## Э. Лукевиц, П. Арсенян, И. Шестакова

## СИНТЕЗ И ЦИТОТОКСИЧНОСТЬ СИЛИЛ- И КАРБОНИЛЗАМЕЩЕННЫХ ИЗОКСАЗОЛОВ

Различные дифенилметилсилил- и карбонилзамещенные изоксазолы получены реакцией [2+3]-диполярного циклоприсоединения окисей нитрилов к дифенилметилсилил-, гидроксиметил-, метоксиметил- и этоксикарбонилацетиленам. Обнаружено, что полученные изоксазолы обладают средней цитотоксичностью на линиях клеток HT-1080 и MG-22A. Наибольший уровень активности показал 3-метил-5-дифенилметилсилилизоксазол.

**Ключевые слова**: изоксазол, кремний, силильная группа, циклоприсоединение, цитотоксичность.

Производные изоксазола вызывают интерес как ценные синтоны в органическом синтезе и потенциально биологически активные вещества [1–3]. Силил- и гермилзамещенные изоксазолы проявляют широкий спектр биологической активности. Триэтилсилил-, триэтилгермил-, триэтилгермилметил-, фенилдиметилсилил- и силатранилизоксазолины показали высокий уровень вазодилатирующей, антитромботической и кардиопротекторной активности. Так, 3-(5'-триэтилгермил-3'-изоксазолинил)пиридин гидрохлорид предотвращает нарушение ритма сердца при ишемии [4, 5]. Силил- и гермилизоксазолины обладают средней токсичностью и слабовыраженной цитотоксичностью, а также достаточно высокой психотропной активностью [6]. Напротив, силильные производные 4,4-диоксо-3а,6а-дигидротиено[2,3-d]изоксазолинов-2 обладают выраженной цитотоксичностью, особенно на линиях MG-22A (мышиная гепатома) и НТ-1080 (фибросаркома человека) [7].

Целью данной работы является получение и исследование цитотоксичности дифенилметилсилил- и карбонилизоксазолов.

Реакции [2+3]-диполярного циклоприсоединения окисей нитрилов к

дифенилметилэтинилсилану протекают с образованием дифенилметилсилилзамещенных изоксазолов (табл. 1). Согласно данным ГЖХ, ВЭЖХ и масс-спектрометрического анализа, в реакциях циклоприсоединения образуется только один продукт. По данным ЯМР <sup>1</sup>Н анализа, региоспецифично образуются 5-дифенилметилсилилзамещенные изоксазолы.



1417

| Соеди-<br>нение | R                | Время<br>реакции, ч | Темпе-<br>ратура, °С | Выход, % |
|-----------------|------------------|---------------------|----------------------|----------|
| 1               | Me               | 4                   | 80                   | 71       |
| 2               | Ph               | 2                   | 20                   | 80       |
| 3               | $4-(F_3C)C_6H_4$ | 2                   | 20                   | 75       |
| 4               | 2-Py             | 5                   | 20                   | 58       |
| 5               | 3-Py             | 5                   | 20                   | 55       |
| 6               | 4-Py             | 5                   | 20                   | 64       |

Таблица 1 Синтез дифенилметилсилилзамещенных изоксазолов 1–6

Для получения 3-метил-5-дифенилметилсилилизоксазола 1 использовался метод Мукайамы [8]. Реакцию проводили в бензоле, добавляя по каплям нитроэтан с каталитическим количеством триэтиламина к смеси этинилсилана и двойного эквивалента фенилизоцианата. О протекании реакции свидетельствует выделение CO<sub>2</sub> и выпадение в осадок дифенилмочевины.

Изоксазолы, содержащие в положении 3 арильную группу 2–6, получают при добавлении по каплям хлорангидрида арилгидроксамовой кислоты к раствору силилацетилена и эквимолярного количества триэтиламина в эфире. О начале реакции свидетельствует выпадение осадка гидрохлорида триэтиламина. Циклоприсоединение замещенных хлорангидридов бензгидроксамовых кислот к дифенилметилэтинилсилану проходит с более высокими выходами, чем пиридиновых аналогов, вследствие пониженной растворимости последних в бензоле.

Сигнал ароматического протона изоксазольного кольца H(4) в спектре ЯМР <sup>1</sup>Н находится в пределах 6.26–6.84 м. д. Метильная группа силильного заместителя дает сигнал в районе 0.80–0.91 м. д. Смещение сигнала в сторону более слабого поля вызывается введением в положение 3 ароматического заместителя (табл. 3).



Диполярное присоединение окисей нитрилов к пропаргиловому спирту, метилпропаргиловому эфиру и этиловому эфиру пропиоловой кислоты проходит с образованием 5-замещенных изоксазолов 7–17 с хорошими выходами (55–90%).

Реакцию проводят при комнатной температуре в бензоле и добавлении по каплям раствора триэтиламина к смеси хлорангидрида арилгидроксамовой кислоты и эквимолярного количества производного ацетилена. Полученные этиловые эфиры изоксазолкарбоновых кислот 10–12 превращают в соответствующие амиды обычным методом, растворяя в этиловом спирте с пятикратным избытком амина и оставляя на 3–4 дня. В результате были получены амиды изоксазолкарбоновых кислот 13–17 с удовлетворительными выходами (табл. 2). Спектры ЯМР <sup>1</sup>Н полученных продуктов представлены в табл. 3.

Таблица 2

| Соеди- | R                   | R'                                                | R'' R''' |                              | Выход, |
|--------|---------------------|---------------------------------------------------|----------|------------------------------|--------|
| нение  |                     |                                                   |          |                              |        |
| 7      | CH <sub>2</sub> OMe | 2-MeOC <sub>6</sub> H <sub>4</sub>                |          |                              | 90     |
| 8      | CH <sub>2</sub> OH  | 2-MeOC <sub>6</sub> H <sub>4</sub>                |          |                              | 80     |
| 9      | CH <sub>2</sub> OMe | 3-Py                                              |          |                              | 67     |
| 10     | COOMe               | 2-MeOC <sub>6</sub> H <sub>4</sub>                |          |                              | 86     |
| 11     | COOEt               | 2-CHF <sub>2</sub> OC <sub>6</sub> H <sub>4</sub> |          |                              | 80     |
| 12     | COOEt               | 3-Py                                              |          |                              | 55     |
| 13     |                     | 2-MeOC <sub>6</sub> H <sub>4</sub>                | Me       | Me                           | 65     |
| 14     |                     | 2-CHF <sub>2</sub> OC <sub>6</sub> H <sub>4</sub> | Me       | Me                           | 65     |
| 15     |                     | 3-Py                                              | Me       | Me                           | 62     |
| 16     |                     | 3-Ру                                              |          | N                            | 50     |
| 17     |                     | 3-Py                                              | Н        | $\mathrm{CH}_{2}\mathrm{Ph}$ | 42     |

Данные по получению карбонилзамещенных изоксазолов 7–17

Для части синтезированных веществ исследованы цитотоксические свойства *in vitro* в отношении двух линий опухолевых клеток: HT-1080 (фибросаркома человека), MG-22A (мышиная гепатома). Концентрации веществ, обеспечивающие 50% гибель клеток *in vitro* (TD<sub>50</sub>) (табл. 4), были определены с помощью стандартной методики по интенсивности окрашивания клеточных мембран кристаллическим фиолетовым и митохондриальных энзимов бромидом 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия [9–11].

В ряду 5-дифенилметилсилилизоксазолов 1–6 наибольший цитотоксический эффект был обнаружен у 3-метилзамещенного изоксазола 1. Фенилзамещенные аналоги 2, 3 не обладают цитотоксичностью, а 3- и 4-пиридилпроизводные 5 и 6 показали среднюю активность. При замещении метоксиметильной группы в положении 5 в соединении 7 на этоксикарбонильную и аминокарбонильную происходит понижение цитотоксичности до полного ее отсутствия в случае 3-(3'-пиридил)-5пиперидинокарбонилизоксазола (16).

| Соеди-<br>нение | Химический сдвиг, м. д.                                                                                                                                                                                                                                                                                         |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1               | 0.80 (3H, c, MeSi); 2.24 (3H, c, Me); 6.26 (1H, c, CH); 7.31-7.50 (10H, м, аром.).                                                                                                                                                                                                                              |  |  |
| 2               | 0.87 (3H, с, MeSi); 6.73 (1H, с, CH); 7.31–7.86 (15H, м, аром.).                                                                                                                                                                                                                                                |  |  |
| 3               | 0.89 (3H, с, MeSi); 6.76 (1H, с, CH); 7.32–7.71 (14H, м, аром.).                                                                                                                                                                                                                                                |  |  |
| 4               | 0.90 (3H, c, MeSi); 6.84 (1H, c, CH); 7.34–7.52 (12H, м, аром.); 7.91 (1H, т д,<br>J = 2, J= 8 Гц, CH); 8.56 (1H, д д, J = 2, J = 6 Гц, CH)                                                                                                                                                                     |  |  |
| 5               | 0.91 (3H, c, MeSi); 6.80 (1H, c, CH); 7.30–7.50 (11H, м, аром.); 8.13 (1H, т д,<br><i>J</i> = 2, <i>J</i> = 8 Гц, CH); 8.64 (1H, д д, <i>J</i> = 2, <i>J</i> = 6 Гц, CH); 8.99 (1H, д, <i>J</i> = 2 Гц, CH)                                                                                                     |  |  |
| 6               | 0.90 (3H, c, MeSi); 6.83 (1H, c, CH); 7.30–7.50 (10H, м, аром.); 8.64 (2H, д д,<br>J = 6.8 Гц, 2CH); 9.05 (2H, д д, J = 6.8 Гц, 2CH)                                                                                                                                                                            |  |  |
| 7               | 3.45 (3H, c, MeO); 3.88 (3H, c, MeO); 4.58 (2H, c, CH <sub>2</sub> ); 6.76 (1H, c, CH); 6.96–7.06 (2H, м, аром.); 7.35–7.45 (2H, м, аром.); 7.85–7.90 (1H, м, аром.)                                                                                                                                            |  |  |
| 8               | 2.45 (1H, c, HO); 3.88 (3H, c, MeO); 4.60 (2H, c, CH <sub>2</sub> ); 6.56 (1H c, CH); 6.96–7.06 (2H, м, аром.); 7.35–7.45 (2H, м, аром); 7.85–7.90 (1H, м, аром.)                                                                                                                                               |  |  |
| 9               | 3.46 (3H, c, CH <sub>3</sub> ); 4.62 (2H, c, CH <sub>2</sub> ); 6.62 (1H c, CH); 7.33–7.55 (1H, м, аром.);<br>8.14 (1H, т д, <i>J</i> = 2, <i>J</i> = 8.2 Гц, аром.); 8.70 (1H, д д, <i>J</i> = 2, <i>J</i> = 4.6 Гц, аром.);<br>9.00 (1H, д, <i>J</i> = 2 Гц, аром.)                                           |  |  |
| 10              | 3.73 (1H, д, <i>J</i> = 0.5 Гц, CH); 3.89 (3H, с, MeO); 3.96 (3H с, MeO); 6.85–7.06 (2H, м, аром.); 7.32–7.54 (2H, м, аром.); 7.84–7.96 (1H, м, аром.)                                                                                                                                                          |  |  |
| 11              | 1.44 (3H, т, <i>J</i> = 8 Гц, CH <sub>3</sub> ); 3.46 (2H, кв, <i>J</i> = 8 Гц); 4.22 (1H, с, CH); 6.60 (1H с, CH); 6.62 (1H, с, F <sub>2</sub> CHO); 7.17–7.46 (3H, м, аром.); 7.94–8.04 (1H, м, аром.)                                                                                                        |  |  |
| 12              | 1.42 (3H, т, <i>J</i> = 7.2 Гц, CH <sub>3</sub> ); 3.52 (2H, кварт, <i>J</i> = 7.2 Гц, CH <sub>2</sub> ); 7.29 (1H, с, CH);<br>7.36–7.51 (1H, м, аром.); 8.17 (1H, т д, <i>J</i> = 2 Гц, <i>J</i> = Гц, аром.); 8.75 (1H, д д,<br><i>J</i> = 2, <i>J</i> = 4.6 Гц, аром.); 9.08 (1H, д, <i>J</i> = 2 Гц, аром.) |  |  |
| 13              | 3.13 (3H, c, Me <sub>2</sub> N); 3.32 (1H, c, CH); 3.91 (3H, c, MeO); 6.88–7.05 (1H, м, аром.); 7.35–7.54 (2H, м, аром.); 7.88–7.98 (1H, м, аром.)                                                                                                                                                              |  |  |
| 14              | 3.17 (6H, c, Me <sub>2</sub> N); 3.75 (1H, c, CH); 6.44 (1H, c, CHF <sub>2</sub> O); 7.38–7.60 (4H, м, аром.)                                                                                                                                                                                                   |  |  |
| 15              | 3.17 (3H, с, Me <sub>2</sub> N); 3.28 (1H, с, CH); 7.11 (1H, с, CH); 7.33–7.51 (1H, м, аром.);<br>8.11 (1H, т д, <i>J</i> = 2.1, <i>J</i> = 8.2 Гц, аром.); 8.71 (1H, д д, <i>J</i> = 2.1, <i>J</i> = 4.6 Гц, аром.);<br>8.93 (1H, д, <i>J</i> = 2.1 Гц, аром.)                                                 |  |  |
| 16              | 2.57–2.63 (4 H, м, CH <sub>2</sub> N), 1.45–1.57 (6 H, м, CH <sub>2</sub> ); 3.28 (1H, с, CH); 7.11 (1H, м, CH); 7.33–7.51 (1H, м, аром.); 8.11 (1H, м, <i>J</i> = 2.1, <i>J</i> = 8.2 Гц, аром.); 8.71 (1H, д, <i>J</i> = 2.1, <i>J</i> = 4.6 Гц, аром.); 8.93 (1H, <i>J</i> = 2.1 Гц, аром.)                  |  |  |
| 17              | 4.66 (2H, c, CH <sub>2</sub> ); 6.89 (1H, c, NH); 7.11 (1H, c, CH); 7.25–7.51 (6H, м, аром.);<br>8.11 (1H, т д, <i>J</i> = 2.1, <i>J</i> = 8.2 Гц, аром.); 8.71 (1H, д д, <i>J</i> = 2.1, <i>J</i> = 4.6 Гц, аром.);<br>8.93 (1H, д, <i>J</i> = 2.1 Гц, аром.)                                                  |  |  |

Спектры ЯМР <sup>1</sup>Н соединений 1–17

Уровень генерирования NO особенно высоко проявляется у 3-пиридилзамещенного силилизоксазола (5) (до 350% на линии MG-22A) и метоксиметильного и гидроксиметильного производных 7 и 8, особенно на линии MG-22A (до 400%).

Таблица 4

|        | Линии клеток       |                    |           |                    |                    |       |
|--------|--------------------|--------------------|-----------|--------------------|--------------------|-------|
| Соеди- | HT-1080            |                    | MG-22A    |                    |                    |       |
| нение  | TD <sub>50</sub> * | TD <sub>50</sub> * | NO %,     | TD <sub>50</sub> * | TD <sub>50</sub> * | NO %, |
|        | $CV^{*2}$          | MTT <sup>*3</sup>  | $CV^{*4}$ | CV                 | MTT                | CV    |
| 1      | 7                  | 3                  | 75        | 8                  | 12                 | 88    |
| 2      | *5                 | *5                 | 9         | *5                 | 100                | 13    |
| 3      | *5                 | *2                 | 17        | 17                 | 39                 | 22    |
| 4      | 44                 | *2                 | 20        | *2                 | *2                 | 13    |
| 5      | 40                 | 47                 | 254       | 33                 | 41                 | 350   |
| 6      | 33                 | 45                 | 104       | 41                 | 36                 | 54    |
| 7      | 13                 | 28                 | 43        | 10                 | 17                 | 250   |
| 8      | 20                 | 46                 | 192       | 14                 | 23                 | 400   |
| 11     | 36                 | *5                 | 13        | 43                 | 74                 | 30    |
| 13     | 42                 | 35                 | 25        | 22                 | 32                 | 155   |
| 14     | *2                 | *2                 | 9         | 100                | 100                | 15    |
| 15     | *2                 | 71                 | 12        | *2                 | *2                 | 8     |
| 16     | *5                 | *5                 | 5         | *5                 | *5                 | 8     |

Цитотоксическая активность *in vitro* силил- и карбонилзамещенных изоксазолов

\* Концентрация, обеспечивающая 50% гибель клеток, мкг/мл.

\*<sup>2</sup> Окрашивание кристаллическим фиолетовым.

\*<sup>3</sup> Окрашивание бромидом 3-(4,5-диметилтиазол-2-ил)-2,5 дифенилтетразолия.

\*<sup>4</sup> NO концентрация (%) (СV окрашивание).

\*5 Отсутствует цитотоксическая активность.

Самой высокой активностью из всех исследованных соединений отличается 3-метил-5-дифенилметилсилилизоксазол (1), что открывает возможность поиска новых цитотоксически активных веществ в ряду 3-алкилзамещенных силильных производных изоксазола.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР <sup>1</sup>Н сняты на спектрометре Bruker WH-90/DS (90 МГц) в CDCl<sub>3</sub>, внутренний стандарт ТМС. Элементные анализы выполнены с помощью анализатора Carlo Erba 1108. Изоксазолины были очищены с использованием хроматографической колонки (носитель — силикагель 0.060–0.0200 мм, диаметр пор 6 нм, фирмы Acros, элюент этилацетат/петролейный эфир). Оптическая плотность в биологических тестах, проводимых на 96-луночных панелях, определялась горизонтальным спектрофотометром Tetertek Multiscan MCC/340.

**3-Метил-5-дифенилметилсилилизоксазол (1)**. Раствор нитроэтана (0.4 г, 5.4 ммоль) и триэтиламина (1 капля) в сухом бензоле добавляют по каплям в течение 4 ч к смеси дифенилметилэтинилсилана (1.2 г, 5.4 ммоль) и двух эквивалентов фенилизоцианата (1.28 г, 0.0108 моль) при комнатной температуре. Через несколько минут начинает выделяться углекислый газ и выпадать в осадок дифенилмочевина. Реакционную смесь нагревают 2 ч при 70–80 °С. После охлаждения до комнатной температуры дифенилмочевину отфильтровывают, раствор упаривают. Целевой продукт выделяют на хроматографической колонке. Выход 71%. Содержание основного вещества 98.2%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×150 мм, система: 70% ацетонитрил + 30% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: С 73.15; Н 6.15; N 4.96. C<sub>17</sub>H<sub>17</sub>NOSi. Вычислено, %: С 73.08; Н 6.13; N 5.01.

**3-Фенил-5-дифенилметилсилилизоксазол (2)**. Раствор хлорангидрида арилгидроксамовой кислоты (0.01 моль) в сухом эфире добавляют по каплям в течение 2 ч к смеси дифенилметилэтинилсилана (0.01 моль) и триэтиламина (0.01 моль) в сухом эфире при комнатной температуре. Спустя несколько минут начинает выпадать триэтиламин солянокислый. Реакционную смесь перемешивают 2 ч. Затем осадок отфильтровывают, растворитель упаривают. Целевой продукт выделяют на хроматографической колонке. Выход 80%. Содержание основного вещества 98.2%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×150 мм, система: 70% ацетонитрил + 30% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: С 77.15; Н 5.67; N 4.06. С<sub>22</sub>H<sub>19</sub>NOSi. Вычислено, %: С 77.38; Н 5.61; N 4.10.

**3-(4'-Трифторметилфенил)-5-дифенилметилсилилизоксазол (3)**. Получают аналогично **2**. Целевой продукт выделяют на хроматографической колонке. Выход 75%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Ultrasphere, 4.6×250 мм, система: 10% ацетонитрил + 90% гексан). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 67.56; Н 4.51; N 3.25. С<sub>23</sub>H<sub>18</sub>F<sub>3</sub>NOSi. Вычислено, %: С 67.47; Н 4.43; N 3.42.

**3-(2'-Пиридил)-5-дифенилметилсилилизоксазол** (4). Дифенилметилэтинилсилан (0.01 моль), триэтиламин (0.01 моль) и хлорангидрид пиридингидроксамовой кислоты растворяют в 50 мл сухого бензола и интенсивно перемешивают при комнатной температуре. Далее осадок (триэтиламин солянокислый) отфильтровывают, растворитель упаривают. Целевой продукт выделяют на хроматографической колонке. Выход 58%. Содержание основного вещества 98.3%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×150 мм, система: 70% ацетонитрил + 30% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 73.56; Н 6.31; N 3.92. C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>OSi. Вычислено, %: С 73.65; Н 5.30; N 4.09. Вещество светочувствительно.

**3-(3'-Пиридил)-5-дифенилметилсилилизоксазол (5)**. Получают аналогично **4**. Целевой продукт выделяют на хроматографической колонке. Выход 55%. Содержание основного вещества 98.2 %, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×150 мм, система: 70% ацетонитрил + 30% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 73.65; Н 6.33; N 4.06. C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>OSi. Вычислено, %: С 73.65; Н 5.30; N 4.09.

**3-(4'-Пиридил)-5-дифенилметилсилилизоксазол (6)**. Получают аналогично **4**. Целевой продукт выделяют на хроматографической колонке. Выход 64%. Содержание основного вещества 98.4%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×150 мм, система: 70% ацетонитрил + 30% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 73.62; Н 6.36; N 4.14. C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>OSi. Вычислено, %: С 73.65; Н 5.30; N 4.09.

**3-(о-Метоксифенил)-5-метоксиметилизоксазол (7).** Раствор триэтиламина (0.01 моль) в сухом бензоле добавляют по каплям в течение 2 ч к смеси метилпропаргилового эфира (0.01 моль) и хлорангидрида арилгидроксамовой кислоты (0.01 моль) в сухом бензоле и при комнатной температуре. Спустя несколько минут начинает выпадать триэтиламин солянокислый. Реакционную смесь перемешивают 2 ч. Затем осадок отфильтровывают, растворитель упаривают. Целевой продукт выделяют на хроматографической колонке. Выход 90%. Содержание основного вещества 98.4%, согласно данным ВЭЖХ (Symmetry  $C_{18}$ ,  $3.9 \times 150$  мм, система: 50% ацетонитрил + 50% H<sub>2</sub>O). Детектор УФ ( $\lambda = 254$  нм). Найдено, %: C 65.83; H 6.03; N 6.43.  $C_{12}H_{13}NO_3$ . Вычислено, %: C 65.74; H 5.98; N 6.39.

**3-(о-Метоксифенил)-5-гидроксиметилизоксазол (8).** Получают аналогично 7. Целевой продукт выделяют на хроматографической колонке. Выход 80%. Содержание основного вещества 98.4%, согласно данным ВЭЖХ (Symmetry C<sub>18</sub>, 3.9×150 мм, система: 50% ацетонитрил + 50% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 64.33; Н 5.45; N 6.70. С<sub>11</sub>H<sub>11</sub>NO<sub>3</sub>. Вычислено, %: С 64.38; Н 5.40; N 6.83.

**3-(3'-Пиридил)-5-метоксиметилизоксазол (9).** Получают аналогично **7**. Целевой продукт выделяют на хроматографической колонке. Выход 67%. Содержание основного вещества 98.4%, согласно данным ВЭЖХ (Symmetry C<sub>18</sub>, 3.9×150 мм, система: 30% ацетонитрил + 70% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: С 63.24; Н 5.38; N 14.85. С<sub>10</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>. Вычислено, %: С 63.15; Н 5.30; N 14.73.

**3-(о-Метоксифенил)-5-этоксикарбонилизоксазол (10).** Получают аналогично 7. Целевой продукт выделяют на хроматографической колонке. Выход 86%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Ultrasphere, 4.6×250 мм, система: 10% этилацетат + 90% гексан). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 66.35; Н 5.10; N 6.65. С<sub>12</sub>Н<sub>11</sub>NO<sub>4</sub>. Вычислено, %: С 66.43; Н 5.17; N 6.55

**3-(о-Дифторметоксифенил)-5-этоксикарбонилизоксазол (11).** Получают аналогично 7. Целевой продукт выделяют на хроматографической колонке. Выход 80%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 4.6×250 мм, система: 60% ацетонитрил + 40% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: С 55.25; Н 4.08; N 4.85. C<sub>13</sub>H<sub>11</sub>F<sub>2</sub>NO<sub>4</sub>. Вычислено, %: С 55.13; Н 3.92; N 4.95.

1422

**3-(3'-Пиридил)-5-этоксикарбонилизоксазол (12).** Получают аналогично 7. Целевой продукт выделяют на хроматографической колонке. Выход 80%. Содержание основного вещества 99%, согласно данным ВЭЖХ (Kromasil 100-C<sub>18</sub>, 4.6×150 мм, система: ацетонитрил +  $[0.1\% H_3PO_4+H_2O]$ ). Детектор УФ ( $\lambda$  = 330 нм). Найдено, %: C 60.45; H 4.68; N 12.75. C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub>. Вычислено, %: C 60.55; H 4.62; N 12.84.

**3-(о-Метоксифенил)-5-диметиламинокарбонилизоксазол (13).** Раствор этоксикарбонильного производного **10** (0.01 моль) в этиловом спирте приливают к 30% раствору диметиламина в воде (0.05 моль) и оставляют при комнатной температуре на несколько дней. Далее растворитель упаривают. Целевой продукт выделяют на хроматографической колонке. Выход 65%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 3.9×150 мм, система: 10% этилацетат + 90% гексан). Детектор УФ ( $\lambda = 254$  нм). Найдено, %: С 63.33; Н 5.68; N 11.39. С<sub>13</sub>Н<sub>14</sub>N<sub>2</sub>O<sub>3</sub>. Вычислено, %: С 63.40; Н 5.73; N 11.37.

**3-(о-Дифторметоксифенил)-5-диметиламинокарбонилизоксазол (14).** Получают аналогично **13**. Целевой продукт выделяют на хроматографической колонке. Выход 65%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Zorbax C<sub>18</sub>, 3.9×150 мм, система: 60% ацетонитрил + 40% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 254 нм). Найдено, %: С 55.21; H 4.33; N 10.04. C<sub>13</sub>H<sub>12</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>. Вычислено, %: С 55.32; H 4.29; N 9.92.

**3-(3'-Пиридил)-5-диметиламинокарбонилизоксазол (15).** Получают аналогично **13**. Целевой продукт выделяют на хроматографической колонке. Выход 62%. Содержание основного вещества 99%, согласно данным ВЭЖХ (Symmetry C<sub>18</sub>, 3.9×150 мм, система: 20% ацетонитрил + 80% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: С 60.77; Н 5.08; N 19.51. С<sub>11</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub>. Вычислено, %: С 60.82; Н 5.10; N 19.34.

**3-(3'-Пиридил)-5-пиперидинокарбонилизоксазол (16).** Получают аналогично **13** в спиртовом растворе. Целевой продукт выделяют на хроматографической колонке. Выход 50%. Содержание основного вещества 98.5%, согласно данным ВЭЖХ (Symmetry C<sub>18</sub>,  $3.9\times150$  мм, система: 30% ацетонитрил + 70% H<sub>2</sub>O). Детектор УФ ( $\lambda = 254$  нм). Найдено, %: C 65.33; H 5.79; N 16.39. C<sub>14</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>. Вычислено, %: C 65.36; H 5.88; N 16.33.

**3-(3'-Пиридил)-5-бензиламинокарбонилизоксазол (17).** Получают аналогично **13** в спиртовом растворе. Целевой продукт выделяют на хроматографической колонке. Выход 42%. Содержание основного вещества 98.3%, согласно данным ВЭЖХ (Symmetry C<sub>18</sub>,  $3.9\times150$  мм, система: 20% ацетонитрил + 80% H<sub>2</sub>O). Детектор УФ ( $\lambda$  = 220 нм). Найдено, %: C 68.72; H 4.58; N 15.01. C<sub>16</sub>H<sub>13</sub>N<sub>3</sub>O<sub>2</sub>. Вычислено, %: C 68.81; H 4.69; N 15.04.

## СПИСОК ЛИТЕРАТУРЫ

- 1. C. J. Easton, C. Merrice, M. Hughes, C. P. Savage, G. W. Simpson, in *Adv. in Heterocyclic Chemistry*, Ed. by Alan R. Katritzky, Academic Press, **60**, 261 (1994).
- 2. Sh. Pan, N. M. Amaukulor, K. Zhao, Tetrahedron, 54, 6587 (1998).
- 3. Э. Лукевиц, П. Арсенян, XГС, 1155 (1998).
- 4. E. Lukevics, M. Veveris, V. Dirnens, Appl. Organomet. Chem., 11, 805 (1997).
- 5. E. Lukevics, P. Arsenyan, M. Veveris, Metal-Based Drugs, 5, 251 (1998).
- 6. E. Lukevics, P. Arsenyan, S. Germane, I. Shestakova, *Appl. Organomet. Chem.*, **13**, 795 (1999).
- E. Lukevics, P. Arsenyan, I. Shestakova, O. Zharkova, I. Kanepe, R. Mezapuke, O. Pudova, *Metal–Based Drugs*, 7, 63 (2000).
- 8. T. Mukaiyama, T. Hoshito, J. Am. Chem. Soc., 82, 5339 (1960).
- 9. D. J. Fast, R. C. Lynch, R. W. Leu, J. Leukocyt. Biol., 52, 255 (1992).
- 10. P. J. Freshney, Culture of Animal Cells (A Manual of Basic Technique), Wiley-Liss, New York, 1994, 296.
- 11. R. J. Riddell, R. H. Clothier, M. Fd. Balls, Chem. Toxicol., 24, 469 (1986).

Латвийский институт органического синтеза, Pura LV-1006 e-mail: pavel.arsenyan@mailcity.com Поступило в редакцию 07.08.2000