

Химия гетероциклических соединений 2017, 53(6/7), 740-745

3-Алкил-4-нитрофуразаны – пластификаторы для полимеров

Юрий М. Лотменцев¹*, Наталья Н. Кондакова¹, Артём В. Бакешко¹, Андрей М. Козеев², Алексей Б. Шереметев²

¹ Российский химико-технологический университет им. Д. И. Менделеева, Миусская пл., 9, Москва 125047, Россия; e-mail: yulotm@gmail.com

² Институт органической химии им. Н. Д. Зелинского РАН, Ленинский пр., 47, Москва 119991, Россия; e-mail: sab@ioc.ac.ru Поступило 30.01.2017 Принято 7.03.2017

Окислением 4-алкилфуразан-3-аминов смесями на основе перекиси водорода получены соответствующие нитрофуразаны. Изучено влияние размера заместителя R на летучесть, характеристики фазовых и релаксационных переходов, термодинамическую совместимость с полиэфируретаном. Определены температуры и энтальпии плавления алкилнитрофуразанов.

Ключевые слова: нитрофуразаны, летучесть, плавление, совместимость с полимерами, стеклование.

Нитрофуразаны представляют интерес в качестве компонентов энергетических материалов. В частности, они рассматриваются как возможные энергоемкие пластификаторы для порохов и твердых ракетных Достоинствами нитрофуразанов являются топлив.² высокие значения энтальпии образования и плотности, химическая стабильность и термостойкость. К числу важных физико-химических свойств, определяющих возможность применения энергоемких соединений в качестве пластификаторов для энергетических материалов, относятся эффективность пластифицирующего действия и термодинамическая совместимость с полимерными компонентами, стабильность компонентного и фазового состава материала в температурном диапазоне эксплуатации.³ В соответствии с этим цель настоящего исследования - изучение летучести, релаксационных и фазовых переходов, а также термодинамической совместимости 3-алкил-4-нитрофуразанов с полимерными компонентами энергетических материалов.

Необходимые для исследования нитрофуразаны **1а–f**, различающиеся размером алкильного заместителя, были получены окислением 4-алкилфуразан-3-аминов **2а–f** смесями на основе перекиси водорода⁴ (схема 1).

Известно, что способность аминогруппы к окислению до нитрогруппы сильно зависит от свойств Схема 1

второго заместителя, связанного с фуразановым циклом.⁵ Присутствие алкильных заместителей, более длинных, чем метил, приводит к снижению растворимости исходных аминов в водных растворах перекиси водорода. Это затрудняет процесс окисления, в результате чего остается много непрореагировавшего амина. Нами показано, что добавление в окислительные смеси уксусной кислоты позволяет устранить эти трудности. Все нитропроизводные 1a-f были получены с хорошими выходами и охарактеризованы спектральными методами. Характеристики спектров ЯМР полученных продуктов близки описанным ранее для других нитрофуразанов.⁶

Свойства соединений представлены в табл. 1. Как и ранее исследованные метилфуразаны,⁷ соединения 1a-f термически стабильны и перегоняются при атмосферном давлении без разложения (табл. 1). В стандартных

Соеди- нение	R	Брутто-формула	М, г/моль	Т. кип, °С (при атм. давлении)	Плотность, р, г/см ³	Энтальпия образования, $\Delta H_{ m f}^{ m o},$ кДж/моль
1a	Me	$C_3H_3N_3O_3$	129.07	170	1.3816	146.6 ⁹
1b	Et	$C_4H_5N_3O_3$	143.10	167	1.2822	121.5*
1c	<i>n</i> -Pr	$C_5H_7N_3O_3$	157.13	187	1.2123	96.4*
1d	<i>n</i> -Bu	$C_6H_9N_3O_3$	171.15	203	1.167 ²²	75.4 ⁹
1e	$n-C_5H_{11}$	$C_7H_{11}N_3O_3$	185.18	**	1.124^{23}	50.3*
1f	Циклопропил	$C_5H_5N_3O_3$	155.11	**	1.31325	234.6*

Таблица 1. Свойства нитрофуразанов 1а-f

* Рассчитана методом аддитивных схем, базирующемся на групповых вкладах.¹⁰

** Не определялась при атмосферном давлении.

испытаниях чувствительности к удару и трению⁸ в соответствии с ГОСТ 4545-80 на копре К-44-II (прибор № 3, груз 10 кг, высота 50 мм) все соединения характеризуются частостью взрыва равной 0%. Заметим, что традиционные энергетические пластификаторы – нитроглицерин (НГ) и динитрат диэтиленгликоля (ДНДЭГ) – демонстрируют 100% срабатывание в аналогичных тестах.

Для изучения летучести соединений **1b**-е был использован термогравиметрический анализ. Измерения проводили с помощью динамического метода Прайса,¹¹ в соответствии с которым давление насыщенного пара описывается уравнением Ленгмюра (1):

$$P = \left[\alpha^{-1} \left(2\pi R\right)^{0.5}\right] \left[G\left(\frac{T}{M}\right)^{0.5}\right],\tag{1}$$

где α – коэффициент испарения, R – универсальная газовая постоянная, T – температура, M – молекулярная масса, S – площадь испарения, G – скорость испарения (величина потери массы с единицы поверхности в единицу времени).

Для калибровки прибора уравнение (1) преобразуется в уравнение (2):

$$P = \left[\alpha^{-1} \left(2\pi R\right)^{0.5}\right] \left[\left(\frac{T}{M}\right)^{0.5} \left(\frac{1}{s}\frac{dm}{dt}\right)\right]$$
(2)

или гле

$$P = kv,$$
 (3)
 $k = \alpha^{-1} (2\pi R)^{0.5},$ (4)

$$\nu = \frac{1}{s} \frac{dm}{dt} \left(\frac{T}{M}\right)^{0.5} = G \left(\frac{T}{M}\right)^{0.5}.$$
 (5)

При одинаковых условиях измерений калибровочный коэффициент k не зависит от вида вещества и давления пара (метод определения коэффициента k – в сопроводительных материалах). Измерение давления насыщенного пара нитрофуразанов проводили с помощью термоанализатора TGA/SDTA 851 Mettler-Toledo в диапазоне температур от 25 до 90 °C при скорости нагревания 1 град. в мин. Исследуемый образец с массой от 100 до 160 мг помещали в открытую цилиндрическую алюминиевую чашку с внутренним диаметром 9.3 мм и высотой 2 мм. В качестве продувочного газа применяли азот при скорости продувки камеры 50 мл в мин. В отличие от методики¹¹ при определении значения калибровочного коэффициента k в качестве эталонного вещества использовали динитрат диэтиленгликоля (ДНДЭГ), давление пара которого было предварительно измерено с помощью динамического хроматографического метода.¹²

Сравнительную оценку летучести нитрофуразанов **1b-е** относительно такого известного энергетического пластификатора, как НГ, осуществляли с помощью соотношения (7):

$$f_{\rm r} = \frac{P_{\rm i}}{P_{\rm st}} = \frac{G_{\rm i}}{G_{\rm st}} \left(\frac{M_{\rm i}}{M_{\rm st}}\right)^{0.5}.$$
 (7)

где $f_{\rm r}$ – коэффициент относительной летучести, $P_{\rm i}$ и $P_{\rm st}$, $G_{\rm i}$ и $G_{\rm st}$, $M_{\rm i}$ и $M_{\rm st}$ – давление насыщенного пара, скорость испарения, и молекулярная масса исследуемого вещества и вещества, использованного для сравнения, соответственно.

Энтальпии испарения ΔH_{vap} рассчитывали с помощью уравнения (8) на основании результатов линейной аппроксимации зависимости давления насыщенного пара от температуры:

lg P = A - BT⁻¹, rge B =
$$\frac{\Delta H_{\text{vap}}}{R}$$
, A = const. (8)

Измерение характеристик фазовых и релаксационных переходов проводили на дифференциальном сканирующем калориметре DSC 822e Mettler-Toledo в диапазоне температур от -120 до 50 °C при скорости нагревания 10 град. в минуту и скорости продувки камеры азотом 50 мл в мин. Образцы массой от 15 до 20 ± 0.01 мг помещали в стандартные алюминиевые чашки емкостью 40 мкл. Калибровку калориметра проводили по стандартным образцам цинка и индия. Температуру плавления определяли по положению точки onset.

Термодинамическую совместимость алкилнитрофуразанов с полиэфируретановым эластомером (ПУ) как одним из возможных компонентов энергетических материалов¹³ изучали методом многолучевой интерференции на лазерном диффузиометре ОДА-2.¹⁴ Метод основан на анализе концентрационного профиля пластификатора в зоне взаимодиффузии с полимером. Коммерческий образец ПУ (сложный полиэфир на основе пропандиола, бутандиола, адипиновой кислоты и 2,4-толуилендиизоцианата), изготовленный ООО СУРЭЛ,

Соеди- нение	Давление пара* <i>Р</i> , Па	Скорость испарения*, $G \cdot 10^{-6}$, кг \cdot сек $^{-1} \cdot$ м $^{-2}$	Коэффициент относительной петучести* f.ur	Коэффициенты уравнения lg $P = A - BT^{-1}$		Энтальпия испарения <i>АН</i> кЛж/моль
			Jery leenn , Jr, Hi	A	В	- штүар, кддко моль
1b	897	231.0	211	10.2	2438	46.7
1c	437	118.0	103	10.8	2727	52.2
1d	328	92.3	77	11.4	2963	56.7
1e	149	43.6	35	10.9	2912	55.7
ДНДЭГ	9.09	2.2	1.6	10.95	3329.7	63.7
ΗΓ	4.5	1.4	1	13.6	4340	83.0

Таблица 2. Параметры летучести алкилнитрофуразанов 1b-е и нитроэфиров ДНДЭГ и НГ

* Измерено при температуре 60 °С.

Рисунок 1. Термогравитограммы соединений **1b**-е и НГ: 1 – НГ; 2 – **1e**, 3 – **1d**, 4 – **1c**, 5 – **1b**.

имел следующие характеристики: среднечисловая молекулярная масса 35000 г/моль, содержание уретановых групп 10 масс. %, характеристическая вязкость раствора в этилацетате [η] 0.3 · 10⁻² м³/кг.

Летучесть нитрофуразанов. На рис. 1, 2 и в табл. 2 приведены характеристики летучести соединений 1b-е, ДНДЭГ и НГ. Увеличение длины алкильного радикала в соединениях 1b-е приводит к снижению летучести. Из полученных данных следует, что давление насыщенного пара алкилнитрофуразанов на 1–2 порядка выше давления пара нитроэфирных пластификаторов ДНДЭГ и НГ.

Фазовые и релаксационные переходы в нитрофуразанах 1а-f. Обобщенные результаты исследований фазовых и релаксационных переходов в соединениях 1а-f представлены на рис. 3-5 и в табл. 4. Все соединения, за исключением соединения 1с, кристаллизуются при отрицательных температурах. На рис. З показаны термограммы соединения 1е, полученные при охлаждении и последующем нагревании (термограммы других соединений - в сопроводительных материалах). Кристаллизация соединения 1е происходит в узкой температурной области, пик кристаллизации T_{peak} -59 °C. На термограммах кристаллизующихся соединений (рис. 4) отсутствуют эффекты стеклования. Это обусловлено полной кристаллизацией вещества. Циклопропановое производное 1f имеет наиболее высокую температуру плавления. Увеличение длины алкильного радикала приводит к снижению температуры плавления.

Рисунок 2. Зависимость давления пара соединений **1b**-е и НГ от температуры: 1 – **1b**; 2 – **1c**; 3 – **1d**; 4 – **1e**; 5 – НГ.

Рисунок 3. Термограммы соединения **1e**: 1 – охлаждение, 2 – нагревание.

Рисунок 4. Термограммы нагревания соединений **1а–f**: 1 – **1f**; 2 – **1a**; 3 – **1b**; 4 – **1d**; 5 – **1e**.

Соеди-	Плав	ление	Veryona Torresound Torreso	Crawrapaywa T °C
	$T_{\text{onset}}, ^{\circ}\mathrm{C}$	$\Delta H_{ m fus}$, Дж/г	- кристаллизация, 1 _{peak} , С	Стеклование, I _g , °С
1a	-2.4	126.5	-20	Отсутствует
1b	-5.6	118.4	Измерения не проводились	Отсутствует
1c		Кристаллизация отсутствует		-107
1d	-16.2	104.7	48	Отсутствует
1e	-21.5	128.4	-59	Отсутствует
1f	29.1	153.7	-3.3	Отсутствует
ΗΓ	12.3* стабильная форма 13.2 ^{15a} ; 10.9 ^{15b}	99.3*	-27*	-72*
ДНДЭГ	3.0* стабильная форма 2.0 ^{15a}	116.7* стабильная форма	–49* стабильная форма –7.6* лабильная форма	-83*
	—11.5* лабильная форма —10 9 ¹⁵ а			

Таблица 4. Характеристики кристаллизации и стеклования соединений 1а-f, НГ и ДНДЭГ

* Данные авторов (метод ДСК).

Рисунок 5. Термограмма нагревания соединения 1с.

Характерной особенностью соединения 1с, имеющего н-пропильный радикал, является способность к переохлаждению, в результате чего оно не кристаллизуется, а при низких температурах переходит в стеклообразное состояние. На термограмме соединения 1с (рис. 5) регистрируется только релаксационный переход, связанный со стеклованием при -107 °С. Кристаллизация вещества не произошла лаже после его длительного охлаждения при температуре -50 °C в течение 60 сут. Соединение 1с имеет низкую температуру стеклования, которая на ~35 °C ниже температуры стеклования НГ (табл. 4). Необходимо отметить, что температура стеклования пластификатора является важной характеристикой, влияющей на эффективность его действия, в том числе на технологические свойства полимерного материала при температурах переработки и на механические свойства при температурах эксплуатации.

Термодинамическая совместимость алкилнитрофуразанов с ПУ. На рис. 6 показаны интерферограмма и соответствующая ей зависимость концентрации нитрофуразана 1с от расстояния в зоне взаимодиффузии с ПУ. Профиль концентрации в диффузионной зоне имеет непрерывный характер, при этом

Рисунок 6. Интерферограмма и профиль концентраций в зоне взаимодиффузии соединения 1с и ПУ. Температура 60 °C, время диффузии 1 ч.

концентрация диффузанта равномерно изменяется от 0 до 1. Это свидетельствует о неограниченной взаимной растворимости компонентов. Аналогичные зависимости для диапазона температур от 20 до 60 °C были получены и для остальных алкилнитрофуразанов. Таким образом, соединения **1а–f** неограниченно совместимы с полиэфируретановым каучуком в этом диапазоне положительных температур. Необходимо отметить, что термодинамическая устойчивость связующих на основе ПУ и кристаллизующихся алкилнитрофуразанов при температурах ниже температуры их плавления может быть значительно ниже.

В результате проведенных исследований определены давление насыщенного пара, температуры плавления и стеклования, а также энтальпии испарения и плавления 3-алкил-4-нитрофуразанов. Эти соединения, в отличие от таких нитроэфирных пластификаторов, как нитроглицерин и динитрат диэтиленгликоля, не чувствительны к удару и трению, но обладают повышенной летучестью. З-Алкил-4-нитрофуразаны неограниченно совместимы с полиэфируретановым эластомером. По сравнению с другими энергетическими пластификаторами некристаллизующийся 4-нитро-3-пропилфуразан характеризуется значительно более низкой температурой стеклования, что может обеспечить его высокую пластифицирующую способность.

Экспериментальная часть

ИК спектры зарегистрированы на спектрометре Вruker Alpha в таблетках КВг. Спектры ЯМР ¹H, ¹³C, ¹⁵N и ¹⁴N зарегистрированы на спектрометре Bruker AM-300 (300, 75, 50 и 22 МГц соответственно) в CDCl₃, внутренние стандарты – ТМС (для ядер ¹H и ¹³C) и MeNO₂ (для ядер ¹⁴N и ¹⁵N). Масс-спектр соединения **1d** зарегистрирован на спектрометре Varian MAT-311A, ионизация ЭУ (70 эВ). Элементный анализ выполнен на приборе PerkinElmer Series II 2400. Температуры плавления определены на столике Boetius и не исправлены. Контроль за ходом реакций и чистотой полученных соединений осуществлен методом TCX на пластинах Merck Silicagel 60 F_{254} , элюент CH₂Cl₂– пентан, 5:1.

Исходные 4-алкилфуразан-3-амины 2а-f получены по литературной методике.⁴

Получение 3-алкил-4-нитрофуразанов 1а-f (общая методика). К раствору 23.37 г (70.84 ммоль) $N_2WO_4 \cdot 2H_2O$ в 250 мл 37% H_2O_2 при 40 °C по каплям добавляют раствор 70.84 ммоль амина 2а-f в 70 мл АсОН. Затем реакционную смесь нагревают до 70 °C и перемешивают при этой температуре в течение 1.5 ч, охлаждают до 50 °C и выливают в смесь 100 мл воды и 100 г льда. Полученный раствор экстрагируют CH₂Cl₂ (3 × 100 мл). Объединенные экстракты промывают водой (2 × 100 мл) и высушивают над MgSO₄. Растворитель упаривают, а остаток перегоняют.

3-Метил-4-нитрофуразан (1а). Выход 83%, светложелтое масло, т. кип. 65°С (16 торр). Данные спектроскопии ЯМР аналогичны опубликованным в литературе.⁶

4-Нитро-3-этилфуразан (1b). Выход 46%, бесцветное масло, т. кип. 56 °С при 7 торр. ИК спектр, v, см⁻¹: 2965, 2938, 2874, 1582, 1543, 1455, 1355, 1168, 1157, 1030, 910, 831. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.44 (3H, т, *J* = 7.5, CH₂C<u>H₃</u>); 2.86 (2H, д. д, *J* = 7.5, *J* = 7.4, C<u>H</u>₂CH₃). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 11.1 (CH₂<u>C</u>H₃); 17.7 (<u>C</u>H₂CH₃); 152.1 (<u>C</u>-Et); 159.5 (т, ¹*J*_{13C,14N} = 18.7, C-NO₂). Спектр ЯМР ¹⁴N, δ , м. д.: -34.3 (NO₂). Найдено, %: С 33.61; Н 3.55; N 29.31. C₄H₅N₃O₃. Вычислено, %: С 33.57; Н 3.52; N 29.36.

4-Нитро-3-пропилфуразан (1с). Выход 86%, бесцветное масло, т. кип. 72.5 °С при 9 торр. ИК спектр, v, см⁻¹: 2972, 2940, 2880, 1582, 1543, 1453, 1360, 1170, 1157, 1029, 913, 832. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.01– 1.05 (3H, м, CH₂CH₂C<u>H₃</u>); 1.78–1.85 (2H, м, CH₂C<u>H₂Me</u>); 3.02 (2H, т, J = 6.6, CH₂Et). Спектр ЯМР ¹³С, δ , м. д. (J, Гц): 13.3 (CH₂CH₂CH₃); 20.3 (CH₂CH₂Me); 25.4 (<u>C</u>H₂Et); 150.8 (<u>C</u>-Pr); 159.6 (т, ¹ $J_{13C,14N} = 17.3$, C-NO₂). Спектр ЯМР ¹⁴N, δ , м. д.: -34.3 (NO₂). Спектр ЯМР ¹⁵N, δ , м. д.: 49.6; 40.4; -31.1 (NO₂). Найдено, %: С 38.37; H 4.45; N 26.69. C₅H₇N₃O₃. Вычислено, %: С 38.22; H 4.49; N 26.74.

3-Бутил-4-нитрофуразан (1d). Выход 58%, светложелтое масло, т. кип. 80 °С при 8 торр. ИК спектр, v, см⁻¹: 2964, 2937, 2876, 1582, 1543, 1455, 1355, 1169, 1157, 1033, 910, 831. Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 0.95–0.99 (3H, м, (CH₂)₃CH₃); 1.43–1.47 (2H, м, (CH₂)₂CH₂Me); 1.76–1.78 (2H, м, CH₂CH₂Et); 3.04 (2H, т, *J* = 7.5, CH₂Pr). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 13.4 ((CH₂)₃CH₃); 22.1 ((CH₂)₂CH₂Me); 23.3 (CH₂CH₂Et); 28.9 (CH₂Pr); 150.9 (C–Bu); 159.6 (т, ¹J_{13C,14N} = 17.1, C–NO₂). Спектр ЯМР ¹⁴N, δ , м. д.: –34.2 (NO₂). Спектр ЯМР ¹⁵N, δ , м. д.: 49.5; 40.4; –31.1 (NO₂). Масс-спектр, *m*/*z* (*I*_{отн}, %): 129 [M+H–Pr]⁺ (30), 125 [M–NO₂]⁺ (11), 95 [M–NO₂–NO]⁺ (15), 83 [M+H–Pr–NO₂]⁺ (10), 43 (100). Найдено, %: С 42.05; H 5.33; N 24.48. C₆H₉N₃O₃. Вычислено, %: С 42.11; H 5.30; N 24.55.

4-Нитро-3-пентилфуразан (1е). Выход 73%, светложелтое масло, т. кип. 92 °С при 7 торр. ИК спектр, v, см⁻¹: 2960, 2935, 2873, 1582, 1543, 1455, 1356, 1168, 1157, 1034, 911, 830. Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.87–0.91 (3H, м, (CH₂)₄CH₃); 1.33–1.42 (4H, м, (CH₂)₂CH₂CH₂Me); 1.74–1.83 (2H, м, CH₂CH₂Pr); 3.03 (2H, т, *J* = 7.6, CH₂Bu). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 13.7 ((CH₂)₄CH₃); 22.1 ((CH₂)₃CH₂Me); 23.5 ((CH₂)₂CH₂Et); 26.5 (CH₂CH₂Pr); 31.1 (CH₂Bu); 151.0 (C–C₅H₁₁); 159.7 (д, ¹*J*_{13C,14N} = 17.3, C–NO₂). Спектр ЯМР ¹⁴N, δ , м. д.: –34.3 (NO₂). Спектр ЯМР ¹⁵N, δ , м. д.: 49.7; 40.7; –31.1 (NO₂). Найдено, %: C 45.36; H 5.92; N 22.61. C₇H₁₁N₃O₃. Вычислено, %: C 45.40; H 5.99; N 22.69.

4-Нитро-3-циклопропилфуразан (1f). Выход 82%, светло-желтое масло, т. кип. 72–73 °С при 7 торр, постепенно затвердевает, т. пл. 25–26 °С. ИК спектр, v, см⁻¹: 3021, 1582, 1543, 1467, 1455, 1371, 1307, 1199, 1157, 1082, 1025, 884, 829. Спектр ЯМР ¹Н, δ , м. д.: 1.10–1.14 (2H, м) и 1.25–1.31 (2H, м, CH₂CH₂); 2.32–2.37 (1H, м, CH). Спектр ЯМР ¹³С, δ , м. д. (*J*, Гц): 3.7 (CH₂CH₂); 9.6 (CH); 153.0 (<u>С</u>–*с*-Pr); 159.4 (т, ¹*J*_{13C,14N} = 17.4, C–NO₂). Спектр ЯМР ¹⁴N, δ , м. д.: –33.3 (NO₂). Спектр ЯМР ¹⁵N, δ , м. д.: 43.7; 40.2; –31.0 (NO₂). Найдено, %: С 38.77; Н 3.28; N 27.00. С₅Н₅N₃O₃. Вычислено, %: С 38.72; Н 3.25; N 27.09.

Файл сопроводительной информации, содержащий термограммы соединений 1a-f, доступен на сайте журнала http://hgs.osi.lv.

Отдельные части работы выполнены при поддержке программ отделения *PAH OXHM-04*.

Авторы выражают благодарность к. х. н. М. И. Стручковой (ИОХ РАН) за регистрацию спектров ЯМР и ведущему инженеру Н. Н. Ильичёвой (РХТУ им. Д. И. Менделеева) за помощь при проведении калориметрических измерений.

Список литературы

- 1. (a) Pivina, T. S.; Sukhachev, D. V.; Evtushenko, A. V.; Khmelnitskii, L. I. Propellants, Explos., Pyrotech. 1995, 20, 5. (b) Sheremetev, A. B.; Pivina, T. S. In Energetic Materials. Technology, Manufacturing and Processing. 27th International Annual Conference of ICT, June 25 – June 28, 1996, Karlsruhe, Federal Republic of Germany; Karlsruhe, 1996, p. 30-1. (c) Sheremetev, A. B. Mendeleev Chem. J. 1997, 41(2), 62. [Poc. хим. журн. 1997, 41(2), 43.] (d) Sheremetev, A. B.; Kulagina, V. O.; Aleksandrova, N. S.; Dmitriev, D. E.; Strelenko, Yu. A.; Lebedev, V. P.; Matyushin, Yu. N. Propellants, Explos., Pyrotech. 1998, 23, 142. (e) Stepanov, A. I.; Dashko, D. V.; Astrat'ev, A. A. Cent. Eur. J. Energ. Mater. 2012, 9, 329. (f) Sheremetev, A. B.; Aleksandrova, N. S.; Palysaeva, N. V.; Struchkova, M. I.; Tartakovsky, V. A.; Suponitsky, K. Yu. Chem.-Eur. J. 2013, 19, 12446. (g) Ilyushin, M. A.; Shugaley, I. V.; Tselinskii, I. V.; Garabadzhiu, A. V. Russ. J. Gen. Chem. 2013, 83, 2624. [Экологическая химия 2012, 21(3), 154.] (h) Zhang, Y.; Zhou, C.; Wang, B.; Zhou, Y.; Xu, K.; Jia, S.; Zhao, F. Propellants, Explos., Pyrotech. 2014, 39, 809. (i) Wu, X.; Chu, Y.; Zheng, C.; Wang, T.; Lei, W.; Wang, F.; Xia, M. Chem. Heterocycl. Compd. 2015, 51, 760. [Химия гетероцикл. соединений 2015, 51, 760.] (j) Luk'yanov, О. А.; Pokhvisneva, G. V.; Ternikova, T. V. Russ. Chem. Bull., Int. Ed. 2015, 64, 83. [Изв. АН, Сер. хим. 2015, 83.] (k) Liu, N.; Zeman, S.; Shu, Y.-J.; Wu, Z.-K.; Wang, B.-Z.; Yin, S.-W. RSC Adv. 2016, 6, 59141. (1) Sinditskii, V. P.; Burzhava, A. V.; Chernyi, A. N.; Shmelev, D. S.; Apalkova, V. N.; Palysaeva, N. V.; Sheremetev, A. B. J. Therm. Anal. Calorim. 2016, 123, 1431. (m) Yi, Q.; Liang, D.; Ma, Q.; Huang, M.; Tan, B.; Liu, Y.; Chi, Y. Propellants, Explos., Pyrotech. 2016, 41, 906. (n) Li, X.; Wang, B.-L.; Lin, Q.-H.; Chen, L.-P. J. Energ. Mater. 2016, 34, 409. (o) Wang, X.; Wang, B.; Bi, F.; Zhai, L.; Ma, L.; Huo, H. Patent CN105601581. (p) Wang, X.; Bi, F.; Wang, B.; Li, X.; Zhang, J.; Zhou, C.; Huo, H. Patent CN105646388. (q) Li, Y.; Xue, M.; Wang, J.; Cao, D.; Ma, Z. Chin. J. Org. Chem. 2016, 36, 1528.
- (a) Shen, H.-P.; Lu, Y.-H.; Cao, Y.-L.; He, J.-X. Hanneng Cailiao 2011, 19, 735. (b) Lempert, D. B.; Sheremetev, A. B. Chem. Heterocycl. Compd. 2016, 52, 1070. [Химия гетероцикл. соединений 2016, 52, 1070.]
- (a) Chernaya, V. V.; Vol'chenko, R. L. Russ. Chem. Rev. 1962, 31, 167. [Успехи химии 1962, 31, 336.] (b) Рогов, Н. Г.; Ищенко, М. А. Смесевые ракетные твердые топлива: компоненты, требования, свойства; Изд-во СПбГТИ (ТУ): Санкт-Петербург, 2005, 195 с. (b) Павловец, Г. Я; Цуцуран, В. И. Физико-химические свойства порохов и ракетных топлив; Изд-во Мин-ва обороны РФ: Москва, 2009, 408 с. (c) Китагі, D.; Balakshe, R.; Banerjee, S.; Singh, H. Rev. J. Chem. 2012, 2, 240. (d) Yan, Q.-L.; Zeman, S.; Elbeih, A. Thermochim. Acta 2012, 537, 1. (e) Косточко, А. В.; Казбан, Б. М. Пороха, ракетные твердые топлива и их свойства; ИНФРА-М: Москва, 2015, 400 с.

- Sheremetev, A. B.; Shamshina, Yu. L.; Dmitriev, D. E. Russ. Chem. Bull., Int. Ed. 2005, 54, 1032. [Изв. АН, Сер. хим. 2005, 1007.]
- (a) Novikova, T. S.; Mel'nikova, T. M.; Kharitonova, O. V.; Kulagina, V. O.; Aleksandrova, N. S.; Sheremetev, A. B.; Pivina, T. S.; Khmel'nitskii, L. I.; Novikov, S. S. *Mendeleev Commun.* 1994, 4, 138. (b) Sheremetev, A. B.; Kozeev, A. M.; Aleksandrova, N. S.; Struchkova, M. I.; Suponitsky, K. Yu. *Chem. Heterocycl. Compd.* 2013, 1358. [Химия гетероцикл. соединений 2013, 1457.]
- Dmitriev, D. E.; Strelenko, Yu. A.; Sheremetev, A. B. Russ. Chem. Bull., Int. Ed. 2013, 62, 504. [Изв. AH, Cep. хим. 2013, 503.]
- Stepanov, R. S.; Kruglyakova, L. A.; Astakhov A. M. Russ. J. Gen. Chem. 2009, 79, 1047. [Журнал общ. химии 2009, 79, 874.]
- Физика взрыва; Орленко, Л. П., Ред.; Физматлит: Москва, 2002, 3-е изд., т. 1, с. 204.
- (a) Konkova, T. S.; Miroshnichenko, E. A.; Matyushin, Y. N.; Prokhorova, S. V.; Inozemtsev, J. O.; Inozemtsev, A. V.; Sheremetev, A. B.; Kozeev, A. M.; Pashchenko, L. L. In Energetic Materials: Synthesis, Characterization, Processing. 43rd International Annual Conference of the Fraunhofer ICT, June 26–29, 2012, Karlsruhe, Germany; Karlsruhe, 2012, p. 76.1–12. (b) Miroshnichenko, E. A.; Kon'kova, T. S.; Matyushin, Yu. N.; Berlin, A. A. Dokl. Phys. Chem. 2014, 456(2), 94. [Докл. AH 2014, 456, 673.]
- (а) Лебедев, Ю. А.; Мирошниченко, Е. А.; Кнобель, Ю. К. *Термохимия нитросоединений*; Наука: Москва, 1970, с. 64. (b) Kustova, L. V.; Kirpichev, E. P.; Rubtsov, Yu. I.; Avdonin, V. V.; Korepin, A. G.; Eremenko, L. T. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1981**, *30*, 1830. [*Изв. АН СССР, Сер. хим.* **1981**, 2232.] (c) Kizin, A. N.; Dvorkin, P. L.; Ryzhova, G. L.; Lebedev, Yu. A. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1986**, *35*, 343. [*Изв. АН СССР, Сер. хим.* **1986**, 372.] (d) Sagadeev, E. V.; Gimadeev, A. A.; Barabanov, V. P. *Theor. Found. Chem. Eng.* **2009**, *43*, 108. [*Теорет. основы хим. технологии* **2009**, *43*, 114.] (e) Holmes, J. L.; Aubry, C. *J. Phys. Chem. A* **2012**, *116*, 7196.
- 11. Price, D. M. Thermochim. Acta 2001, 367-368, 253.
- 12. Лотменцев, Ю. М.; Плешаков, Д. В.; Ермакова, Т. Д.; Крюков В. Н. Методы оценки термодинамической устойчивости пластифицированных полимеров; Изд-во РХТУ им. Д. И. Менделеева: Москва, 2000, с. 60.
- (a) Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Angew. Chem., Int. Ed. 2013, 52, 9422. (b) Мадякин, Ф. П.; Тихонова, Н. А. Компоненты и продукты сгорания пиротехнических составов. Полимеры и опигомеры; Изд-во КГТУ: Казань, 2008, т. 2, 492 с. (c) Ang, H. G., Pisharath, S. Energetic Polymers: Binders and Plasticizers for Enhancing Performance; Wiley-VCH: Weinheim, 2012, 218 p.
- 14. Малкин, А. Я.; Чалых, А. Е. Диффузия и вязкость полимеров. Методы измерения; Химия: Москва, 1979, с. 201.
- (a) Meyer, R.; Köhler J.; Homburg A. *Explosives*; Wiley-VCH: Weinheim, 2007, 6th completely revised ed., p. 94, 224. (b) Braak, E. C. *J. Energ. Mater.* **1990**, *8*, 21.