belyakov, A. I.; Petrovskii, P. V.; Vologzhanina, A. V.; Nifant'ev, E. E. *Mendeleev Commun.* 2009, 19, 303.
- Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. R.; McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P. *J. Org. Chem.* 2003, *68*, 467.
- Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; do Carmo Carreiras, M.; Soriano, E. *Chem. Rev.* 2009, 109, 2652.
- (a) Hsiao, Y.; Rivera, N. R.; Yasuda, N; Hughes, D. L.; Reider, P. J. Org. Lett. 2002, 4, 1243. (b) Hsiao, Y.;

Сhem. Heterocycl. Compd. 2016, 52(8), 583–591 [Химия гетероцикл. соединений 2016, 52(8), 583–591]

Rivera, N. R.; Yasuda, N; Hughes, D. L.; Reider, P. J. Org. Lett. 2001, 3, 1101.

- Galkina, M. A.; Bodrin, G. V.; Goryunov, E. I.; Goryunova, I. B.; Sherstneva, A. S.; Urmambetova; J. S.; Kolotyrkina; N. G.; Il'in, M. M.; Brel, V. K.; Kochetkov, K. A. *Mendeleev Commun.* 2016, 26, 75.
- Reddy, K. R.; Mogilaiah, K.; Sreenivasulu, B. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989, 28B, 362.
- 14. Carrano, J. T.; Wait, S. C., Jr. J. Mol. Spectrosc. 1973, 46, 401.
- 15. Chappell, P. J.; Ross, I. G. J. Mol. Spectrosc. 1977, 66, 192.
- Matveeva, A. G.; Lemport, P. S.; Leites, L. A.; Aysin, R. R.; Vologzhanina, A. V.; Starikova, Z. A.; Passechnik, M. P.; Nifant'ev, E. E. *Inorg. Chim. Acta* 2009, *362*, 3187.
- 17. Hanson, K. R. J. Am. Chem. Soc. 1966, 88, 2731.
- Martin, M. L.; Mantione, R.; Martin, G. J. *Tetrahedron Lett.* 1966, 7, 3873.
- 19. Brink, M. Tetrahedron Lett. 1969, 10, 4055.
- 20. Brink, M. Tetrahedron 1971, 27, 143.
- Goryunov, E. I.; Petrovskii, P. V.; Kudryavtsev, I. Y., Zacharov, L. S.; Kabachnik, M. I. Dokl. AN SSSR 1985, 281, 130. [Докл. AH CCCP, 1985, 281, 1378.]

- Matveeva, A. G.; Lemport, P. S.; Pasechnik, M. P.; Aysin, R. R.; Leites, L. A.; Nifant'ev, E. E. Russ. Chem. Bull., Int. Ed. 2009, 58, 1416. [*H36 AH, Cep. xum.* 2009, 1375.]
- 23. Гельман, Н. Э.; Терентьева, Е. А.; Шанина, Т. М.; Кипаренко, Л. М.; Резл, В. Методы количественного органического элементного микроанализа; Химия: Москва, 1987.
- Goryunov, E. I.; Bodrin, G. V.; Goryunova, I. B.; Nelyubina, Yu. V.; Petrovskii, P. V.; Strelkova, T. V.; Peregudov, A. S.; Matveeva, A. G.; Pasechnik, M. P.; Matveev, S. V.; Nifant'ev, E. E. Russ. Chem. Bull. 2013, 62, 780. [*H36. AH, Cep. xum.* 2013, 779.]
- 25. Turner, J. A. J. Org. Chem. 1983, 48, 3401.
- 26. Tsvetkov, E. N.; Shvets, A. A.; Korolev, B. A.; Bondarenko, N. A.; Goncharova, L. V.; Osmolovskaya, L. A. *Russ. J. Gen. Chem.* **1992**, *62*, 2223. [Журн. общ. химии **1992**, *62*, 1833.]
- 27. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
- 28. Turanov, A. N.; Karandashev, V. K.; Baulin, V. E.; Tsvetkov, E. N. Russ. J. Inorg. Chem. **1995**, 40, 1926. [Журн. неорган. химии **1995**, 40, 1926.]