

Химия гетероциклических соединений 2017, 53(6/7), 682-692

Синтез энергоемких триазол- и тетразолсодержащих олигомеров и полимеров

Валерий Н. Кижняев¹*, Татьяна В. Голобокова¹, Федор А. Покатилов¹, Леонтий И. Верещагин¹, Яков И. Эстрин²

¹ Иркутский государственный университет,

ул. Карла Маркса, 1, Иркутск 664003, Россия; e-mail: kizhnyaev@chem.isu.ru

² Институт проблем химической физики РАН, пр. Академика Семенова, 1, Черноголовка 142432, Россия e-mail: estriny@icp.ac.r

Поступило 12.01.2017 Принято после доработки 26.05.2017

В обзоре обобщены методы синтеза мономеров, включающих 1,2,3-триазольные и/или тетразольные циклы, и проанализированы примеры использования таких мономеров для формирования полимеров повышенной энергоемкости. Рассмотрены возможности реакций циклоприсоединения, поликонденсации, полимеризации и модификации для получения полиазотистых полимеров.

Ключевые слова: азолсодержащие полимеры, тетразолы, триазолы, линейные полиядерные гетероциклические ансамбли, поликонденсация, циклоприсоединение.

Полиазотистые гетероциклические соединения. благодаря высоким энтальпиям образования, приемлемой чувствительности к механическим воздействиям, повышенной доли азота в продуктах разложения, по праву считаются перспективными энергоемкими ингредиентами рецептур высокоэффективных твердых ракетных топлив, взрывчатых и газогенерирующих составов.¹⁻⁷ Наибольший интерес представляют соединения, включающие триазольные и тетразольные циклы. Сами эти гетероциклы при массовом содержании азота соответственно 61 и 80% характеризуются высокими положительными энтальпиями образования: 236 (кристаллическая фаза) и 327 кДж/моль (газовая фаза) у тетразола и 186 (кристаллическая фаза) и 272 кДж/моль (газовая фаза) у 1,2,3-триазола.⁸⁻¹⁰ Комбинация этих гетероциклов с разнообразными эксплозофорными группами или формирование полиядерных триазоли тетразолсодержащих структур позволяет значительно улучшить энергетические характеристики молекул.¹¹⁻¹⁴ Перспективными компонентами связующих различных энергетических составов являются карбо- и гетероцепные триазол- и тетразолсодержащие полимеры, о чем свидетельствуют многочисленные публикации. Систематические исследования в области синтеза потенциальных высокоэнергоемких азолсодержащих веществ уже много лет ведутся в Национальном исследовательском институте нефте- и углехимического синтеза при Иркутском государственном университете (НИИНУС при ИГУ). В настоящем обзоре представлены результаты последнего десятилетия, освещающие работы лаборатории полимеризационных процессов НИИНУС при ИГУ по синтезу линейных и разветвленных триазол- и тетразолсодержащих полиядерных низкомолекулярных ансамблей, а также полимеров, включающих эти структурные комбинации.

Синтез низкомолекулярных полиазольных ансамблей

В этом разделе рассмотрены основные подходы к синтезу энергоемких полиазотистых соединений, являщихся комбинацией нескольких триазольных и/или тетразольных циклов, связанных короткими мостиковыми фрагментами.

Один из методов синтеза подобных структур основан на реакции алкилирования триазольного или тетразольного прекурсора пропаргилбромидом или хлорацетонитрилом и последующем 1,3-диполярном циклоприсоединении азид-иона или органических азидов к этинильной или нитрильной группе продукта алкилирования. Это позволяет ввести в молекулу дополнительный триазольный или тетразольный цикл.²⁸ Обычно алкилированию подвергаются соли исходных азолов. При этом тип противоиона определяется природой гетероцикла. Так, например, 4-нитро-1,2,3-триазол (1) в реакции с бромистым пропаргилом использовали в виде калиевой соли (схема 1). Реакцию проводили в этаноле при температуре кипения растворителя в течение 3 ч. Нитрогруппа ориентирует алкильный заместитель в положениях N-1 и N-2 цикла с преобладанием N-1-изомера.²⁹ Суммарный выход смеси изомеров **2а,b** составил 63%. Полученная смесь изомеров была разделена дробной кристаллизацией из этанола.

Схема 1

Для пропаргилирования 5-фенилтетразола (3) использовали более мягкое основание, триэтиламин (схема 2), так как КОН приводит к осмолению реакционной смеси. Успешному протеканию алкилирования способствует использование в качестве реакционной среды ацетона. Продукт выделяют в виде смеси двух изомеров (суммарный выход 76%²⁸), состоящей, по данным спектроскопии ЯМР, из 53% 1-пропаргил-5-фенилтетразола (4а) и 47% 2-пропаргил-5-фенилтетразола (4b). Хроматография на окиси алюминия позволяет выделить в чистом виде только 2-изомер 4b.

Схема 2

Для построения дополнительного гетероцикла пропаргилазолы вводили в реакцию 1,3-диполярного циклоприсоединения с органическими моно- и диазидами. Так, присоединение модельных фенил- и бензилазидов к пропаргилазолам 2 и 4 (используемых в виде смеси региоизомеров) приводит к биядерным ансамблям (схема 3), содержащим два 1,2,3-триазольных цикла (соединение 5) или 1,2,3-триазольный и тетразольный циклы (соединение 6) соответственно.²⁸ Циклоприсоединение проходит селективно, приводя к образованию 1,4-дизамещенных 1,2,3-триазолов 5 и 6.

Схема 3

Использование диазидов в реакции с пропаргилазолами позволяет синтезировать более сложные структуры. Так, в результате неселективного циклоприсоединения бис(азидоэтиловых)эфиров **7а,b** к пропаргилтриазолу **2а** были получены полиядерные соединения **8а,b** (в виде смеси изомеров), включающие четыре 1,2,3-триазольных цикла, связанных мостиковыми группами (схема 4).²⁸

Схема 4

Таким образом, присутствие фрагмента с терминальной ацетиленовой связью в структуре замещенного гетероцикла **2a** позволяет вводить 1,2,3-триазольные циклы посредством взаимодействия с органическими моно- и диазидами. Для дальнейшего наращивания числа гетероциклов в молекуле необходимо иметь дополнительные функциональные группы.

Перспективным строительным блоком является азидоацетонитрил (9).²⁸ Использование его в качестве диполярного агента в реакции циклоприсоединения позволило осуществить синтез полиазольных ансамблей, содержащих терминальную NH-функцию, пригодную для дальнейших модификаций. Например, при реакции азида 9 с пропаргилтетразолом 4b при кипячении в толуоле в течение 5 ч образуется {4-[(5-фенил-2*H*-тетразол-2-ил)метил]-1*H*-1,2,3-триазол-1-ил}ацетонитрил (10). Нитрильная группа соединения 10 затем была вовлечена во взаимодействие с азидом натрия при нагревании (100-105 °C) в ДМФА в течение 4-5 ч (схема 5).²⁸ В результате было синтезировано соединение 11, включающее 1,2,3-триазольный цикл и два тетразольных, один из которых содержал реакционноспособный NH-фрагмент.

Синтезировать би- и полициклические ансамбли, содержащие NH-незамещенный тетразольный цикл, также возможно, начав с алкилирования исходных азолов хлорацетонитрилом или акрилонитрилом. Так, при обработке тетразола **3** в присутствии триэтиламина хлорацетонитрилом (**12**) или акрилонитрилом получены тетразолилацетонитрил **13** и -пропионитрил **14** соответственно (схема 6).²⁸

Как демонстрирует схема 6, цианалкилтетразолы 13 и 14 были использованы для получения биядерных структур 15а и 15b, содержащих терминальный NH-тетразольный цикл. Для этого нитрилы 13 и 14 обрабатывали азидом аммония при нагревании (100–105 °C) в ДМФА в течение 4–5 ч.²⁸ Использование азида аммония, а также азотистоводородных солей аминов обусловлено их большей реакционной способностью по сравнению с азидом натрия (в частности, изза их лучшей растворимости в органических растворителях).

Схема 6

Алкилирование хлорацетонитрилом (12) биазола 17, синтезированного из 4-фенил-2*H*-1,2,3-триазол-2карбонитрила (16) и азида аммония, дает цианметилтетразол 18, который без выделения вводили в реакцию циклоприсоединения с азидом аммония (схема 7). В результате этого однореакторного процесса с выходом 72% получен ансамбль из трех гетероциклов 19, для которого возможна дополнительная модификация по NH-фрагменту.²⁸

Схема 7

Таким образом, наличие в стартовом азоле нитрильных и/или пропаргильных заместителей позволяет получать соединения, включающих несколько различным образом связанных триазольных и тетразольных циклов.

В качестве структурного фрагмента, хорошо влияющего на стабильность, эластичность и ряд других характеристик полимеров, широко используется простая эфирная связь. Поэтому синтезу функционально замещенных азолсодержащих би- и полиядерных систем, сшитых мостиковыми группами, включающими эфирными связи, уделяется повышенное внимание.^{30,31} Получить такие соединения возможно на основе легкодоступных азидо- и цианалкиловых эфиров. Так, например, нитрильные группы эфиров **20** и **21** реагируют при нагревании с азидом аммония, приводя к образованию с невысокими выходами бис(тетразол-5-илметил)ового эфира (**22**) и 2-[2-(тетразол-5-ил)этокси]этил-2-(тетразол-5-ил)этилового эфира (**23**) соответственно (схема 8).^{30,31}

Схема 8

Перспективными прекурсорами для синтеза полиазольных ансамблей по реакциям диполярного присоединения являются бифункциональные соединения, содержащие одновременно азидные и нитрильные или ацетиленовые и нитрильные фрагменты. Эффективной реакцией для синтеза таких прекурсоров является цианэтилирование соответствующих спиртов.³² Так, азидонитрил **24**, получаемый цианэтилированием β-азидоэтанола, присоединяется к фенилацетилену азидогруппой. Образующийся нитрил **25** при нагревании с азидом аммония дает несимметричный этиловый эфир **26**, включающий 1,2,3-триазольный и тетразольный циклы (схема 9).^{30,31}

Схема 9

При реакции пропаргилового спирта с акрилонитрилом в отсутствие растворителя получен соответствующий цианэтиловый эфир **27** (схема 10).^{30,31} Для осуществления этой реакции эффективнее добавлять

акрилонитрил в смесь ацетиленового спирта и щелочи, так как обратный порядок смешения приводит к осмолению. Для синтеза полиазольных ансамблей на основе эфира **27** применяется реакция последовательного диполярного циклоприсоединения азидов к ацетиленовому и нитрильному фрагментам. В частности, присоединение при кипячении в толуоле в течение 5 ч такого гетероциклического азида, как 3-азидо-1,2,4триазол, к тройной связи эфира **27** привело к получению битриазола **28**, содержащего различные триазольные циклы (схема 10).^{30,31} Последующее взаимодействие нитрильной группы соединения **28** с азидом аммония при нагревании (100–105 °C) в ДМФА в течение 4–5 ч приводит к простому эфиру **29**, включающему три азотистых гетероцикла.

В качестве прекурсоров для конструирования неконденсированных политетразольных ансамблей были использованы пер(цианэтиловые) эфиры **30** и **31**, полученные из таких полиолов, как сорбит и пентаэритрит^{30,31} (схема 11). Цианэтиловые эфиры **30** и **31** достаточно хорошо реагируют с азидом аммония в ДМФА при 105 °C с образованием соответствующих пер(тетразолилэтиловых) эфиров **32** и **33**.

Схема 11

Большое содержание азота и, следовательно, увеличение доли безвредного N_2 в продуктах горения подобных целевых веществ, а также возможность модификации соединений **32**, **33** по атому азота цикла (например, для синтеза дендримеров) свидетельствуют о перспективности дальнейших исследований.

Следует также отметить, что в последние два десятилетия для синтеза полиядерных азолов широкое распространение получила клик-реакция – азидалкиновое катализируемое медью циклоприсоединение. Эта реакция также применяется для создания ансамблей азолов. Опубликованы доскональные обзоры о механизме клик-реакции, ^{33–36} а также наблюдается увеличение количества публикаций по ее использованию в целенаправленном синтезе, в частности для получения по-разному связанных в ансамбли гетероциклов, включая триазольный или тетразольный цикл.^{37–40} Это освобождает нас от необходимости рассмотрения этой реакции здесь.

Перспективными прекурсорами для создания полиядерных систем, в том числе и обладающих хорошими энергетическими характеристиками, являются *N*-(оксиран-2-илметил)замещенные 1,2,3-триазол и тетразол. Эти производные проявляют свойства, характерные для α-эпоксисоединений, в частности, склонность к реакциям с N-нуклеофилами, что можно использовать для формирования биазольных систем.^{41,42}

Описано два подхода к формированию эпоксидной группы в боковой цепи азола. Первый, алкилирование NH-незамещенного гетероцикла эпихлоргидрином в присутствии основания.^{43–46} Второй, прямое окисление винильной группы в молекуле винилазола или присоединение к ней бромноватистой кислоты с последующим дегидробромированием промежуточного гетероциклического бромгидрина.⁴⁷ Однако применительно, например, к 5-фенилтетразолу или 4-нитро-1,2,3-триазолу второй подход оказался сложным и неэффективным (очень низкий выход).

Напротив, алкилирование NH-незамещенных тетразола и 1,2,3-триазола эпихлоргидрином весьма эффективно. Так, раскрытие оксиранового цикла с присоединением NH-гетероцикла реализуется при длительном нагревании (~8-12 ч) эквимолярных количеств исходных реагентов в среде полярного апротонного растворителя без добавления катализатора. Как представлено на схеме 12, последующим дегидрохлорированием промежуточных хлоргидринов 34, 35 в среде ацетона в присутствии КОН были синтезированы 2-(оксиран-2-илметил)-1,2,3триазол 36 и 2-(оксиран-2-илметил)тетразол 37 с выходами 80-85%. 41,42 Идентификацию и определение соотношения изомеров осуществляли на основе данных спектроскопии ЯМР¹Н по положению и интенсивности сигнала протона при атоме С-5 нитротриазола 36 и протона при атоме С-2 в фенильном заместителе тетразольного цикла соединения 37. Установлено, что в обоих случаях доминирующим продуктом является именно N-2-изомер.

Эпоксисоединения 36 и 37 обладают свойствами, типичными для этого класса соединений. В частности,

Схема 12

в результате атаки на оксирановый цикл соединения **37** таких слабых N-нуклеофилов, как 3(5)-амино-1,2,4триазол и 5-амино-2-метилтетразол, были получены линейные биазольные ансамбли **38a** и **38b** соответственно (схема 12). При температуре 60–65 °C в среде этанола реакция заканчивается в течение 2–3 ч, приводя к образованию продуктов **38a,b** с выходами 29–41%.^{41,42}

Не только алифатические мостиковые группы представляют интерес для связывания азолов в ансамбли. В качестве мостикового фрагмента могут выступать и гетероароматические циклы. В частности, весьма привлекательными являются производные 1,3,5-триазина, типично обладающие высокой стабильностью. Известно, что на базе триазина синтезирован ряд энергоемких соединений, являющихся перспективными компонентами взрывчатых веществ, твердых ракетных топлив и порохов.¹ Несомненно, потенциальный интерес будут представлять вещества, сочетающие в молекуле 1,3,5-триазиновые и триазольные и/или тетразольные циклы. Наиболее очевилным метолом синтеза таких соединений является реакция азолил-анионов с дешевым и доступным 2,4,6-трихлор-1,3,5-триазином (цианурхлоридом).^{48,49} Было показано, что в результате нуклеофильного замещения всех атомов хлора в цианурхлориде в реакции с 3 моль 5-фенилтетразола, этил-(тетразол-5-ил)ацетата и тетразола в виде триэтиламмониевых солей или в присутствии гидрокарбоната натрия в водно-ацетоновой среде при 15-25 °C образуются трис(азолил)-1,3,5-триазины 39а-с с выходами 18-74% (схема 13). Полученные соединения представляют собой высокоплавкие вешества: соединение 39а плавится при 350 °C, в пламени горелки разлагается со взрывом; соединение 39b при температуре выше 300 °C возгоняется; соединение 39с плавится при 180 °С с разложением.

Нуклеофильное замещение атомов хлора в соединении **40** на азолильные фрагменты, как и в случае

цианурхлорида, легко протекает в присутствии оснований, таких как бикарбонат натрия и триэтиламин. Метоксигруппа в ходе превращения не затрагивается. Так, при реакции соединения **40** с тетразолом, 5-фенилтетразолом, 4-нитро-1,2,3-триазолом и 1,2,4-триазолом в среде ацетона при комнатной температуре легко образуются продукты **41a**–**d** с выходами 33–69% (схема 14).^{48,49}

Синтез триазол- и тетразолсодержащих олигомеров и полимеров

Особым классом полиазольных ансамблей являются полимеры, в которых многократно повторяющийся структурный фрагмент содержит гетероцикл. По положению в макромолекуле гетероцикл может быть как боковым заместителем (или его составной частью), так и фрагментом основной полимерной цепи. Полиазотистые высокомолекулярные соединения, содержащие 1,2,3-триазольные или тетразольные циклы, относятся к энергоемким полимерам.

Одним из наиболее перспективных полимеров является карбоцепной полимер – поли-5-винил-*N*-метилтетразол.^{50–55} На его основе разработаны эффективные связующие для твердых ракетных топлив и некоторых специальных составов. В этой связи представляло интерес синтезировать полимеры с более сложной структурой боковых заместителей при углеводородной цепи, представляющей собой полиазольный ансамбль.

Разработано несколько базирующихся на реакционной способности NH-незамещенных тетразолов методов синтеза карбоцепных полимеров с боковыми полиазольными фрагментами. Первый метод предполагает синтез соответствующих виниловых мономеров и их последующую полимеризацию. Так, схема 15 демонстрирует, как на основе биазольных ансамблей 42а-с, содержащих NH-реакционный центр, посредством реакции винильного обмена с использованием винил-

ацетата и каталитической системы ацетат ртути(II) – трифторуксусная кислота были синтезированы *N*-виниловые (из соединения **42a** – дивиниловый) мономеры **43a–с**. Мономеры представляют собой, по данным спектроскопии ЯМР ¹Н, неразделимую эквимолярную смесь изомерных 1- и 2-винил-5-R-тетразолов **43**. Радикальной полимеризацией под действием динитрила азоизомасляной кислоты (AIBN) из мономеров **43b,с** практически с количественными выходами получены соответствующие полимеры **44b,с**.⁵⁶

Полимеры с боковыми полиядерными фрагментами отличаются от незамещенного поли-1-винилтетразола, образующегося в условиях радикальной полимеризации, более высокими плотностями – 1.43–1.44 г/см³, и более широким набором растворителей (кроме ДМФА и ДМСО растворимы в хлористом метилене и дихлорэтане). Температуры начала разложения полимеров **44b,c** составляют 220 и 230 °C.⁵⁶ 1,4-Бис(*N*-винилтетразол-5-ил)бутановый мономер **43а** использован в качестве сшивающего агента при синтезе сетчатых полимеров.⁵⁷

Реакцию функционализации NH-незамещенного тетразольного цикла алкилгалогенидами или оксиранами, как и описанное выше алкилирование низкомолекулярных полиазольных ансамблей, можно использовать для конструирования боковых полиазотистых фрагментов уже готового полимера. Этот подход был применен для модификации энергоемкого поли-5-винилтетразола (45). В качестве алкилирующих реагентов были использованы хлорметильные производные нитро-1.2.3- и нитро-1,2,4-триазолов, азидо-1,2,4-триазола,⁵⁸ а также эпокситетразол 37 (схема 16). Реакцию алкилирования хлорметильными реагентами проводили в присутствии триэтиламина при эквимолярном соотношении всех компонентов в ДМФА при температуре 60 °C. Модификацию эпокситетразолом осуществляли в ДМФА при 80 °С в отсутствие каких-либо добавок. В результате со степенью алкилирования 80-85% получены полимеры 46a-d, характеризующиеся относительно высокими для полимеров плотностями 1.3-1.5 г/см³. Таким образом, удалось синтезировать полимеры, содержащие в своей структуре, наряду с биазольным ансамблем, эксплозофорные нитро- и азидогруппы.

Реакция алкилирования тетразольного цикла использована при получении разветвленных (привитых) тетразолсодержащих полимеров, основные цепи которых

являются карбоцепным поли-5-винилтетразолом (**45**), а боковые – гетероцепными полиметилентетразольными цепочками. Последний структурный фрагмент формируется при гомополиконденсации 5-хлорметилтетразола (**47**) в присутствии триэтиламина (схема 17).⁵⁹ Эту реакцию можно классифицировать еще и как полиалкилирование, где роль алкилирующего агента и субстрата выполняет замещенный тетразол **47**.

Схема 17

$$\underset{\mathsf{M}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}{\underset{\mathsf{M}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}{\underset{\mathsf{N}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}{\underset{\mathsf{N}}{\overset{\mathsf{N}}{\underset{\mathsf{N}}{\atop\mathsf{N}}{\underset{\mathsf{N}}{\atop\mathsf{N}}}}}}}}}}}}}}}}}}} } }$$

Если поликонденсацию 5-хлорметилтетразола (47) проводить в растворе ДМФА, в котором предварительно растворен карбоцепной поли-5-винилтетразол (45), содержащий в качестве боковых фрагментов NH-незамещенные тетразольные циклы, то продуктом реакции будет разветвленный привитой сополимер 48 (схема 18).⁵⁹ При оптимальных условиях осуществления реакции прививочной поликонденсации (ДМФА, эквимолярное количество триэтиламина, соотношение поли-5-винилтетразол (45) : 5-хлорметилтетразол (47) = 1:10, 60 °C, 24 ч) средняя степень полимеризации боковых полиметилентетразольных цепей составляет 18–20, число мономерных звеньев

поли-5-винилтетразола (45) между узлами ветвления достигает двух.

Привитой полимер 48 – порошкообразный продукт с плотностью до 1.7 г/см³, что существенно выше, чем у гомополимеров поли-5-винилтетразола (45) (1.4 г/см³) и полиметилентетразола (1.2 г/см³).⁵⁹ Термическая стабильность привитого полимера 48 (т. разл. 230 °C) лежит в пределах, типичных для тетразолсодержащих полимеров. Растворителями для привитого полимера 48 являются ДМФА, ДМСО, H₂SO₄, HClO₄ и водные растворы LiCIO₄ и NH₄SCN с концентрациями выше 3.5 и 4.5 моль/л соответственно. Учитывая большое содержание азота (до 68%) и высокую плотность модифицированного полимера, получаемого прививочной поликонденсацией 5-хлорметилтетразола (47) с поли-5-винилтетразолом (45), можно его отнести к перспективным высокомолекулярным компонентам различных энергетических и газогенерирующих составов.

В целом поликонденсационный подход, а именно реакция полиалкилирования, открывает широкие возможности в синтезе тетразолсодержаших полимеров различного строения, включая соединения с высокими энергетическими характеристиками. Варьирование структуры реагентов, NH-незамещенных полиазольных мономеров и алкилирующих агентов позволяет получать линейные, звездообразные и гиперразветвленные гетероцепные полимеры. Звездообразные продукты 51-54 получены с выходами 70-80% (схема 19). Их строение подтверждено спектроскопией ЯМР, элементным анализом и потенциометрическим титрованием. Оценка молекулярно-массовых характеристик звездообразных политетразолов 51-54 вискозиметрическим методом и методом гель-проникающей хроматографии указывает на их олигомерную природу (табл. 1). Средняя длина одного луча полиалкилентетразольной цепи для образцов 51-54 составляет 7-8 метилентетразольных звеньев, что приблизительно в 2-3 раза меньше

Таблица 1. Характеристики звездообразных полимеров 51-54*

Полимер	[η], дл/г	M _n	$M_{ m w}$	MMP	<i>d</i> , г/см ³	Т. тек., °С	Т. разл., °С
51	0.08	5800	11500	2.0	1.30	137	195
52	0.07	6700	13200	2.0	1.45	135	230
53	0.07	5300	12900	2.4	1.38	125	220
54	0.06	4200	13500	3.2	1.41	125	215

* Принятые обозначения: [η] – характеристическая вязкость в ДМФА при 20 °С, M_n – среднечисловая молекулярная масса, M_w – средневесовая молекулярная масса, ММР – молекулярно-массовое распределение (M_w/M_n), d – плотность, Т. тек. – температура текучести, Т. разл. – температура начала разложения.

степени полимеризации линейного полиметилентетразола, получаемого гомополиконденсацией соединения 47. Для синтезированных звездообразных политетразолов характерен унимодальный вид кривых молекулярно-массового распределения (ММР), что указывает на отсутствие примесей, отличающихся от основной фракции по молекулярным массам.

Реакцией гетерополиконденсации были получены гиперразветвленные высокомолекулярные соединения, содержащие в своей структуре тетразольные и, в некоторых случаях, фуразановые циклы.⁶⁰ Для этого в качестве одного из реагентов использовали трехфункциональный тетразолсодержащий мономер **49**, в качестве второго сомономера – бифункциональные соединения – дибромалканы или 3,4-ди(хлорметил)фуразаны **55а–d** (Схема 20). Поликонденсацию проводили в ДМФА с добавлением эквимолярного по отношению к тетразольным фрагментам количества триэтиламина при 60 °C. Подобное сочетание трех- и бифункциональных сомономеров в итоге приводит к формированию гиперразветвленных политетразолов **56а–d**.

Как и звездообразные, гиперразветвленные политетразолы **56а-d** получены с высокими выходами (80-

Таблица 2. Характеристики гиперразветвленных полимеров 56*

Полимер	[η] в ДМФА при 20 °С, дл/г	$M_{ m n}$	$M_{ m w}$	MMP	Содержание фракции, %	<i>d</i> , г/см ³	Т. разл., °С
56a	0.04	70900	82400	1.2	89	1.17	190
		4300	9000	2.1	11		
56b	0.08	71300	84500	1.1	79	1.12	190
		1100	5000	1.8	21		
56c	0.13	127500	230900	1.8	25	1.05	195
		55000	58900	1.1	56		
		1900	7800	4.0	19		
56d	0.10	40400	45900	1.1	85	1.23	195
		1900	5200	2.8	15		

* Принятые обозначения: [η] – характеристическая вязкость, *M*_n – среднечисловая молекулярная масса, *M*_w – средневесовая молекулярная масса, MMP – молекулярно-массовое распределение (*M*_w/*M*_n), *d* – плотность, T. разл. – температура начала разложения.

90%). Их строение подтверждено данными элементного анализа и спектроскопии ЯМР. При получении гиперразветвленных политетразолов 56а-d с целью формирования макромолекул с терминальными NH-незамещенными тетразольными фрагментами в конце реакции в систему добавляли избыток тетразолсодержащего сомономера 49, поэтому конечные продукты, по данным элементного анализа, не содержали атомов галогена. Следовательно, можно предположить, что терминальными фрагментами во всех случаях являются NH-незамещенные тетразольные циклы, проявляющие кислотные свойства. Это позволило использовать метод потенциометрического титрования для определения степени генерации ветвления у синтезированных гиперразветвленных политетразолов 56a-d, среднее значение которой во всех случаях составило 4.60

Данные гель-проникающей хроматографии указывают на отсутствие унимодальности в распределении молекулярно-массовых характеристик получаемых полимеров **56а–d** (табл. 2). В образцах гиперразветвленных полимеров, наряду с основной высокомолекулярной фракцией, отличающейся довольно узким молекулярномассовым распределением (1.1–1.2), присутствует небольшая доля низкомолекулярных фракций с гораздо более широким ММР (1.8–4.0). Это свидетельствует о топологической неоднородности получаемых гиперразветвленных полимеров. В то же время образцам политетразолов **56а–d** присуща отличительная особенность гиперразветвленных полимеров, а именно: относительно низкие значения характеристических вязкостей (от 0.04 до 0.13) при относительно высоких средневесовых молекулярных массах от 45000 до 85000 г/моль.

Звездообразные и гиперразветвленные политетразолы - бесцветные или слабоокрашенные порошкообразные вещества. Полимерные соединения звездообразной структуры 51-54 характеризуются гораздо более высокими плотностями (табл. 1), чем полиметилентетразол (1.2 г/см³),⁵⁹ являющийся структурным аналогом лучей в звездообразных полимерах. В случае политетразолов гиперразветвленного строения 56, наоборот, значения их плотностей (табл. 2) уступают аналогичным значениям линейных структурных аналогов цепей ветвления (1.30–1.45 г/см³).⁶⁰ Причем для гиперразветвленных политетразолов схожего строения 56а-с можно наблюдать вполне закономерную тенденцию к снижению плотности с увеличением числа метиленовых групп в использованном для синтеза дигалогеналкана 55а-с.

Некоторые различия между звездообразными политетразолами 51-54 и гиперразветвленными политетразолами 56a-d проявляются в их реакционной способности при нагревании. Первые, подобно линейному полиметилентетразолу (т. тек. 75-80 °С⁵⁹), при температурах 120-135 °C способны переходить в вязкотекучее состояние (табл. 1). В то время как гиперразветвленные полимеры при нагревании разлагаются без плавления. Поведение полученных политетразолов в области температур, сопряженных с их разложением, определяется не типом макромолекулярного строения, а природой тетразолсодержащего полиядерного мономера (табл. 1, 2). Так, температура начала разложения гиперразветвленных политетразолов 56а-d и звездообразного политетразола 51 составляет 190-195 °C, что, вероятно, обусловлено деструкцией присутствующего в структуре этих соединений фрагмента C-NO₂. Основной пик тепловыделения и потери массы приходится на область температур деструкции тетразольного цикла при 220-235 °C, как и для звездообразных политетразолов 52-54 (табл. 1), в которых отсутствует нитрогруппа.

Синтезированные звездообразные полимеры 51–54 и гиперразветвленные полимеры 56а–d растворяются в жидкостях, являющихся типичными растворителями для тетразолсодержащих полимеров: ДМФА, ДМСО, H_2SO_4 , HCOOH, водные растворы солей LiCIO₄ и NH₄SCN.⁵⁶ Указанные политетразолы содержат в своей структуре еще и терминальные NH-незамещенные тетразольные циклы, что способствует проявлению ими свойств полимерных кислот и способности растворяться в водных растворах щелочей вследствие ионизации тетразольных циклов.

Как и продукты модификации карбоцепных поливинилтетразолов **46а–d** и **48**, звездообразные полимеры **51–54** и гиперразветвленные полимеры **56а–d** характеризуются положительными энтальпиями образования и относительно высоким содержанием азота (41–67%), что позволяет рассматривать их в качестве компонентов энергетических систем различного назначения.¹

На схеме 21 представлен еще один метод синтеза тетразолсодержащих полимеров, в котором используются разнообразные гидроксилсодержащие полимерные прекурсоры. Цепочка превращений включает

Схема 21

присоединение акрилонитрила к гидроксигруппам полимера и последующую трансформацию нитрильных групп в тетразольные фрагменты. Например, такой протокол был использован для синтеза тетразолилэтилированной целлюлозы **57**.⁶¹ Степень превращения гидроксильных и нитрильных групп на соответствующих стадиях цианэтилирования и азидирования близка к количественной, что оценено спектральным анализом продукта **57**.

Полимер 57 – бесцветный или желтоватый порошок с плотностью 1.30-1.32 г/см³, который при нагревании разлагается без плавления. Температура начала разложения, лежащая в интервале 200-220 °С, и высокая экзотермичность процесса указывают, что разложение полимера 57 начинается с термической деструкции тетразольных циклов. Производное целлюлозы 57 является NH-кислотой (р $K_0 \sim 5$),⁶¹ то есть его можно рассматривать, как аналог другого производного целлюлозы – карбоксиметилцеллюлозы (КМЦ). С другой стороны, как и нитроцеллюлоза, полимер 57 обладает значительным запасом энергии. Такое сочетание свойств полимера 57 может быть востребовано при использовании его в качестве загущающего компонента водонаполненных взрывчатых композиций (акватолов), где полимер выполняет роль гелеобразующего компонента.⁶² Действительно, аналогично водным растворам натриевых солей КМЦ и поливинилтетразола 45^{63,64} растворы натриевой соли полимера 57 способны к гелеобразованию при добавлении к ним солей хрома(III) (например, сульфата хрома).⁶¹ Учитывая энергетику тетразольного цикла и большое содержание азота, можно ожидать, что полимер 57 будет востребован не только как инертный загуститель в рецептурах акватолов, но и как дополнительный взрывчатый компонент.

Нетрадиционным подходом формирования энергоемких систем с участием тетразолсодержащих высокомолекулярных соединений является так называемое вынужденное смешение полимеров, приводящее к образованию парных полимеров. Парные полимеры (интерполимеры) – системы, построенные из двух (или более) разнородных по химическому строению макромолекул, химически связанных между собой в результате реакций функциональных ("якорных") групп, расположенных в каждой из макромолекул. У тетразолсодержащих полимеров подобными "якорными" группами могут служить его NH-незамещенные тетразольные циклы и, с другой стороны, оксирановые циклы, принадлежащие другому полимеру. В результате реакции между тетразольными и оксирановыми циклами макромолекулярные клубки разнородных полимеров, например полимеров 45 и 58, оказываются связанными мостиковыми группами в единое формирование (схема 22), называемое парным полимером.65 В зависимости от степени сшивки макромолекул образующийся парный полимер может быть растворимым, если связанными между собой оказываются небольшое число макромолекулярных клубков. И, наоборот, в случае формирования единой пространственной сетки, включающей все макромолекулы участников реакции, парный полимер склонен лишь к ограниченному набуханию. В частности, такой подход был предложен для отверждения перспективного связующего энергоемких систем – поли-5-винил-*N*-метилтетразола, содержащего незначительное количество остаточных NH-незамещенных тетразольных фрагментов, реакцией с однотипным тетразольсодержащим полимером с "якорными" оксирановыми циклами.^{66,67} Процесс отверждения такой полимерной системы протекает с технологически приемлемыми скоростями при температурах ниже 100 °C при 2 моль. % содержании остаточных NH-незамещенных тетразольных циклов. Для полного завершения процесса отверждения (вулканизации) требуется от 2 до 4 сут в зависимости от условий проведения реакции.

Схема 22

Таким образом, продемонстрированы синтетические возможности сочетания реакций алкилирования азольных циклов и 1,3-диполярного циклоприсоединения с участием ацетиленовых, нитрильных и азидных прекурсоров при построении 1,2,3-триазол- и тетразолсодержащих полиазольных, олигомерных и полимерных систем. Некоторые из описанных полимеров представляют интерес в качестве компонентов высокоэнергоемких материалов.

Исследование выполнено в рамках базовой части государственного задания в сфере научной деятельности Минобрнауки России (№ 4.5183.2017/8.9)

Список литературы

- 1. Aqrawal, J. P. In *Organic Chemistry of Explozives*; Hodsan, R. D., Eds.; Wiley-VCH: New York, 2007, p. 314.
- 2. Yin, P.; Shreeve, J. M. Adv. Heterocycl. Chem. 2016, 120, 1.
- Lempert, D. B.; Sheremetev, A. B. Chem. Heterocycl. Compd. 2016, 52, 1070. [Химия гетероцикл. соединений 2016, 52, 1070.]
- Vereshchagin, L. I.; Pokatilov, F. A.; Kizhnyaev, V. N. Chem. Heterocycl. Compd. 2008, 42, 3. [Химия гетероцикл. соединений 2008, 3.]
- 5. Островский, В. А.; Колдобский, Г. И. Рос. хим. журн. 1997, 41(2), 84.
- 6. Певзнер, М. С. Рос. хим. журн. **1997**, 41(2), 73.
- Ostrovskii, V. A.; Pevzner, M. S.; Kofman, T. P.; Shcherbinin, M. B.; Tselinskii, I. V. *Targets Heterocycl. Syst.* 1999, *3*, 467.
- Ghule, V. D.; Radhakrishnan, S.; Jadhan, P. M. Struct. Chem. 2011, 22, 775.
- 9. Ostrovskii, V. A.; Koldobskii, G. I.; Trifonov, R. E. Compr. Heterocycl. Chem. III 2008, 6, 257.
- Ostrovskii, V. A.; Popova, E. A.; Trifonov, R. E. Adv. Heterocycl. Chem. 2017, 123, 1.
- Hartdegen, V.; Klapötke, T. M.; Sproll, S. M. Z. Naturforsch. 2009, 64b, 1535.
- 12. Betzler, F. M.; Klapötke, T. M.; Sproll, S. M. Eur. J. Org. Chem. 2013, 509.
- 13. Badgujar, D.; Kulkarni, K.; Sarwade, D.; Kumar, N.; Talawar, M. *Propellants, Explos., Pyrotech.* **2017**, *42*, 106.
- 14. Yin, P.; Shreeve, J. M. Adv. Heterocycl. Chem. 2017, 121, 89.
- 15. Ha, H. X.; Cao, Y. L.; Sun, Z. X. Energ. Mater. Chem. 2007, 15(5), 492.
- 16. Klapotke, T. M.; Sproll, S. M. J. Polym. Sci. Part A 2010, 48, 122.
- 17. Betzler, F. M.; Klapotke, T. M.; Sproll, S. M. Cent. Eur. J. Energ. Mater. 2011, 8(3), 157.
- Гапоник, П. Н.; Ивашкевич, О. А. Вестник БГУ, Сер. 2 2013, 1, 3.
- Banert, K.; Klapötke, T. M.; Sproll, S. M. Eur. J. Org. Chem. 2009, 275.
- Landsem, E.; Jensen, T. L.; Kristensen, T. E.; Hansen, F. K.; Benneche, T.; Unneberg, E. *Propellants, Explos., Pyrotech.* 2013, 38, 75.
- Song, Y.; Wang, L.; Gyanda, R.; Sakhuja, R.; Cavallaro, M.; Jackson, D. J.; Meher, N. K.; Ciaramitaro, D. A.; Bedford, C. D.; Katritzky, A. R.; Duran, R. S. J. Appl. Polym. Sci. 2010, 117, 473.
- 22. Song, Y.; Wang, L.; Gyanda, R.; Sakhuja, R.; Meher, N. K.; Hanci, S.; Gyanda, K.; Mathai, S.; Sabri, F.; Ciaramitaro, D. A.; Bedford, C. D.; Katritzky, A. R.; Duran, R. S. J. Appl. Polym. Sci. 2010, 117, 2612.
- 23. Qiao, L.; Shi, W. Chin. J. Polym. Sci. 2011, 29, 670.
- 24. Gorman, I. E.; Willer, R. L.; Kemp, L. K.; Storey, R. F. Polymer 2012, 53, 2548.
- 25. Malkov, G. V.; Ladygina, V. P.; Shastin, A. V.; Estrin, Ya. I.; Badamshina, E. R.; Mikhailov, Yu. M. Polym. Sci., Ser. B 2007, 49(11–12), 301. [Высокомолекуляр. соединения С 2007, 49(11–12), 2211.]
- Malkov, G. V.; Shastin, A. V.; Estrin, Ya. I.; Badamshina, E. R.; Mikhailov, Yu. M. Propellants, Explos., Pyrotech. 2008, 33, 431.
- Malkov, G. V.; Shastin, A. V.; Estrin, Ya. I.; Badamshina, E. R.; Mikhailov, Yu. M. Russ. Chem. Bull., Int. Ed. 2011, 60, 1940. [Изв. АН, Сер. хим. 2011, 1907.]
- Verkhozina, O. N.; Kizhnyaev, V. N.; Vereshchagin, L. I.; Rokhin, A. V.; Smirnov, A. I. Russ. J. Org. Chem. 2003, 39, 1792. [*Журн. орган. химии* 2003, 39, 1863.]

- 29. Vereshchagin, L. I.; Kuznetsova, N. I.; Kirillova, L. P.; Shcherbakov, V. V.; Sukhanov, G. T.; Gareev, G. A. Chem. Heterocycl. Compd. 1986, 22, 745. [Химия гетероцикл. соединений 1986, 932.]
- Golobokova, T. V.; Pokatilov, F. A.; Proidakov, A. G.; Vereshchagin, L. I.; Kizhnyaev, V. N. *Russ. J. Org. Chem.* 2013, 49, 130. [Журн. орган. химии 2013, 49, 135.]
- 31. Голобокова, Т. В. В кн. Сборник тезисов докладов Всероссийской конференции "Органический синтез: химия и технология"; Екатеринбург, 2012, с. У12.
- 32. Назаров И. Н.; Швехгеймер, Г. А. *Журн. общ. химиии* **1955**, *25*, 504.
- 33. Berg, R.; Straub, B. F. Beilstein J. Org. Chem. 2013, 9, 2715.
- 34. Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952.
- 35. Singh, M. Sh.; Chowdhury, S.; Koley, S. *Tetrahedron* 2016, 72, 5257.
- 36. Jin, T.; Kitahara, F.; Kamijo, Sh.; Yamamoto, Y. *Tetrahedron Lett.* **2008**, *49*, 2824.
- 37. Zheng, Zh-J.; Wang, D.; Xu, Zh.; Xu, L-W. Beilstein J. Org. Chem. 2015, 11, 2557.
- Watanabe, W.; Maekawa, T.; Miyazaki, Y.; Kida, T.; Takeshita, K.; Mori, A. *Chem.-Asian J.* **2012**, *7*, 1679.
- 39. Ricardo, C. L.; Pintauer, T. Isr. J. Chem. 2012, 52, 320.
- Nulwala, H.; Takizawa, K.; Odukale, A.; Khan, A.; Thibault, R. J.; Taft, B. R.; Lipshutz, B. H.; Hawker, C. J. *Macromolecules* 2009, *42*, 6068.
- Golobokova, T. V.; Proidakov, A. G.; Vereshchagin, L. I.; Kizhnyaev, V. N. Russ. J. Org. Chem. 2015, 51, 1308. [Журн. орган. химии 2015, 51, 1333.]
- Golobokova, T. V.; Vereshchagin, L. I.; Ratovskii, G. V.; Proidakov, A. G.; Kizhnyaev, V. N. Russ. J. Org. Chem. 2016, 52, 1039. [*Журн. орган. химии* 2016, 52, 1044.]
- Mesropyan, E. G.; Galstyan, A. S.; Avetisyan, A. A. Russ. J. Org. Chem. 2006, 42, 1845. [Журн. орган. химии 2006, 42, 1854.]
- 44. Suzdalev, К. F.; Den'kina, S. V. Chem. Heterocycl. Compd. 2011, 47, 1085. [Химия гетероцикл. соединений 2011, 1321.]
- 45. Kofman, T. P.; Krasnov, K. N. Russ. J. Org. Chem. 2004, 40, 1651. [Журн. орган. химии 2004, 40, 1699.]
- Vaitkeviciene, V.; Grazulevicius, J. V.; Jankauskas, V. Mol. Cryst. Liq. Cryst. 2008, 497, 241.
- 47. Петров, В. В.; Братилов, С. Б.; Пантилеенко, С. В. *Рос. хим. журн.* **1997**, *41*(2), 98.
- 48. Голобокова, Т. В. В кн. Тезисы докладов XIX Российской молодежной научной конференции, посвященной 175летию со дня рождения Д. И. Менделеева; Екатеринбург, 2009, с. 232.
- 49. Vereshchagin, L. I.; Verkhozina, O. N.; Pokatilov, F. A.; Proidakov, A. G.; Kizhnyaev, V. N. Chem. Heterocycl. Compd. 2010, 46, 206. [Химия гетероцикл. соединений 2010, 255.]

- Gaponik, P. N.; Ivashkevich, O. A.; Chernavina, N. I.; Lesnikovich, A. I.; Sukhanov, G. T.; Gareev, G. A. Angew. Makromol. Chem. 1994, 219, 89.
- 51. Belousov, A. M., Orlova, N. A., Paznikov, E. A. Int. Sci. J. Altern. Energy Ecol. **2005**, 26(6), 44. [Альтернативная энергетика и экология **2005**, 26(6), 44.]
- 52. Belousov, A. M.; Paznikov, E. A.; Petrova, T. L.; Kalmykov, P. I. Russ. J. Appl. Chem. 2003, 76, 1164. [Журн. прикл. химии 2003, 76, 1197.]
- 53. Пазников, Е. А.; Белоусов, А. М.; Негирева, М. П. Патент РФ 2373235.
- 54. Reddy, T. S.; Satpute, R. S.; Nair, J. K.; Gore, G. M; Sikder, A. K J. Polym. Mater. 2008, 25(4), 557.
- Ha, H. X.; Cao, Y. L.; Sun, Z. X.; Huang, H. Chin. J. Energ. Mater. 2011, 19(2), 152.
- 56. Kizhnyaev, V. N.; Pokatilov, F. A.; Vereshchagin, L. I. Polym. Sci., Ser. C 2008, 50(1), 1. [Высокомолекуляр. соединения, C 2008, 50(7), 1296.]
- 57. Kizhnyaev, V. N.; Petrova, T. L.; Pokatilov, F. A. Russ. J. Appl. Chem. **2012**, 85(5), 812. [Журн. прикл. химии **2012**, 85(5), 813.]
- Kizhnyaev, V. N.; Pokatilov, F. A.; Vereshchagin, L. I.; Verkhozina, O. N.; Petrova, T. L.; Proidakov, A. G.; Ratovskii, G. V.; Tyukalova, O. V. *Russ. J. Appl. Chem.* **2009**, 82(10), 1769. [Журн. прикл. химии **2009**, 82(10), 1616.]
- 59. Kizhnyaev, V. N.; Pokatilov, F. A.; Vereshchagin, L. I. Polym. Sci., Ser. A 2007, 49(1), 28. [Высокомолекуляр. соединения, А. 2007, 49(1), 36.]
- Kizhnyaev, V. N.; Pokatilov, F. A.; Vereshchagin, L. I.; Krakhotkina, E. A.; Zhitov, R. G.; Golobokova, T. V.; Verkhozina, O. N. *Polym. Sci.*, Ser. B 2011, 53(5), 317. [Высокомолекуляр. соединения, Б 2011, 53(6), 953.]
- Pokatilov, F. A.; Kizhnyaev, V. N. Polym. Sci., Ser. A 2012, 54(11), 894. [Высокомолекуляр. соединения, А 2012, 54(11), 1668.]
- 62. Дубов, Л. В. В кн. Промышленные взрывчатые вещества; Бахаревич, Н. С.; Романов, А. И., Ред.; Недра: Москва, 1988.
- 63. Кижняев, В. Н.; Петрова, Т. Л.; Гущин, В. П.; Смирнов, А. И. Химия в интересах устойчивого развития **1997**, 507.
- 64. Кижняев, В. Н.; Петрова, Т. Л.; Смирнов, А. И. Высокомолекуляр. соединения, А **2001**, 43(5), 883
- 65. Kizhnyaev, V. N.; Pokatilov, F. A.; Baginova, T. N.; Zhitov, R. G. Polym. Sci., Ser. B 2014, 56(3), 335. [Высокомолекуляр. соединения, Б 2014, 56(3), 307.]
- 66. Kizhnyaev, V. N.; Pokatilov, F. A.; Baginova, T. N.; Zhitov, R. G.; Golobokova, T. V.; Edel'shtein O. A. Russ. J. Appl. Chem. **2015**, 88(8), 1288. [Журн. прикл. химии **2015**, 88(8), 1168.]
- 67. Kizhnyaev V. N.; Pokatilov, F. A.; Baginova, T. N.; Zhitov, R. G.; Proidakov, A. G. *Russ. J. Appl. Chem.* **2016**, *89*(7), 1137. [Журн. прикл. химии **2016**, *89*(7), 947.]