

Химия гетероциклических соединений 2017, 53(5), 532–539

Влияние типа галогена на структурные особенности соединений с α-галоген-α,α-динитроэтильными фрагментами

Артем О. Дмитриенко¹, Валентина А. Карноухова¹, Александр А. Потемкин^{2,3}, Марина И. Стручкова², Ирина А. Кряжевских⁴, Кирилл Ю. Супоницкий¹*

¹ Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 119991, Россия; e-mail: kirshik@yahoo.com

² Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119991, Россия; e-mail: stru@ioc.ac.ru

³ Московский государственный университет им. М. И. Ломоносова, Ленинские горы, д. 1, стр. 3, Москва 119991, Россия; e-mail: skypehopert@gmail.com

⁴ ЗАО "Аналитика", проезд Серебрякова, 2/1, Москва 129343, Россия; e-mail: irinak647@gmail.com Поступило 17.11.2016 Принято 6.12.2016

Синтезированы N-(2-галоген-2,2-динитроэтил)пирролидин-2,5-дионы (Hal = F, Cl, Br) и исследовано их молекулярное и кристаллическое строение. С использованием комбинации методов рентгеноструктурного анализа и квантовой химии проведен сравнительный анализ кристаллических упаковок синтезированных соединений. Показано, что у фторпроизводного наблюдается укороченная галогеновая связь F…F первого типа, в бромпроизводном атомы брома образуют относительно прочную галогеновую связь Br…O=C второго типа, а атом хлора в структуре хлорпроизводного взаимодействует с атомом кислорода нитрогруппы, образуя слабую галогеновую связь Cl…O₂N также второго типа. Эти отличия в "предпочтениях" разных атомов галогена определяют различия, наблюдаемые в кристаллических структурах исследованных соединений.

Ключевые слова: *N*-(2-галоген-2,2-динитроэтил)пирролидин-2,5-дионы, 2-галоген-2,2-динитроэтильная группа, галогенирование, галогеновая связь, квантовая химия, рентгеноструктурный анализ, энергетика межмолекулярных взаимодействий.

Алифатические соединения, содержащие при одном атоме углерода нитрогруппу и атом галогена, известны уже более 130 лет. В течение этого продолжительного периода времени способы их синтеза и реакционная способность изучены весьма подробно. Опубликованы два обзора,¹ охватывающие все аспекты химии и использования α-галоген-α-нитросоединений, а также обзоры, касающиеся отдельных групп галогенонитросоединений.² В монографиях и обзорах по химии алифатических нитросоединений их галогенпроизводным также уделялось значительное внимание.3 С годами интерес к этой группе соединений лишь возрастает. В первую очередь это обусловлено их богатыми синтетическими возможностями, а также разнообразным использованием, например в качестве биологически активных веществ, компонентов энергоемких материалов и др.

В то время как для идентификации α-галоген-α-нитросоединений использовались различные физико-химические и спектральные методы исследования, метод рентгеноструктурного анализа применялся для изучения их структуры значительно реже. Согласно Кембриджскому банку данных (версия 5.37, ноябрь 2015 г.),⁴ наибольшее количество публикаций относится к соединениям, включающим фрагмент -C(NO₂)₂F, тогда как данные о хлор- и бромсодержащих аналогах весьма немногочисленны. Более того, практически не проводились подробные исследования, позволяющие оценить не только изменение строения самой молекулы при переходе от фтор- к бромсодержащим производным, но и влияние атома галогена на особенности кристаллического строения.⁵ Структуры соединений, включающие фрагменты CH₂C(NO₂)₂Cl или CH₂C(NO₂)₂Br, в Кембриджском банке структурных данных отсутствуют.

Ранее исследование влияния замещения нитрогруппы в тринитрометильном фрагменте на атом фтора позволило выявить некоторые закономерности изменения кристаллической упаковки в зависимости от наличия в молекуле тех или иных функциональных групп.⁶ В кристаллах таких соединений была зафиксирована структурообразующая роль взаимодействий между неподеленной электронной парой (НЭП) атома кислорода нитрогруппы и π-системой ароматических гетероциклов. При этом если роль атома фтора в системе межмолекулярных контактов оказывалась небольшой, то небольшой была и разница в плотности между (тринитрометил)- и (динитрофторметил)производными. Однако плотность последних оказывалась существенно выше (на 0.05 г/см³) при активном участии атома фтора в межмолекулярном связывании.⁶

В настоящем сообщении описано получение соединений, содержащих галоген и нитрогруппу при одном атоме углерода, и проведен сравнительный анализ молекулярного и кристаллического строения соединений, отличающихся типом галогена (F, Cl и Br), но не включающих гетероароматического остова. Вместо последнего использован циклический имид, где потенциальный фрагмент межмолекулярного связывания локализован на карбонильной группе, являющейся активным донором НЭП. Схема 1 демонстрирует подходы, использованные для синтеза объектов исследования.

Схема 1

Исходную калиевую соль динитроэтильного соединения **1** получали по литературной методике.⁷ Хотя ранее некоторые реакции этой соли были изучены, галогенированию она не подвергалась. Для формирования α -галоген- α , α -динитроэтильного фрагмента использовались традиционные методы, основанные на галогенировании анионов динитрометильных соединений. Так, фторирование проводилось с помощью дифторида ксенона в ацетонитриле,⁸ газообразный хлор в органическом растворителе использовали для хлорирования,⁹ а бромирование было осуществлено действием брома.¹⁰ Целевые продукты образовывались с хорошими выходами (63–77%), которые не оптими-

Рисунок 1. Молекулярные структуры соединений **2**–**4** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

зировались. Данные многоядерного ЯМР и ИК спектроскопии полученных галогенпроизводных соответствуют предложенным структурам.

Однозначное подтверждение строения было получено с использованием рентгенодифракционного исследования монокристаллов соединений 2-4, выращенных медленным упариванием их растворов в хлороформе. Общий вид молекул исследованных соединений представлен на рис. 1. Симметрично независимая часть элементарной ячейки фтор- и бромпроизводных содержит по две молекулы (которые будем обозначать А и А'). В кристалле хлорпроизводного 3 симметрично независимой является одна молекула (А). Все пять молекул имеют практически одинаковое строение: пятичленный цикл плоский, а торсионные углы С(1)–N(1)–C(5)–C(6) N(1)-C(5)-C(6)-Hal, определяющие ориентацию И α-галоген-α,α-динитроэтильного фрагмента, близки к 90 и 50° соответственно (табл. 1). Несущественные структурные различия как между симметрично независимыми молекулами, так и между разными галогенпроизводными проявляются в развороте нитрогрупп (табл. 1, углы C(5)–C(6)–N–O), в то время как основные различия в строении кристаллов соединений 2-4 проявляются в их упаковке.

Таблица 1	Основные геометрические параметры
соединени	i 2 –4

Параметр	2A	2A'	3A	4 A	4A'
Связь			<i>d</i> , Å		
C(6)–N(2)	1.538(2)	1.539(2)	1.548(2)	1.540(5)	1.541(5)
C(6)–N(3)	1.533(2)	1.523(2)	1.532(2)	1.530(5)	1.531(5)
C(6)–Hal	1.321(2)	1.324(2)	1.711(2)	1.903(3)	1.894(4)
Угол			ω, град.		
Hal-C(6)-N(2)-O(4)	-6.2(2)	-12.0(2)	26.0(2)	-14.0(4)	-31.3(4)
Hal-C(6)-N(3)-O(6)	137.6(2)	159.5(2)	144.5(2)	104.5(3)	130.7(3)
C(4)-N(1)-C(5)-C(6)	93.1(2)	90.0(2)	93.66(2)	81.6(4)	86.4(4)
N(1)-C(5)-C(6)-Hal	46.7(2)	48.5(2)	53.3(2)	51.5(4)	57.5(3)
C(5)-C(6)-N(2)-O(3)	-61.9(2)	-66.6(2)	-76.9(2)	-64.5(4)	-81.5(4)
C(5)-C(6)-N(3)-O(6)	12.2(2)	34.3(2)	17.4(2)	-20.5(4)	5.3(4)
C(1)-N(1)-C(5)-C(6)	-96.1(2)	95.8(2)	103.3(2)	113.3(4)	100.9(4)

Для более обоснованного обсуждения молекулярного и кристаллического строения соединений 2-4 были проведены квантово-химические расчеты по программе GAUSSIAN¹¹ в приближение M052X/aug-cc-pvdz, эффективные для описания геометрии и энергетики полинитро- и гетероциклических соединений.¹² Функционал М052Х, как было показано ранее, адекватно описывает межмолекулярные взаимодействия.¹³ Анализ зависимости конформационной энергии от торсионного угла N(1)-C(5)-C(6)-Hal (вращение вокруг связи C(5)-C(6); рис. 1S в файле сопроводительной информации) показывает, что для всех галогенодинитроэтильных производных наблюдаются два минимума энергии, соответствующие скрещенной конформации. Глобальному минимуму (Gl) соответствует конформация с *транс*-ориентацией связей N(1)-C(5) и C(6)-N(3) (при этом угол N(1)-C(5)-C(6)-Hal близок к 50°), что соответствует геометрии молекулы, наблюдаемой в кристаллах. Локальный минимум (Loc) соответствует транс-ориентации связей N(1)-C(5) и C(6)-Hal (табл. 2). Для уточнения геометрии этих конформеров проводили дополнительную оптимизацию без ограничения по углу N(1)-C(5)-C(6)-Hal. Полученные различия в энергии глобального и локального минимумов несколько больше для фторпроизводного 2 (Δ 2.8 ккал/моль) и практически одинаковы для хлор- и бромпроизводных **3** и **4** (Δ 2.0 и 1.8 ккал/моль соответственно).

Ранее при описании структур 1,4-дигалоген-1,1,4,4тетранитробутан-2,3-диолов⁵ авторы отметили две особенности строения 1-галоген-1,1-динитрометильных групп: 1) связь С-Наl укорочена относительно ее среднего значения и 2) атом галогена лежит в плоскости как минимум одной из нитрогрупп. Для проверки этих фактов, а также для изучения влияния природы гетероцикла на строение группы $CH_2C(NO_2)_2Hal$ мы оптимизировали с помощью указанного выше приближения геометрию молекул, приведенных в табл. 2. Результаты расчета приведены в табл. 3.

Действительно, сравнение результатов расчета показывает, что связь C-Cl в хлординитропроизводном **3** на 0.05 Å короче аналогичной связи хлороэтильного производного 5. Очевидно, это является следствием электроноакцепторного влияния нитрогрупп, что также должно приводить и к увеличению роли о*-орбитали связи Hal-С как акцептора неподеленной пары.¹⁴ Однако второе наблюдение авторов⁵ о взаимной ориентации атома галогена и нитрогрупп не подтверждается ни литературными данными,¹⁵ ни нашими ранними исследованиями,⁶ ни результатами настоящей работы (табл. 3). Значения торсионных углов Hal-C-N-O варьируют в широком диапазоне (а не только близки к 0 или 180°) и, очевидно, определяются невалентными внутри- и межмолекулярными (эффект кристаллической упаковки) взаимодействиями.

Влияние природы гетероциклического остова молекулы на строение 1-галоген-1,1-динитроэтильных производных исследовали на примере соединений **3**, **6–8**. Так, переход от соединения **3** к его гипотетическому таутомеру 2,5-дигидроксипирролу **6** не приводит к

Габлица	2. Молекулярные структуры энергетически
наиболее	выгодных конформеров Het-CH ₂ C(NO ₂) ₂ Hal

Параметр	2Gl	3Gl	4Gl	2Loc	3Loc	4Loc	6Gl	7Gl	8Gl	6Loc	7Loc	8Loc
Связь						d	Å					
C(6)–N(2)	1.526	1.538	1.535	1.540	1.535	1.532	1.533	1.534	1.541	1.525	1.527	1.530
C(6)–N(3)	1.527	1.533	1.530	1.523	1.531	1.528	1.534	1.531	1.534	1.528	1.531	1.533
C(6)–Hal	1.332	1.741	1.908	1.340	1.747	1.914	1.739	1.742	1.739	1.751	1.752	1.750
Угол						ω, ι	град.					
Hal-C(6)-N(2)-O(4)	23.2	23.5	23.0	-177.9	156.6	156.4	23.0	8.0	5.8	157.3	146.5	158.7
Hal-C(6)-N(3)-O(6)	-129.5	-117.9	-114.4	65.2	118.5	115.0	-116.0	-105.7	-109.1	109.6	112.4	101.2
C(1)-N(1)-C(5)-C(6)	93.5	100.0	102.6	-96.8	113.1	113.1	98.0	91.7	108.0	108.9	87.2	83.4
N(1)-C(5)-C(6)-Hal	-52.1	-55.61	-56.0	160.8	176.0	177.1	-51.35	-65.0	-55.8	178.3	164.5	165.5

Таблица 3. Рассчитанные геометрические параметры оптимальных конформеров Het-CH₂C(NO₂)₂Hal

изменениям в строении группы C(NO₂)₂Cl. Однако таутомер 6 существенно менее энергетически выгоден (на 35-40 ккал/моль), чем соединение 3. Как наглядно демонстрирует табл. 3, замена пирролидин-2,5-дионового остова молекулы (соединение 3) на 1*Н*-пиррол (соединение 7) или 2H-1,2,3-триазол (соединение 8) не оказывает существенного влияния на геометрию группы С(NO₂)₂Сl и ее ориентацию относительно цикла. Различие между соединениями 3 и 6 (торсионные углы, табл. 3) несколько большее, чем между соединениями 3 и 7 или 8. Это можно объяснить на основании топологического анализа электронной плотности внутримолекулярных невалентных контактов.¹⁶ В молекуле соединения 3, так же как и соединения 6, между нитрогруппой и карбонильным (в соединении 3) или гидроксильным (в соединении 6) атомом кислорода имеет место аттрактивное взаимодействие. В молекулах соединений 7 и 8 внутримолекулярные невалентные контакты отсутствуют.

Несмотря на практически одинаковое строение молекул соединений 2-4, их кристаллические упаковки

достаточно заметно различаются. Для выявления причин, приводящих к этому, и проведения сравнительного анализа кристаллических упаковок мы использовали комбинацию геометрического (визуальный анализ укороченных контактов) и энергетического подходов.¹⁷ Последний основан на оценке энергий парных межмолекулярных взаимодействий молекулы с ее ближайшим окружением в кристалле. Обозначив центральную молекулу как МО, а окружающие ее молекулы как М1, М2 и т. д., проводили расчеты димеров (молекулярных пар) М0…М1, М0…М2, и т. д. в рамках указанного выше приближения. Взаимная ориентация молекул в димере соответствовала полученной для кристалла в рентгеноструктурном эксперименте и не оптимизировалась. Энергии оценивали как разность энергий димера и составляющих его молекул. Результаты расчетов приведены в табл. 4-6 (подробная информация - в табл. 1S-3S в файле сопроводительной информации).

Как и в ранее изученных нами полинитросединениях,⁶ в кристаллических структурах соединений 2–4

с их ближ	их ближайшим окружением в кристалле, рассчитанные в приближении M052X/aug-cc-pvdz*									
Моле- кула	Молеку- лярная пара	Операция симметрии	Тип взаимодействия	Ε	Моле- кула	Молеку- лярная пара	Операция симметрии	Тип взаимодействия	Ε	
		Молекула А	A		Молекула А'					
1	A···A	-1+x, y, z	С–Н⋯О=С	-2.7	1'	$A'\!\cdots\!A'$	-1+x, y, z	С–Н⋯О=С	-3.9	
2	A···A	1+ <i>x</i> , <i>y</i> , <i>z</i>	С–Н⋯О=С	-2.7	2'	$A'\!\cdots\!A'$	1+ <i>x</i> , <i>y</i> , <i>z</i>	С–Н⋯О=С	-3.9	
3	A···A	-x, -1/2+y, 1.5-z	$C\!\!-\!\!H^{\dots}O_2N$	-2.7	3'	$A'\!\cdots\!A'$	1-x, 1-y, 2-z	С=О…π, С−Н…О=С	-10.2	
4	A···A	-x, 1/2+y,1.5-z	$C\!\!-\!\!H\!\cdots\!O_2N$	-2.7	4'	$A'\!\cdots\!A'$	2- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>	$CH^{\dots}O_2N$	-4.0	
5	A···A	-x, 1-y, 1-z	$NO_2 \cdots NO_2$	-0.1	5'(6)	A'…A	1+ <i>x</i> , <i>y</i> , <i>z</i>	$NO_2 \cdots \pi$, $NO_2 \cdots NO_2$	-5.0	
6(5')	$A{\cdots}A'$	-1+x, y, z	$NO_2 \cdots \pi$, $NO_2 \cdots NO_2$	-5.0	6'(7)	A'…A	<i>x</i> , <i>y</i> , <i>z</i>	$\mathbf{F}\cdots\mathbf{F}$	-1.7	
7(6')	$A{\cdots}A'$	<i>x</i> , <i>y</i> , <i>z</i>	$F \cdots F$	-1.7	7'(8)	A'…A	-x, 1/2+y, 1.5-z	С–Н⋯О=С	-6.4	
8(7')	$A^{\ldots}A'$	-x, -1/2+y, 1.5-z	С–Н⋯О=С	-6.4	8'(9)	A'…A	1-x, 1/2+y, 1.5-z	$NO_2 \cdots \pi$, C-H···O=C	-7.4	
9(8')	$A{\cdots}A'$	1- <i>x</i> , -1/2+ <i>y</i> , 1.5- <i>z</i>	NO ₂ ··· π , C–H···O=C	-7.4	9'(10)	A'…A	-x, 1-y, 2-z	Вандерваальсовое	-0.1	
10(9')	$A{\cdots}A'$	-x, 1-y, 2-z	Вандерваальсовое	-0.1	10'(11)	A'…A	1-x, 1-y, 2-z	$C=O\cdots\pi$	-3.4	
11(10')	$A^{\ldots}A'$	1-x, 1-y, 2-z	С=О…π	-3.4	11'(12)	A'…A	1+x, 1.5-y, 1/2+z	Вандерваальсовое	-2.1	
12(11')	$A{\cdots}A'$	<i>x</i> -1, 1.5- <i>y</i> , -1/2+ <i>z</i>	Вандерваальсовое	-2.1	12'(13)	A'…A	x, 1.5–y, 1/2+z	$CH^{\dots}O_2N$	-2.7	
13(12')	$A{\cdots}A'$	x, 1.5–y, –1/2+z	$CH^{\dots}O_2N$	-2.7						

Таблица 4. Типы и энергии (*E*, ккал/моль) парных межмолекулярных взаимодействий молекул A и A' соединения 2 с их ближайшим окружением в кристалле, рассчитанные в приближении M052X/aug-cc-pvdz*

* Центральная молекула обозначается как M0 (M0'). Номера ее ближайших соседей (M1, M2, ... (M1', M2', ...)) соответствуют номерам строк в первой (шестой) колонке. Номера соответствующих взаимодействующих молекулярных пар для другой симметрично независимой молекулы даны в скобках.

Моле- кула	Операция симметрии	Тип взаимодействия	Ε	Моле- кула	Операция симметрии	Тип взаимодействия	Ε
1	−1+x, <i>y</i> , <i>z</i>	$NO_2 \cdots \sigma^*$	-3.2	7	1-x, -y, 1-z	$NO_2 \cdots NO_2$	-1.3
2	1+ <i>x</i> , <i>y</i> , <i>z</i>	$NO_2 \cdots \sigma^*$	-3.2	8	2-x, -y, 1-z	$NO_2 \cdots \pi$	-8.7
3	1.5-x, -1/2+y, 1.5-z	$NO_2 \cdots Cl$	-2.8	9	2- <i>x</i> , - <i>y</i> , 2- <i>z</i>	С=О…π, С-Н…О=С	-9.9
4	1.5– <i>x</i> , 1/2+ <i>y</i> , 1.5– <i>z</i>	$NO_2 \cdots Cl$	-2.8	10	3– <i>x</i> , – <i>y</i> , 2– <i>z</i>	Вандерваальсовое	-0.8
5	2.5- <i>x</i> , -1/2+ <i>y</i> , 1.5- <i>z</i>	Вандерваальсовое	-1.1	11	x-1/2, -1/2-y, z-1/2	$NO_2 \cdots \pi$, C-H $\cdots O=C$	-6.4
6	2.5- <i>x</i> , 1/2+ <i>y</i> , 1.5- <i>z</i>	Вандерваальсовое	-1.1	12	1/2+x, -1/2-y, 1/2+z	NO₂…π, С-H…O=C	-6.4

Таблица 5. Типы и энергии (*E*, ккал/моль) парных межмолекулярных взаимодействий молекулы A соединения 3 с ее ближайшим окружением в кристалле, рассчитанные в приближении M052X/aug-cc-pvdz*

* Центральная молекула обозначается как M0. Номера ее ближайших соседей (M1, M2 ···) соответствуют номерам строк в первой и пятой колонках.

отсутствуют сильные межмолекулярные взаимодействия (такие, например, как водородные связи О-Н…О или N-H···O). По табл. 4-6 видно, что во всех трех структурах наибольший вклад в стабилизацию кристаллической упаковки вносят взаимодействия с участием карбонильных групп. Однако, на первый взгляд, все три кристаллические упаковки заметно различаются (рис. 2S в файле сопроводительной информации). При этом система построения укороченных контактов в кристаллах достаточно хорошо согласуется с представлениями о типах взаимодействий, обусловленных имеющимися в молекулах функциональными группами (NO₂, Hal, C=O). Следует ожидать, что атом фтора будет образовывать или галогеновую связь F···F по типу 1¹⁸ ("нетипичная" галогеновая связь, о классификации типов галогеновых связей¹⁹), или взаимодействовать с π^* -орбиталями нитрогрупп и/или π -сопряженного фрагмента гетероцикла.^{6,20} Атом брома обычно образует галогеновую связь по типу 2 ("истинную" галогеновую связь) с достаточно сильным нуклеофильным сайтом молекулы,²¹ и эта способность, как отмечено выше, усиливается благодаря акцепторному влиянию нитрогрупп. Атом Cl занимает промежуточное положение.^{14b,22} Уместно провести аналогию с правилом образования водородных связей, согласно которому наиболее сильный протонодонор предпочитает взаимодействовать с наиболее сильным протоноакцептором.²³ Другими словами, орбиталь, способная принимать электроны, будет стремиться взаимодействовать с орбиталью, характеризующейся близкой способностью отдавать электроны. Безусловно, вследствие конкуренции межмолекулярных взаимодействий данное правило может до некоторой степени нарушаться,²⁴ однако его следует воспринимать как отправную точку при анализе упаковки.

Действительно, поведение атомов галогена в кристаллах соединений 2–4 достаточно хорошо согласуется с указанными выше правилами. Так, в структуре фторпроизводного наблюдается галогеновая связь F1…F1' типа 1 между парой молекул M0…M7 (M0'…M6') (строки 7 и 6', табл. 4) с расстоянием между атомами фтора, равным 2.725 Å, тогда как сумма вандерваальсовых радиусов равна 2.92 Å.²⁵ Атомы брома обеих независимых молекул соединения 4 образуют относительно прочную галогеновую связь Br…O=C с наиболее сильным нуклеофильным сайтом – атомом кислорода карбонильной группы в димерах M0'…M3',

Таблица 6. Типы и энергии (*E*, ккал/моль) парных межмолекулярных взаимодействий молекул A и A' соединения 4 с их ближайшим окружением в кристалле, рассчитанные в приближении M052X/aug-cc-pvdz*

Моле- кула	Молеку- лярная пара	Операция симметрии	Тип взаимодействия	Ε	Моле- кула	Молеку- лярная пара	Операция симметрии	Тип взаимодействия	Ε
		Молекул	па А		Молекула А'				
1	A…A	1-x, -1/2+y, 1.5-z	$C=O\cdots NO_2$	-2.5	1'	$A^{\prime} \cdots A^{\prime}$	-1/2+x, 1/2-y, 1-z	$C-H\cdots O_2N$, $NO_2\cdots NO_2$	-5.1
2	A…A	1-x, 1/2+y, 1.5-z	$C=O\cdots NO_2$	-2.5	2'	A'…A'	1/2+x, 1/2-y, 1-z	$C-H\cdots O_2N$, $NO_2\cdots NO_2$	-5.1
3	A…A	-1/2+x, y, 1.5-z	$NO_2 \cdots \pi$, C=O $\cdots NO_2$	-5.4	3'	A'…A'	1-x, -y, 1-z	Br⋯O	-6.0
4	A…A	1/2+ <i>x</i> , <i>y</i> , 1.5– <i>z</i>	$NO_2 \cdots \pi$, C=O $\cdots NO_2$	-5.4	4'	A'…A'	1-x, 1-y, 1-z	$NO_2 \cdots NO_2$	-0.5
5	A…A	1.5– <i>x</i> , –1/2+ <i>y</i> , <i>z</i>	С=О…NO ₂ , С−H…O=C	-2.2	5'	A'…A	1.5– <i>x</i> , –1/2+ <i>y</i> , <i>z</i>	С−Н…О=С	-2.9
6	A…A	1.5– <i>x</i> , 1/2+ <i>y</i> , <i>z</i>	С=О…NO ₂ , С−H…O=C	-2.2	6'	A'…A	1.5– <i>x</i> , 1/2+ <i>y</i> , <i>z</i>	С−Н…О=С	-2.9
7(7')	$A{\cdots}A'$	<i>x</i> , <i>y</i> , <i>z</i>	$C=O\cdots NO_2$	-0.1	7'(7)	A'…A	<i>x</i> , <i>y</i> , <i>z</i>	$C=O\cdots NO_2$	-0.1
8(8')	$A{\cdots}A'$	1.5– <i>x</i> , – <i>y</i> , 1/2+ <i>z</i>	С-Н…О=С	-3.4	8'(8)	A'…A	1.5-x, -y, -1/2+z	С−Н…О=С	-3.4
9(9')	$A{\cdots}A'$	-1/2+ <i>x</i> , 1/2- <i>y</i> , 1- <i>z</i>	Br⋯O	-3.7	9'(9)	A'…A	1/2+x, 1/2-y, 1-z	Br…O	-3.7
10(10')	$A{\cdots}A'$	1/2+x, 1/2-y, 1-z	$C-H\cdots O_2N$	-3.1	10'(10)	A'…A	-1/2+x, 1/2-y, 1-z	$C-H\cdots O_2N$	-3.1
11(11')	$A{\cdots}A'$	1-x, -y, 1-z	С−Н…О=С	-5.7	11'(11)	A'…A	1– <i>x</i> , – <i>y</i> , 1– <i>z</i>	С−Н…О=С	-5.7
12(12')	$A{\cdots}A'$	x, 1/2–y, 1/2+z	$NO_2 \cdots \pi$	-5.7	12'(12)	A'…A	x, 1/2–y, –1/2+z	$NO_2 \cdots \pi$	-5.7
13(13')	A···A'	1.5– <i>x</i> , –1/2+ <i>y</i> , <i>z</i>	Вандерваальсовое	-3.4	13'(13)	A'…A	1.5– <i>x</i> , 1/2+ <i>y</i> , <i>z</i>	Вандерваальсовое	-3.4

* См. примечание к табл. 4.

М0····М9 (М0'····М9') (строки 3', 9 и 9', табл. 6). Атом Cl молекулы **3** взаимодействует с более слабым донором НЭП – атомом кислорода нитрогруппы Cl····O₂N при образовании димеров М0····M3, М0····M4 (строки 3 и 4, табл. 5). Эти отличия в "предпочтениях" разных атомов галогена определяют различия, наблюдаемые в кристаллических структурах соединений **2–4**.

В структуре бромпроизводного 4 молекулярная пара М0'…М3', связанная галогеновой связью, наиболее энергетически выгодна (строка 3', табл. 6). В структурах соединений 2 и 3 межмолекулярные взаимодействия с участием атомов галогена существенно более слабые (строки 7 и 6', табл. 4; строки 3 и 4, табл. 5). В этих структурах основную роль играют контакты С-Н...О и О... с участием карбонильных атомов кислорода. В двух симметрично независимых молекулах соединения 2 три из четырех карбонильных атомов кислорода участвуют одновременно в двух относительно прочных межмолекулярных взаимодействиях: С-Н…О и О…π (строки 2, 8, 9, 11, 2' и 3' в табл. 4). В кристалле соединения 3 атом O(1) образует две, а атом О(2) одну такую связь (строки 9 и 11 в табл. 5). При этом, благодаря подходящей конформации молекул, в кристаллах соединений 2 и 3 образуются одинаковые центросимметричные димеры (M0'····M3' в кристалле соединения 2, строка 3', табл. 4; М0…М9 в кристалле соединения 3, строка 9, табл. 5), в которых карбонильный атом кислорода одновременно вовлечен во взаимодействия С-Н...О и О....... Такой димер оказывается наиболее энергетически выгодным в обеих структурах (см. также табл. 1S, 2S в файле сопроводительной информации), в отличие от структуры соединения 4, в которой аналогичный димер не образуется вовсе.

Общность и различие упаковок также видны при сравнении димеров $M0\cdots M9$ (соединение 2, табл. 4), $M0\cdots M12$ (соединение 3, табл. 5) и $M0\cdots M4$ (соединение 4, табл. 6). Во всех случаях реализуется взаимодействие $O\cdots \pi$. В соединениях 2 и 3 димеры дополнительно стабилизированы водородными связями. Для димера соединения 4 такой стабилизации не наблю-

дается, тогда как имеется взаимодействие О····О между карбонильной группой и нитрогуппой. При этом взаимная ориентация молекул в этих трех димерах различается. На рис. 2 для визуализации сравнительного анализа мы представили схему наложения димера М0···М9 соединения **2** на димер М0···М12 соединения **3**.

По рис. 2 видно, что контакт О $\cdots \pi$ в этих димерах практически одинаковый (молекулы M9 и M12 димеров, образующих контакт О $\cdots \pi$ со своими соседями M0, приблизительно связаны осью 2 порядка, проходящей через центр связи N(1)–C(1) молекул M0 и центральную точку между атомами C(6) молекул M9 и M12), что подчеркивает общность взаимодействия. Однако за счет дополнительной стабилизации различными контактами C–H \cdots O взаимная ориентация молекул в димерах разная. Несколько бо́льшие отличия демонстрируют аналогичные схемы наложения димеров соединения 2 на 3 и 3 на 4 (рис. 3S в файле сопроводительной информации).

Таким образом, на примере синтезированных 1-галоген-1,1-динитроэтильных производных, различающихся типом галогена, с использованием методов рентгеноструктурного анализа и квантовой химии удалось показать сходства и различия их кристаллической упаковки. Показано, что с увеличением порядкового номера галогена, вследствие одновременного увеличения склонности к образованию "истинных" галогеновых связей, уменьшается роль взаимодействий С=О… и С-H…O=С в кристаллической структуре.

Тот факт, что при сохранении общности типов межмолекулярных контактов геометрия димеров разная, подчеркивает лабильность межмолекулярных взаимодействий. Рассматриваемые молекулы имеют практически по всему контуру гетероатомы, способные к образованию множественных слабых невалентных взаимодействий, что позволяет им оптимально упаковаться в кристалле. Это отмечалось нами и ранее при анализе кристаллических упаковок полиазотистых соединений, таких как азофуразановые макроциклы^{12b} и полинитросоединения,⁶ где также отсутствовали прочные межмолекулярные взаимодействия. Эта особен-

Рисунок 2. Общий вид (*a*) димеров М0····М12 соединения **3** и (*b*) М0····М9 соединения **2** и (*c*) схема их наложения. При наложении совмещали молекулы М0 обоих димеров (атомы димера соединения **3** показаны пунктиром, а связи – светлыми линиями). Приблизительная ось симметрии 2 порядка показана вертикальной пунктирной чертой.

ность, по-видимому, характерна для полиазотистых соединений и обусловливает их высокие плотности упаковки.

Экспериментальная часть

ИК спектры зарегистрированы на приборе Bruker Alpha в таблетках КВг. Спектры ЯМР ¹H, ¹³C, ¹⁹F и ¹⁴N зарегистрированы на приборе Bruker AM-300 (300, 75, 282 и 22 МГц соответственно) в CDCl₃ при 299 К. Внутренние стандарты: ТМС (для ядер 1 H и $^{\overline{13}}$ C), CCl₃F (для ядер 19 F) и MeNO₂ (для ядер 14 N). Элементный анализ выполнен на приборе PerkinElmer Series II 2400. Температуры плавления определены в плавильном блоке Gallenkamp (скорость нагрева 4°/мин) и не исправлены. Контроль за ходом реакций и чистотой полученных соединений осуществлен методом ТСХ на пластинах MerckSilicagel 60 F₂₅₄. Исходная калиевая соль *N*-(2,2-динитроэтил)пирролидин-2,5-диона (1)получена по литературной методике.⁷

N-(2,2-Динитро-2-фторэтил)пирролидин-2,5-дион (2). К суспензии 0.44 г (1.72 ммоль) калиевой соли 1,1-динитро-2-сукцинимидоэтана (1) в 15 мл MeCN при ~45 °C небольшими порциями добавляют 0.30 г (1.77 ммоль) XeF₂. Реакционную смесь выдерживают при 45-50 °С в течение 2 ч, осадок КF отфильтровывают, промывают 10 мл CH₂Cl₂. Желто-оранжевый фильтрат упаривают, твердый остаток растворяют в 20 мл CH₂Cl₂ и фильтруют через небольшой слой силикагеля. Фильтрат упаривают, остаток перекристаллизовывают из CCl₄. Выход 0.28 г (70%), бесцветное ватообразное вещество. т. пл. 116–117 °С. ИК спектр, v, см⁻¹: 3006, 2959, 1784, 1725, 1711, 1609, 1398, 1342, 1316, 1288, 1183, 1097, 1042, 1010, 962, 871, 848, 824, 805, 659, 619, 598. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.88 (4H, с, CH₂CH₂); 4.86 (2H, д, ${}^{3}J_{\rm HF}$ = 14.2, NCH₂). Спектр ЯМР 13 С, δ , м. д. (*J*, Гц): 28.1 (CH₂CH₂); 39.3 (д, ²*J*_{CF} = 18.6, NCH₂); 117.5 $(д, {}^{1}J_{CF} = 291.0, C(NO_{2})_{2}F); 175.1 (C=O). Спектр ЯМР {}^{19}F,$ δ, м. д.: -107.2. Спектр ЯМР ¹⁴N, δ, м. д.: -22.9 (NO₂). Найдено, %: С 30.71; Н 2.61; N 17.79. С₆Н₆FN₃O₆. Вычислено, %: C 30.65; H 2.57; N 17.87.

N-(2,2-Динитро-2-хлорэтил)пирролидин-2,5-дион (3). Через охлажденную до 5 °С желтую суспензию 0.47 г (1.84 ммоль) калиевой соли 1.1-линитро-2-сукцинимидоэтана (1) в 30 мл Et₂O пропускают избыток хлора в течение 15–30 мин, при этом происходит постепенное обесцвечивание осадка. Реакционную смесь оставляют при комнатной температуре на ночь. Осадок KCl отфильтровывают, промывают 15 мл Et₂O. Объединенный фильтрат упаривают, твердый остаток растворяют в 30 мл CH₂Cl₂ и фильтруют через небольшой слой силикагеля. Раствор упаривают, остаток перекристаллизовывают из CCl₄. Выход 0.29 г (63%), светложелтые кристаллы, т. пл. 126–127 °С. ИК спектр, v, см⁻¹: 3001, 2952, 2898, 1789, 1729, 1717, 1605, 1583, 1411, 1403, 1334, 1309, 1180, 1174, 1112, 1082, 1006, 962, 933, 851, 820, 778, 713, 665, 632, 613, 586. Спектр ЯМР ¹Н, δ, м. д.: 2.86 (4H, с, CH₂CH₂); 4.93 (2H, с, NCH₂). Спектр ЯМР ¹³С, б, м. д.: 28.0 (CH₂CH₂); 44.1 (NCH₂); 118.8 (С(NO₂)₂Cl); 175.4 (С=О). Спектр ЯМР ¹⁴N, б, м. д.: -19.0 (NO₂). Найдено, %: С 28.73; Н 2.38; N 16.62. С₆H₆ClN₃O₆. Вычислено, %: С 28.65; Н 2.40; N 16.70.

N-(2-Бром-2,2-динитроэтил)пирролидин-2,5-дион (4). К желтой суспензии 0.5 г (2 ммоль) калиевой соли 1,1-динитро-2-сукцинимидоэтана (1) в 32 мл Et₂O в при 0 °С добавляют раствор 0.64 г (2 ммоль) Вr₂ в 5 мл CH₂Cl₂. Реакционную смесь, цвет которой стал оранжевым, перемешивают в течение 2 ч при комнатной температуре. Осадок КВг отфильтровывают, промывают 5 мл CH₂Cl₂. Объединенный оранжевый фильтрат упаривают, твердый остаток растворяют в 30 мл CH₂Cl₂ и фильтруют через небольшой слой силикагеля. Раствор упаривают, остаток перекристаллизовывают из CCl₄. Выход 0.45 г (77%), бесцветные кристаллы, т. пл. 110–111 °С. ИК спектр, v, см⁻¹: 2991, 2950, 2897, 1788, 1732, 1714, 1593, 1410, 1393, 1331, 1324, 1309, 1261, 1175, 1081, 1008, 950, 926, 846, 817, 669, 616, 579. Спектр ЯМР ¹H, δ, м. д.: 2.83 (4H, c, CH₂CH₂); 4.92 (2H, c, NCH₂). Спектр ЯМР ¹³С, δ, м. д.: 28.0 (CH₂CH₂); 45.2 (NCH₂); 113.1 (С(NO₂)₂Br); 175.3 (С=О). Спектр ЯМР ¹⁴N, δ, м. д.: -19.8 (NO₂). Найдено, %: С 24.40; Н 2.01; N 14.13. С₆Н₆BrN₃O₆. Вычислено, %: С 24.34; Н 2.04; N 14.19.

Рентгеноструктурный анализ соединений 2–4 проведен на дифрактометре APEX II ССD (λ (Мо $K\alpha$) 0.71073 Å, графитовый монохроматор, ω -сканирование) при 100 К. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном приближении для неводородных атомов по F^2_{hkl} . Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездник". Для расшифровки и уточнения структур использована программа SHELXTL.²⁶ Кристаллографические данные структур 2–4 депонированы в Кембриджском банке структурных данных (депоненты ССDС 1517661, ССDС 1517662, ССDС 1517663 соответственно). Основные кристаллоструктурные параметры приведены в табл. 4S в файле сопроводительной информации.

Файл сопроводительной информации, содержащий данные квантово-химических расчетов, а также кристаллографические данные соединений 2–4, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена при финансовой поддержке Российского научного фонда (проект РНФ 16-13-10404).

Список литературы

- (a) Shvekhgeimer, G. A.; Smirnyagin, V. A.; Sadykov, R. A.; Novikov, S. S. Russ. Chem. Rev. **1968**, *37*, 351. [Vcnexu xumuu **1968**, *37*, 816.] (b) Fridman, A. L.; Surkov, V. D.; Novikov, S. S. Russ. Chem. Rev. **1980**, *49*, 1068. [Vcnexu xumuu **1980**, *49*, 2159.]
- (a) Martynov, I. V.; Yurtanov, A. I. Russ. Chem. Rev. 1989, 58, 848. [Vcnexu xumuu 1989, 58, 1474.] (b) Kaberdin, R. V.; Potkin, V. I.; Zapol'skii, V. A. Russ. Chem. Rev. 1997, 66, 827. [Vcnexu xumuu 1997, 66, 919.] (c) Ibis, C.; Tuyun, A. F. Curr. Org. Synth. 2011, 8, 861.
- (a) Shvekhgeimer, M.-G. A. Russ. Chem. Rev. 1998, 67, 35. [Vcnexu xumu 1998, 67, 39.] (b) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561.

- 4. Allen, F. H. Acta Crystallogr., Sect. B: Struct. Sci. 2002, B58, 380.
- (a) Fedorov, B. S.; Golovina, N. I.; Barinova, L. S.; Arakcheeva, V. V.; Trofimova, R. F.; Atovmyan, L. O. Bull. Acad. Sci. USSR, Div. Chem Sci. 1991, 40, 2081. [*M36. AH* CCCP, Cep. xum. 1991, 2372.] (b) Fedorov, B. S.; Golovina, N. I.; Arakcheeva, V. V.; Barinova, L. S.; Trofimova, R. F.; Galkin, P. V.; Atovmyan, L. O. Bull. Acad. Sci. USSR, Div. Chem Sci. 1992, 41, 522. [*M36. AH CCCP, Cep. xum.* 1992, 664.]
- (a) Dalinger, I. L.; Vatsadze, I. A.; Shkineva, T. K.; Kormanov, A. V.; Struchkova, M. I.; Suponitsky, K. Yu.; Bragin, A. A.; Monogarov, K. A.; Sinditskii, V. P.; Sheremetev, A. B. *Chem.-Asian J.* 2015, *10*, 1987.
 (b) Dalinger, I. L.; Shakhnes, A. Kh.; Monogarov, K. A.; Suponitsky, K. Yu.; Sheremetev, A. B. *Mendeleev Commun.* 2015, *25*, 429. (c) Gidaspov, A. A.; Zalomlenkov, V. A.; Bakharev, V. V.; Parfenov, V. E.; Yurtaev, E. V.; Struchkova, M. I.; Palysaeva, N. V.; Suponitsky, K. Yu.; Lempert, D. B.; Sheremetev, A. B. *RSC Adv.* 2016, *6*, 34921.
 (d) Sheremetev, A. B.; Korolev, V. L.; Potemkin, A. A.; Aleksandrova, N. S.; Palysaeva, N. V.; Hoang, T. H.; Sinditskii, V. P.; Suponitsky, K. Yu. *Asian J. Org. Chem.* 2016, *5*, 1388. (e) Gidaspov, A. A.; Bakharev, V. V.; Suponitsky, K. Yu.; Nikitin, V. G.; Sheremetev, A. B. *RSC Adv.* 2016, *6*, 104325.
- 7. Багал, Л. И.; Колдобский, Г. И.; Герасимова, Е. С. *Журн.* орган. химии **1969**, *5*, 1582.
- (а) Целинский, И. В.; Мельников, А. А.; Варягина, Л. Г.; Трубицин, А. Е. *Журн. орган. химии* **1985**, *21*, 2490.
 (b) Целинский, И. В.; Мельников, А. А.; Трубицин, А. Е. *Журн. орган. химии* **1990**, *26*, 272.
 (c) Трубицин, А. Е.; Мельников, А. А.; Целинский, И. В.; Попов, А. М. *Журн. орган. химии* **1990**, *26*, 2007.
 (d) Lukýanov, О. А.; Pokhvisneva, G. V.; Ternikova, T. V.; Shlykova, N. I.; Shagaeva, M. E. Russ. Chem. Bull., Int. Ed. **2011**, *60*, 1703. [*Изв. АН, Сер. хим.* **2011**, 1678.]
- (а) Целинский, И. В.; Шохор, И. Н.; Багал, Л. И. Журн. орган. химии 1994, 30, 983. (b) Gidaspov, А. А.; Bakharev, V. V.; Fedorov, B. S.; Fadeev, М. А.; Konovalova, N. P. Russ. J. Appl. Chem. 2009, 82, 1816. [Журн. прикл. химии 2009, 82, 1664.] (c) Luk'yanov, O. А.; Parakhin, V. V. Russ. Chem. Bull., Int. Ed. 2012, 61, 1582. [Изв. АН, Сер. хим. 2012, 1566.]
- (a) Андреев, Л. М.; Перекалин, В. В.; Алтухов, К. В. *Журн. орган. химии* **1980**, *16*, 2445. (b) Gidaspov, А. А.; Bakharev, V. V.; Kachanovskaya, E. V.; Kosareva, E. A.; Galkina, M. V.; Ekimova, E. V.; Yakunina, N. G.; Bulychev, Yu. N. *Pharm. Chem. J.* **2004**, *38*, 411. [*Xим.фарм. журн.* **2004**, *38*(8), 9.] (c) Bakharev, V. V.; Gidaspov, A. A.; Golovin, E. V. *Russ. J. Gen. Chem.* **2007**, *77*, 1426. [*Журн. общей химии* **2007**, *77*, 1349.]
- 11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Kudin, K. N., Jr.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;

Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, *Revision E.01*; Gaussian, Inc.: Wallingford, 2004.

- (a) Suponitsky, K. Yu.; Lyssenko, K. A.; Antipin, M. Yu.; Aleksandrova, N. S.; Sheremetev, A. B.; Novikova, T. S. *Russ. Chem. Bull., Int. Ed.* 2009, 58, 2129. [Изв. АН, Сер. хим. 2009, 2065.] (b) Suponitsky, K. Yu.; Lyssenko, K. A.; Ananyev, I. V.; Kozeev, A. M.; Sheremetev, A. B. Cryst. Growth Des. 2014, 14, 4439. (c) Sheremetev, A. B.; Yudin, I. L.; Palysaeva, N. V.; Suponitsky, K. Yu. J. Heterocycl. Chem. 2012, 49, 394. (d) Dalinger, I. L.; Vatsadze, I. A.; Shkineva, T. K.; Kormanov, A. V.; Kozeev, A. M.; Averkiev, B. B.; Dalinger, A. I.; Beklemishev, M. K.; Sheremetev, A. B. Chem. Heterocycl. Compd. 2015, 51, 545. [Химия гетероцикл. соединений 2015, 51, 545.]
- (a) Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 289. (b) Šponer, J.; Riley, K. E.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2595. (c) Suponitsky, K. Yu.; Masunov, A. E.; Antipin, M. Yu., Mendeleev. Commun. 2009, 19, 311.
- (a) Riley, K. E.; Murray, J. S.; Fanfrlík, J.; Rezáč, J.; Solá, R. J.; Concha, M. C.; Ramos, F. M.; Politzer, P. *J. Mol. Model.* **2011**, *17*, 3309. (b) Suponitsky, K. Yu.; Burakov, N. I.; Kanibolotsky, A. L.; Mikhailov, V. A. *J. Phys. Chem. A* **2016**, *120*, 4179.
- (a) Klapötke, T. M.; Krumm, B.; Moll, R. *Chem.-Eur. J.* **2013**, *19*, 12113. (b) Kettner, M. A.; Karaghiosoff, K.; Klapötke, T. M.; Sućeska, M.; Wunder, S. *Chem.-Eur. J.* **2014**, *20*, 7622. (c) Vo, T. T.; Zhang, J.; Parrish, D. A.; Twamley, B.; Shreeve, J. M. *J. Am. Chem. Soc.* **2013**, *135*, 11787. (d) Tang, Y.; Gao, H.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. *RSC Adv.* **2016**, *6*, 91477. (e) Chaves, D. E.; Parrish, D. A.; Mitchell, L. *Angew. Chem., Int. Ed.* **2016**, *55*, 8666.
- (a) Bader, R. F. W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, 1990. (b) Keith, T. A. AIMAII, Version 14.11.23; TK Gristmill Software: Overland Park, 2014.
- 17. (a) Shishkin, O. V.; Dyakonenko, V. V.; Maleev, A. V. CrystEngComm 2012, 14, 1795. (b) Sheremetev, A. B.; Zabusov, S. G.; Tukhbatshin, T. R.; Palysaeva, N. V.; Suponitsky, K. Yu. Chem. Heterocycl. Compd. 2014, 50, 1154. [Химия гетероцикл. соединений 2014, 1250.] (c) Sheremetev, A. B.; Lyalin, B. V.; Kozeev, A. M.; Palysaeva, N. V.; Struchkova, M. I.; Suponitsky, K. Yu. RSC Adv. 2015, 5, 37617.
- Nayak, S. K.; Reddy, M. K.; Row, T. N. G.; Chopra, D. Cryst. Growth Des. 2011, 11, 1578.
- Bui, T. T. T.; Dahaoui, S.; Lecomte, C.; Desiraju, G. R.; Espinosa, E. Angew. Chem., Int. Ed. 2009, 48, 3838.
- (a) Klapötke, T. M.; Krumm, B.; Moll, R.; Rest, S. F.; Vishnevskiy, Yu. V.; Reuter, C.; Stammler, H.-G.; Mitzel, N. W. *Chem.-Eur. J.* **2014**, *20*, 12962. (b) Karnoukhova, V. A.; Fedyanin, I. V.; Lyssenko, K. A. *Struct. Chem.* **2016**, 27, 17.
- (a) Nayak, S. K.; Terraneo, G.; Forni, A.; Metrangolo, P.; Resnati, G. *CrystEngComm* **2012**, *14*, 4259. (b) Jones, R. H.; Knight, K. S.; Marshall, W. G.; Coles, S. J.; Horton, P. N.; Pitak, M. B. *CrystEngComm*. **2013**, *15*, 8572.
- 22. Destro, R.; Sartirana, E.; Loconte, L.; Soave, R.; Colombo, P.; Destro, C.; Presti, L. L. *Cryst. Growth Des.* **2013**, *13*, 4571.
- 23. (a) Etter, M. C. Acc. Chem. Res. 1990, 23, 120. (b) Etter, M. C. J. Phys. Chem. 1991, 95, 4601.
- (a) Griffith, D. M.; Szőcs, B.; Keogh, T.; Suponitsky, K. Yu.; Farkas, E.; Buglyó, P.; Marmion, C. J. J. Inorg. Biochem.
 2011, 105, 763. (b) Kosenko, I.; Lobanova, I.; Ananyev, I.; Laskova, J.; Semioshkin, A.; Bregadze, V. J. Organomet. Chem. 2016, 818, 58.
- 25. Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384.
- 26. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.