И. В. Курдюкова¹, А. А. Ищенко^{1*}, Н. А. Деревянко¹, Д. Д. Мысык²

СИНТЕЗ И СПЕКТРАЛЬНЫЕ СВОЙСТВА МЕРОЦИАНИНОВЫХ КРАСИТЕЛЕЙ НА ОСНОВЕ ТЕТРАНИТРОФЛУОРЕНА И ГЕТЕРОЦИКЛОВ РАЗЛИЧНОЙ ЭЛЕКТРОНОДОНОРНОСТИ

Синтезированы ди-, тетра- и гексаметинмероцианины на основе 2,4,5,7-тетранитрофлуорена и гетероциклических фрагментов различной электронодонорности. Исследованы их спектры поглощения в растворителях различной полярности. Проведён квантово-химический анализ электронного строения и типов электронных переходов синтезированных мероцианинов методами DFT и TDDFT с базисом B3LYP/6-31G(d,p). Показано, что по мере увеличения электронодонорности гетероциклического фрагмента и полярности растворителя электронное строение мероцианинов может изменяться от структуры нейтрального полиена к полиметину и биполярному полиену, что существенно отражается на положении, интенсивности и форме полос поглощения, виниленовых сдвигах, девиациях, а также на знаке сольватохромии.

Ключевые слова: мероцианины, 2,4,5,7-тетранитрофлуорен, квантово-химические расчёты, сольватохромия, электронное строение, электронные спектры.

В последнее время все больший интерес проявляется к донорно-акцепторным системам, содержащим либо сильный электронодонор, либо сильный электроноакцептор. Такие соединения, благодаря внутримолекулярному переносу заряда, весьма перспективны для создания органических полупроводниковых материалов, а также сенсибилизаторов фототермопластических голографических [1–6], фотовольтаических [7] и электролюминесцентных [8] сред. Много работ в этой области посвящено донорно-акцепторным системам на основе тетранитрофлуорена [9–11]. Однако чаще он используется как компонент смесевых комплексов с полимерами или другими донорными соединениями. Поэтому представляет интерес получить внутримолекулярные донорно-акцепторные системы на его основе. Ранее синтезированы отдельные представители таких соединений [2, 4], но целенаправленного и систематического исследования не проводилось.

Особое место среди донорно-акцепторных систем с внутримолекулярным переносом заряда занимают мероцианиновые красители. Они, благодаря широкому набору практически важных свойств: ярко выраженной сольватохромии, способности существенно изменять дипольный момент при электронном возбуждении и сенсибилизировать различные физико-химические процессы, находят все более широкое применение в оптоэлектронике, нелинейной оптике, средствах записи и обработки информации, медицине и биологии [12, 13].

В настоящей работе мы задались целью синтезировать и исследовать ряды мероцианинов на основе 2,4,5,7-тетранитрофлуорена, содержащих гетероциклические фрагменты различной электронодонорности.

С введением во флуореновое ядро сильных электроноакцепторных заместителей – нитрогрупп – цианиновая конденсация по метиленовой группе, в отличие от незамещённого флуорена [14], протекает значительно легче. Мероцианины 2–4 синтезированы взаимодействием 2,4,5,7-тетранитрофлуорена (1) [15] с альдегидом и гемицианинами на основе 1,3,3-триметил-3*H*-индола в стандартных условиях цианиновой конденсации.

Синтез красителей **8–16** с другими гетероциклическими фрагментами проводился при взаимодействии гемицианинов на основе тетранитрофлуоренов **5** [16], **6** и **7** с соответствующими четвертичными солями гетероциклов в стандартных условиях цианиновой конденсации.

306

Следует отметить, что соединение 16 оказалось плохо растворимым в расворителях, используемых для спектроскопии ЯМР ¹Н, что затрудняло получение качественного спектра, поэтому для подтверждения структуры соединения 16 по аналогичной методике был синтезирован также ди-*трет*-бутильный аналог 17, более растворимый, чем мероцианин 16.

Спектральные характеристики – максимумы поглощения (λ_{max}), экстинкции (ϵ) и девиации (D) – мероцианинов **2–4** и **8–17** приведены в табл. 1.

Соединения 2–4, 8–17, в отличие от классических мероцианинов [17], обладают многополосными спектрами поглощения, как и симметричные анионные полиметины с концевыми ядрами тетранитрофлуорена [16]. Форма полос спектров поглощения мероцианинов с гетероциклическими фрагментами средней (соединения 2–4) и сильной (соединения 8–10) электронодонорности значительно отличается от таковой для мероцианинов 11–17, содержащих слабоэлектронодонорные гетероциклические фрагменты (рис. 1, табл. 1).

В рядах мероцианинов 2–4 и 8–17 с увеличением электронодонорности гетероциклов от пирана и бензо[*cd*]индола к индолу и бензимидазолу в спектрах наблюдаются сужение и рост интенсивности коротковолновой полосы и обратный эффект для длинноволновой (рис. 1).

Результаты квантово-химических расчётов указывают на то, что теоретические спектры поглощения мероцианинов 2–4 и 8–17, хотя и являются многополосными, определяются π – π * электронными переходами (табл. 2). Большое количество рассчитанных полос поглощения, как и в случае симметричных полиметиновых красителей на основе тетранитрофлуорена [16], обусловлено наличием дополнительных уровней, локализованных на нитрогруппах. Основные полосы теоретических спектров поглощения имеют различную природу.

Рис. 1. Электронные спектры поглощения мероцианинов **3** (*1*), **9** (*2*), **12** (*3*) и **15** (*4*) в CH₂Cl₂

таолица .	Т	а	б	л	И	Ц	а	1
-----------	---	---	---	---	---	---	---	---

	Растворитель								
Соеди-		Толуол		CH_2Cl_2			ДМФА		
нение	λ_{max} ,	ε·10 ⁻⁴ ,	λ_{max} ,	ε·10 ⁻⁴ ,	<i>D</i> ,	λ_{max} ,	ε·10 ⁻⁴ ,	D	
	HM	$л \cdot моль^{-1} \cdot cm^{-1}$	HM	$л \cdot моль^{-1} \cdot cm^{-1}$	НМ	HM	$л \cdot моль^{-1} \cdot cm^{-1}$	D, HN	
2	640	1.99	655	1.71		673	1.56		
	612	1.99	515*	5.49	30.0	524*	4.85	19.5	
	502*	5.23	381	2.24		390	2.25		
	381	2.06							
3	696	4.31	718	3.42		731	2.76		
	566*	4.43	597*	5.59	32.0	613*	6.50	9.0	
	369	1.86	376	1.72		392	1.77		
4	773	5.90	805	6.33		810	5.20		
	627*	3.87	675*	4.99	44.5	706*	6.13	6.5	
	372	1.57	377	1.66		397	1.71		
			298	2.36		299	2.39		
8	724	1.31	747	1.16		747	0.85		
	673	1.24	522*	4.82	11.0	517*	3.21	11.5	
	521*	6.05	455	2.75		450	3.06		
	394	2.13	401	2.66		413	2.96		
	302	1.89	283	3.32		294	2.47		
9	790	2.31	809	1.79		826	1.09		
-	729	2.53	610*	8.57	5.5	602*	4.82	9.0	
	603*	6.42	405	2.19		521	3.31		
	391	1.44	289	3.07		417	2.41		
						298	2.77		
10	873	5.83	856	2.65		884	1.16		
	828	6.17	692*	9.12	13.5	668*	4.41	29.0	
	690*	6 43	408	2.41	10.0	417	2.37	_>	
	391	1.82	294	2.77		326	2.53		
11	696	3.87	708	3.70		720	4.54	_	
	642	2.62	588	2.66	66.5	601	3.21		
	575*	2.05	365	2.02		369	2.83		
	533	1.26	292	2.80		292	4.20		
	360	1.77							
12	772	5.21	795	5.53	89.0	800	4.98	_	
	712	4.67	732	4.52	85.0	739	4.61		
	621*	2.53	656	3.19		670	3.28		
	369	1.95	372	2.44		377	2.11		
			294	3.13		296	2.75		
13	773	_**	865	_**		802	4.15	_	
-	655*		809		142.0	696*	3.33		
	382		696*			383	2.00		
			376			289	3.33		
			284						
14	684	3.91	687	3.97		689	3.84	_	
	637	3.38	566*	3.67	47.0	577*	3.58		
	559*	3.19	363	3.14		366	3.04		
	529	2.72							
	381	2.84							
15	761	3.89	777	_**		778	4.71	_	
-	699	4.04	712		69.0	720	4.41		
	631*	3.07	637*			658*	3.91		
	362	1.99	370			371	2.33		
16	748	3.66	868	3.19		871	2.95	_	
	697*	3.36	796	4.81		796	3.99	1	
	352	2.50	693*	4.25	108.5	690*	3.86	1	
			364	2.31		373	2.19		
17	779	4.92	827	6.14		824	5.30	_	
	717*	6.03	765*	5.69		748*	5.28		
			074	1.05	1		1.60	1	

Спектральные свойства мероцианинов 2–4 и 8–17

* Полосы полиметиновой природы.

** Не определялся в связи с низкой растворимостью в данных растворителях.

Рис. 2. Изменение электронной плотности в мероцианине **4** при переходе $S_0 \rightarrow S_1$ (— увеличение, — уменьшение электронной плотности)

Длинноволновая полоса в теоретическом спектре соединения **4** обусловлена переносом электронной плотности вдоль длинной оси молекулы мероцианина от донорного гетероциклического фрагмента к акцепторному флуореновому (рис. 2). Её можно рассматривать как полосу переноса заряда.

Коротковолновая полоса сопровождается переносом электронной плотности между соседними атомами полиметиновой цепи и её частичным возрастанием на нитрогруппах флуоренового ядра (рис. 3). Это соответствует полиметиновой природе полосы поглощения.

В расчётных спектрах всех мероцианинов имеется наиболее коротковолновая полоса, обусловленная взаимодействием орбиталей, которые локализованы на флуореновом ядре и нитрогруппах. За неё отвечает один из высших электронных переходов, например у мероцианина $4 - S_0 \rightarrow S_7$. Она практически совпадает с экспериментальной коротковолновой полосой в спектре поглощения, которая находится в области 370–400 нм.

С ростом длины полиметиновой цепи или переходе от одного гетерофрагмента к другим положение, интенсивность и форма наиболее коротковолновой полосы практически не изменяются. Сольватохромные сдвиги малы и не превышают 5 нм. Такая же полоса имелась в спектрах симметричных анионных красителей на основе тетранитрофлуорена. Все эти факты дают основание считать, что данная полоса обусловлена собственным поглощением ядра тетранитрофлуорена.

Рис. 3. Изменение электронной плотности в мероцианине 4 при переходе $S_0 \rightarrow S_2$

Вывод о природе переходов согласуется также со значительно бо́льшим ростом рассчитанных дипольных моментов мероцианинов при переходе в состояние S_1 по сравнению с состоянием S_2 . Это означает, что электронное строение мероцианина в основном и возбуждённом состояниях в случае перехода с переносом заряда отличается существенно сильнее, чем при полиметиновом переходе. Согласно принципу Франка–Кондона интенсивность поглощения света в первом случае должна быть меньше по сравнению с последним. На это же указывают и рассчитанные квантово-химически значения силы осциллятора f_{reop} (табл. 2). Действительно, экспериментальные длинноволновые полосы поглощения, менее интенсивны, чем аналогичные коротковолновые полосы (табл. 1).

Рост теоретических дипольных моментов при возбуждении предполагает положительную сольватохромию для перехода $S_0 \rightarrow S_2$ у всех исследуемых мероцианинов (табл. 2). Действительно, любое увеличение полярности растворителя

Таблица 2

Соеди- нение	λ _{max, теор} , HM	$f_{\rm reop}$	μ, Д	μ*, Д	µ** ^б ,Д	Соеди- нение	λ _{max, теор} , HM	f_{reop}	μ, Д	μ*, Д	µ** ^б ,Д
2	635	0.13	15.18	33.54	33.91	11	672	0.19	14.63	35.09	20.07
	455 ^a	0.28 ^a					517 ^a	0.73 ^a			
	401	0.70					446	0.10			
	367	0.25					378	0.15			
3	676	0.20	18.27	42.00	36.47	12	707	0.30	17.18	43.19	23.81
	489 ^a	0.85 ^a					551 ^a	1.19 ^a			
	434	0.63					383	0.13			
	373	0.25					360	0.12			
4	722	0.28	20.97	50.46	39.55	13	755	0.41	19.42	51.75	30.57
	529 ^a	1.46 ^a					590 ^a	1.62 ^a			
	471	0.15					488	0.14			
	460	0.41					387	0.12			
	378	0.22					375	0.17			
8	701	0.12	17.89	32.68	17.01 ^в	14	642	0.21	17.67	34.32	19.74
	486	0.12					482 ^a	0.97 ^a			
	415 ^a	0.90 ^a					429	0.27			
	376	0.29					375	0.10			
							370	0.16			
							331	0.12			
9	742	0.17	22.22	42.51	28.51 ^в	15	695	0.29	20.38	43.12	23.19
	514	0.55					525 ^a	1.53 ^a			
	457 ^a	1.05 ^a					460	0.13			
	377	0.27					454	0.14			
							382	0.15			
							370	0.16			
							355	0.10			
10	788	0.25	25.96	51.97	40.41	16	743	0.40	22.77	51.61	28.71
	552 ^a	1.32 ^a					567 ^a	2.02 ^a			
	491	0.72					483	0.18			
	380	0.25					385	0.14			
							372	0.14			
							357	0.11			

Результаты квантово-химических расчётов максимумов поглощения (λ_{max, теор}), силы осциллятора (f_{reop}) и дипольных моментов в основном (μ), первом (μ*) и высших возбуждённых (μ**) состояниях мероцианинов 2–4 и 8–16

^а Полосы полиметиновой природы.

⁶Дипольные моменты во втором возбуждённом состоянии (S₂).

^в Дипольные моменты в четвёртом возбуждённом состоянии (S₄).

в ряду мероцианинов 2–4 и 11–17, содержащих средне- и слабоэлектронодонорные фрагменты, и при переходе от толуола к дихлорметану у мероцианинов 8–10 вызывает батохромные сдвиги коротковолновых полос поглощения. Положительный знак сольватохромии указывает на то, что у этих красителей из трёх возможных идеальных граничных структур: нейтральный полиен – идеальный полиметин – биполярный полиен, в основном состоянии доминирует первая структура.

По мере увеличения электронодонорности гетероцикла в ряду от пирана и бензо[сс]индола к индолу и бензимидазолу нарастает смещение электронной плотности с гетероцикла в полиметиновую цепь, что приводит к усилению альтернации положительных и отрицательных зарядов на её атомах и выравниванию порядков связей в ней. Иными словами электронное строение мероцианинов приближается к структуре идеального полиметина [13]. Такой вывод подтверждается не только отмеченным выше ростом интенсивности и сужением коротковолновых полос, но и увеличением их виниленовых сдвигов с ростом электронодонорной способности гетероциклических фрагментов. В спектре мероцианина 9 виниленовые сдвиги достигают 88 нм, что сопоставимо со значениями таковых для традиционных мероцианинов, например производных малононитрила (90 нм) и симметричных красителей (~100 нм). Ещё одним подтверждением увеличения вклада полиметиновой структуры в ряду от пирана и бензо[cd]индола к индолу и бензимидазолу служит изменение девиации, вычисленное для коротковолновых полос. С ростом электронодонорности гетероциклического фрагмента они падают от 108.5 нм в спектре соединения 16 до 13.5 нм в спектре мероцианина 10.

Виниленовые сдвиги, девиации, интенсивность и форма полос, в первую очередь ширина, определяют тенденции в изменении полиен-полиметиновых электронных релаксаций в донорно-акцепторных системах, поскольку отображают степень альтернации порядков связей в хромофоре. Чем она сильнее, тем меньше виниленовые сдвиги и интенсивность, больше девиации и шире полосы [18].

Повышение полярности растворителя вызывает аналогичные росту электронодонорности гетероциклов тенденции в спектрах поглощения мероцианинов 2–4, как это видно по перераспределению интенсивностей короткои длинноволновой полос на примере красителя 3 (рис. 4). Это связано с тем, что

Рис. 4. Электронные спектры поглощения соединения **3** в толуоле (1), $CH_2Cl_2(2)$ и ДМФА (3)

полярный растворитель стабилизирует разделение зарядов в хромофоре. Особенно показателен эффект среды у мероцианинов **8–10**, содержащих наиболее электронодонорный гетерофрагмент 1,3-дифенилбензимидазола. Слабое увеличение полярности при замене толуола дихлорметаном сопровождается батохромным сдвигом полосы поглощения (положительная сольватохромия), а дальнейший рост полярности – переход к ДМФА – приводит к гипсохромному сдвигу (отрицательная сольватохромия). Следовательно мероцианины **8–10** обладают обратимой сольватохромией. Такой эффект свидетельствует о том, что в определённом растворителе, в данном случае дихлорметане, красители **8–10** максимально приближаются к структуре идеального полиметина. Это подтверждается наибольшими значениями экстинкции (табл. 1). Увеличение полярности среды отклоняет эту структуру в сторону биполярного полиена, а её уменьшение – в сторону нейтрального полиена, следствием чего является обратимая сольватохромия.

Отметим, что длинноволновая полоса у всех исследуемых мероцианинов при любом повышении полярности растворителя испытывает только батохромные сдвиги. Это является ещё одним подтверждением того, что эта полоса обусловлена переносом заряда, так как его перенос у нейтральных соединений всегда обусловливает бо́льшую биполярность возбуждённого состояния по сравнению с основным, вследствие чего энергия первого понижается сильнее, чем последнего при сольватации полярными растворителями.

Уменьшение виниленовых сдвигов и рост девиаций коротковолновой полосы при удлинении полиметиновой цепи свидетельствует об увеличении вклада структуры нейтрального полиена в рядах мероцианинов 2–4 и 11–16 (рис. 5, табл. 1). С этим выводом также согласуется перераспределение интенсивностей коротко- и длинноволновой полос с увеличением значения *n*.

Наоборот, у мероцианинов 8–10 удлинение полиметиновой цепи сопровождается увеличением вклада полиметиновой структуры в толуоле и дихлорметане (рис. 6, табл. 1). В ДМФА аналогичная картина, по-видимому, наблюдается при переходе от диметинмероцианина 8 к тетраметинмероцианину 9. А дальнейшее удлинение цепи, судя по падению экстинкции и уширению коротковолновой полосы красителя 10, обусловлено ростом вклада структуры биполярного полиена.

Рис. 5. Электронные спектры поглощения мероцианинов 2(1), 3(2) и 4(3) в CH₂Cl₂

Рис. 6. Электронные спектры поглощения соединений 8 (1), 9 (2) и 10 (3) в CH₂Cl₂

Таким образом, изменением электронодонорности гетероциклического фрагмента и полярности растворителя можно целенаправленно управлять электронным строением мероцианинов на основе 2,4,5,7-тетранитрофлуорена в диапазоне граничных идеальных структур: нейтральный полиен – полиметин – биполярный полиен. Соответствующим образом изменяется положение, интенсивность и форма полос в спектрах поглощения, а также знак сольватохромии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры поглощения зарегистрированы на спектрофотометре Shimadzu UV-3100 в 1 см кюветах при концентрациях растворённого вещества 10⁻⁵ моль/л. Спектры ЯМР ¹Н записаны на спектрометрах Varian VXR-300 (300 МГц, соединения **6**, **7**, **11–17**) и Jeol Eclipse-400 (400 МГц, соединения **2–4**, **8–10**), внутренний стандарт ТМС. Элементный анализ выполнен на приборе Carlo Erba Strumentazione Elemental Analyzer 1106. Температуры плавления определены в открытом капилляре и не исправлены. Чистоту красителей контролировали методом TCX (Silufol UV-254, элюент MeCN). Растворители очищены известными методами [19]. Дихлорметан стабилизирован добавлением 1% абс. EtOH.

Квантово-химические расчёты выполнены с использованием программного пакетеа PC Gamess/Firefly неэмпирическим методом DFT в базисе B3LYP/6-31G(d,p) с предварительной оптимизацией геометрии основного состояния в том же базисе. Расчёт электронных переходов выполнен методом TDDFT. При описании расчётных спектров во внимание принимались электронные переходы с силой осциллятора большей 5% от интенсивности перехода с наибольшей силой осциллятора.

(2*E*)-1,3,3-Триметил-2-[2-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)этилиден]индолин (2). Раствор 20 мг (0.1 ммоль) (2*E*)-(1,3,3-триметил-1,3-дигидро-2*H*-индол-2-илиден)ацетальдегида и 35 мг (0.1 ммоль) 2,4,5,7-тетранитрофлуорена (1) в 2 мл Ac₂O кипятят в течение 3–4 мин. Осадок отфильтровывают, промывают Ac₂O, затем ацетоном (3 × 10 мл). Выход 52 мг (99%), тёмно-зелёный порошок, т. пл. >270 °C (AcOH). R_f 0.40. Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д. (*J*, Гц): 1.86 (6H, с, C(CH₃)₂); 3.83 (3H, с, NCH₃); 6.91 (1H, д, *J* = 14.4, H-1'); 7.28 (1H, т, *J* = 6.8, H Ar); 7.42 (1H, д, *J* = 6.8, H Ar); 7.43 (1H, с, H Ar); 7.45 (1H, т, *J* = 7.2, H Ar); 7.62 (1H, д, *J* = 7.6, H Ar); 8.57 (1H, д, *J* = 1.6, H Ar); 8.74 (1H, д, *J* = 14.4, H-2'); 9.34 (2H, д, *J* = 1.6, H Ar). Найдено, %: C 58.73; H 3.36; N 13.01. C₂₆H₁₉N₅O₈. Вычислено, %: C 58.98; H 3.62; N 13.23. (2*E*)-1,3,3-Триметил-2-[(2*E*)-4-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)бут-2-енилиден]индолин (3). Смесь 45 мг (0.1 ммоль) перхлората 2-{(1*E*,3*E*)-4-[ацетил-(фенил)амино]бута-1,3-диенил}-1,3,3-триметил-3*H*-индолия и 35 мг (0.1 ммоль) 2,4,5,7-тетранитрофлуорена (1) растворяют при кипячении в течение 3–4 мин в 2 мл Ac₂O, затем добавляют 1 мл Et₃N. Сразу же образуется осадок. После остывания реакционной смеси его отфильтровывают, промывают Ac₂O, затем ацетоном (3 × 10 мл). Выход 55 мг (99%), тёмно-зелёный с бронзовым блеском порошок, т. пл. >270 °C (AcOH). *R*_f 0.43. Спектр ЯМР ¹H (ДМСО-d₆), δ, м. д. (*J*, Гц): 1.76 (6H, с, C(CH₃)₂); 3.64 (3H, с, NCH₃); 6.52 (1H, д, *J* = 13.6, H-1'); 7.22 (1H, т, *J* = 7.6, H Ar); 7.31 (1H, д, *J* = 7.6, H Ar); 7.39 (1H, т, *J* = 14.4, H-3'); 7.39 (1H, т, *J* = 7.6, H Ar); 7.56 (1H, д, *J* = 7.6, H Ar); 8.31 (1H, т, *J* = 12.8, H-2'); 8.53 (2H, с, H Ar); 8.70 (1H, д, *J* = 13.2, H-4'); 9.32 (2H, с, H Ar). Найдено, %: С 60.40; H 3.68; N 12.89. C₂₈H₂₁N₅O₈. Вычислено, %: C 60.54; H 3.81; N 12.61.

(2*E*)-1,3,3-Триметил-2-[(2*E*,4*E*)-6-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)гекса-2,4-диенилиден]индолин (4). Смесь 47 мг (0.1 ммоль) перхлората 2-{(1*E*,3*E*,5*E*)-6-[ацетил(фенил)амино]гекса-1,3,5-триенил}-1,3,3-триметил-3*H*-индолия и 35 мг (0.1 ммоль) 2,4,5,7-тетранитрофлуорена (1) растворяют при кипячении в 2 мл Ac₂O, добавяют 1 мл Et₃N и затем кипятят ещё в течение 2–3 мин. Осадок отфильтровывают, промывают Ac₂O, затем ацетоном (4 × 10 мл). Выход 44 мг (75%), тёмно-зелёный порошок, т. пл. >270 °С (AcOH). *R*_f 0.48. Спектр ЯМР ¹H (ДМСО-d₆), δ, м. д. (*J*, Гц): 1.67 (6H, с, С(CH₃)₂); 3.53 (3H, с, NCH₃); 6.17 (1H, д, *J* = 13.2, H-1'); 6.78 (1H, т, *J* = 12.4, H-2'); 7.14 (1H, т, *J* = 7.2, H Ar); 7.19 (1H, д, *J* = 7.6, H Ar); 7.34 (1H, т, *J* = 7.2, H Ar); 7.39 (1H, т, *J* = 12.8, H-4'); 7.46 (1H, д, *J* = 7.2, H Ar); 7.70–7.89 (2H, м, H-3',5'); 8.41 (1H, д, *J* =14.0, H-6'); 8.55 (2H, с, H Ar); 9.27 (2H, с, H Ar). Найдено, %: C 61.75; H 3.73; N 11.90. C₃₀H₂₃N₅O₈. Вычислено, %: C 61.96; H 3.99; N 12.04.

N-Фенил-*N*-[(*1E*)-**3**-(**2**,**4**,**5**,**7**-тетранитро-9*H*-флуорен-9-илиден)проп-1-енил]ацетамид (6). Раствор 173 мг (0.5 ммоль) 2,4,5,7-тетранитрофлуорена (1) и 130 мг (0.5 ммоль) хлорида *N*-[3-анилинопроп-2-енилиден]анилиния в 3 мл Ac₂O кипятят в течение 2–3 мин. Продукт выпадает сразу. Осадок отфильтровывают, промывают Ac₂O и EtOH. Выход 255 мг (99%), коричневый порошок, т. пл. 265–266 °C (AcOH). Спектр ЯМР ¹H (ацетон-d₆), δ , м. д. (*J*, Гц): 2.06 (3H, с, COCH₃); 6.20 (1H, т, *J* = 12.6, H-2'); 7.58 (2H, д, *J* = 8.1, H Ar); 7.73 (3H, т, *J* = 7.5, H Ar); 8.37 (1H, д, *J* = 1.8, H Ar); 8.59 (1H, д, *J* = 1.8, H Ar); 8.61 (1H, д, *J* = 12.3, H-1); 8.62 (1H, д, *J* = 1.8, H Ar); 8.72 (1H, д, *J* = 13.2, H-3); 9.14 (1H, д, *J* = 1.8, H Ar). Найдено, %: C 55.45; H 2.81; N 13.39. C₂₄H₁₅N₅O₉. Вычислено, %: C 55.71; H 2.92; N 13.54.

N-Фенил-*N*-[(1*E*,3*E*)-5-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)пента-1,3-диенил]ацетамид (7). Раствор 173 мг (0.5 ммоль) 2,4,5,7-тетранитрофлуорена (1) и 143 мг (0.5 ммоль) хлорида *N*-[5-анилинопента-2,4-диенилиден]анилиния в 3 мл Ac₂O кипятят в течение 2–3 мин. Продукт выпадает сразу. Осадок отфильтровывают, промывают Ac₂O и EtOH. Выход 260 мг (96%), чёрный блестящий порошок, т. пл. 270–271 °C (AcOH). Спектр ЯМР ¹Н (ацетон-d₆), δ , м. д. (*J*, Гц): 2.14 (3H, с, CH₃); 5.63 (1H, т, *J* = 12.6, H-2); 7.40 (2H, д, *J* = 7.2, H Ar); 7.49–7.68 (5H, м, H-3,4, H Ar); 8.15 (1H, д, *J* = 13.8, H-1); 8.72 (1H, д, *J* = 10.5, H-5); 8.64 (1H, с, H Ar); 8.67 (1H, с, H Ar); 9.09 (1H, с, H Ar); 9.15 (1H, с, H Ar). Найдено, %: С 57.28; H 3.19; N 13.00. C₂₆H₁₇N₅O₉ Вычислено, %: С 57.46; H 3.15; N 12.89.

1,3-Дифенил-2-[2-(2,4,5,7-тетранитро-9*Н***-флуорен-9-илиден)этилиден]-2,3-дигидро-1***Н***-бензимидазол (8). Раствор 32 мг (0.1 ммоль) хлорида 2-метил-1,3-дифенил-3***Н***-бензимидазол-1-ия и 40 мг (0.1 ммоль) 9-(этоксиметилен)-2,4,5,7-тетранитро-9***Н***-флуорена (5) в 3 мл пиридина с 1 мл Et₃N кипятят в течение 2–3 мин. Осадок отфильтровывают, промывают холодным пиридином и ацетоном. Выход 42 мг (66%), серый с голубым блеском порошок, т. пл. >270 °С (Ру). R_f 0.42. Спектр ЯМР ¹H (ДМСО-d₆), \delta, м. д. (***J***, Гц): 6.22 (1H, д,** *J* **= 14.6, H-1'); 7.11 (1H, д,** *J* **= 15.2, H-2'); 7.11 (2H, д. д,** *J* **= 6.4,** *J* **= 2.6, H Ar); 7.51 (2H, д. д,** *J* **= 6.4,** *J* **= 2.6, H Ar); 7.71– 7.82 (10H, м, H Ar); 8.28 (2H, д,** *J* **= 2.0, H Ar); 8.81 (2H, д,** *J* **= 2.0, H Ar). Найдено, %: C 63.43; H 3.08; N 12.97. С₃₄H₂₀N₆O₈. Вычислено, %: C 63.75; H 3.15; N 13.12.** **1,3-Дифенил-2-[(2***E***)-4-(2,4,5,7-тетранитро-9***H***-флуорен-9-илиден)бут-2-енилиден]-2,3-дигидро-1***H***-бензимидазол (9). Раствор 32 мг (0.1 ммоль) хлорида 2-метил-1,3-дифенил-3***H***-бензимидазол-1-ия и 52 мг (0.1 ммоль) соединения 6** в 3 мл пиридина с 1 мл Et₃N кипятят в течение 3–4 мин. Выпавший осадок отфильтровывают, промывают пиридином и ацетоном. Выход 36 мг (54%), серо-зелёный порошок, т. пл. > 270 °C (Ру). R_f 0.45. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д. (*J*, Гц): 6.17 (1Н, д, J = 15.2, H-1'); 6.75 (1Н, д. д. J = 15.2, J = 11.6, H-2'); 6.99 (1Н, д. д. J = 14.8, J = 11.6, H-3'); 7.29 (2H, д. д. J = 6.4, J = 2.6, H Ar); 7.34 (1H, д. J = 14.8, H-4'); 7.54 (2H, д. д. J = 6.4, J = 2.6, H Ar); 7.83–7.95 (10H, м, H Ar); 8.27 (2H, д. J = 2.0, H Ar); 8.99 (2H, д. J = 2.0, H Ar). Найдено, %: С 64.53; Н 3.09; N 12.42. С₃₆H₂₂N₆O₈. Вычислено, %: C 64.87; H 3.33; N 12.61.

1,3-Дифенил-2-[(2*E***,4***E***)-6-(2,4,5,7-тетранитро-9***H***-флуорен-9-илиден)гекса-2,4-диенилиден]-2,3-дигидро-1***H***-бензимидазол (10). Раствор 32 мг (0.1 ммоль) хлорида 2-метил-1,3-дифенил-3***H***-бензимидазол-1-ия и 55 мг (0.1 ммоль) соединения 7 в 3 мл пиридина кипятят в течение 3–4 мин. Образовавшийся осадок отфильтровывают и промывают ацетоном. Выход 30 мг (43%), тёмно-зелёный порошок, т. пл. >270 °С (Ру). R_f 0.51. Спектр ЯМР ¹H (ДМСО-d₆), \delta, м. д. (J, Гц): 6.05 (1H, д, J = 14.4, H-1'); 6.44 (1H, т, J = 11.2, H-3'); 6.51 (1H, т, J = 11.6, H-2'); 6.68 (1H, т, J = 13.2, H-4'); 6.92 (1H, д. д, J = 15.2, J = 11.2, H-5'); 7.32 (2H, д. д, J = 6.4, J = 3.2, H Ar); 7.60 (2H, д. д, J = 6.0, J = 3.2, H Ar); 7.82–7.91 (10H, м, H Ar); 7.93 (1H, д, J = 15.2, H-6'); 8.26 (2H, д. J = 2.0, H Ar); 9.18 (2H, д, J = 2.0, H Ar). Найдено, %: С 65.61; H 3.24; N 11.98. C₃₈H₂₄N₆O₈. Вычислено, %: С 65.90; H 3.49; N 12.13.**

(2*E*)-1-Бензил-2-[2-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)этилиден]-1,2-дигидробензо[*cd*]индол (11). Смесь 35 мг (0.1 ммоль) тетрафторбората 1-бензил-2-метилбензо[*cd*]индолия и 40 мг (0.1 ммоль) 9-(этоксиметилен)-2,4,5,7-тетранитро-9*H*-флуорена (5) в 2 мл Ac₂O кипятят до полного растворения исходных веществ (2– 3 мин). Затем добавляют 1 мл Et₃N. Выпавший осадок отфильтровывают, промывают Ac₂O, затем горячим EtOH и ацетоном. Чистое вещество хорошо растворяется в полярных апротонных растворителях. Выход 50 мг (80%), тёмно-зелёный порошок, т. пл. >270 °C (AcOH). *R*_f 0.25. Спектр ЯМР ¹H (пиридин-d₅), δ , м. д. (*J*, Гц): 5.73 (2H, с, NC<u>H</u>₂Ph); 7.25–7.32 (3H, м, H Ar); 7.34 (1H, д, *J* = 13.6, H-1'); 7.37–7.48 (2H, м, H Ar); 7.49–7.56 (1H, м, H Ar); 7.64–7.75 (2H, м, H Ar); 7.78–7.85 (1H, м, H Ar); 8.15 (1H, д, *J* = 8.0, H Ar); 8.84 (1H, с, H Ar); 8.91 (1H, с, H Ar); 8.95 (1H, д, *J* = 8.0, H Ar); 9.15 (1H, с, H Ar); 9.23 (1H, д, *J* = 14.0, H-2'); 9.54 (1H, с, H Ar). Найдено, %: C 64.33; H 3.01; N 11.14. C₃₃H₁₉N₅O₈. Вычислено, %: C 64.60; H 3.12; N 11.41.

(2*E*)-1-Бензил-2-[(2*E*)-4-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)бут-2-енилиден]-1,2-дигидробензо[*cd*]индол (12). Смесь 35 мг (0.1 ммоль) тетрафторбората 1-бензил-2-метилбензо[*cd*]индолия и 52 мг (0.1 ммоль) соединения 6 в 2 мл Ac₂O кипятят до полного растворения исходных веществ (3–4 мин). Затем добавляют 1 мл Et₃N. Образовавшийся осадок отфильтровывают, промывают EtOH и высушивают. Затем помещают осадок в колбу и кипятят в 10 мл CHCl₃. Осадок отфильтровывают и высушивают. Выход 43 мг (67%), зелёный с бронзовым блеском порошок, т. пл. > 270 °C (AcOH). R_f 0.27. Спектр ЯМР ¹H (пиридин-d₅), δ , м. д. (*J*, Гц): 5.34 (2H, c, NC<u>H</u>₂Ph); 6.96 (1H, д, *J* = 13.5, H-1'); 7.02 (1H, д, *J* = 6.9, H Ar); 7.27–7.41 (6H, м, H-2', H Ar); 7.41–7.67 (3H, м, H Ar); 7.87 (1H, т, *J* = 13.5, H-4'); 8.81 (1H, c, H Ar); 8.86 (1H, c, H Ar); 9.28 (1H, c, H Ar); 9.33 (1H, c, H Ar). Найдено, %: C 65.58; H 3.14; N 10.77. C₃₅H₂₁N₅O₈. Вычислено, %: C 65.73; H 3.31; N 10.95.

(2*E*)-1-Бензил-2-[(2*E*,4*E*)-6-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)гекса-2,4-диенилиден]-1,2-дигидробензо[*cd*]индол (13). Смесь 52 мг (0.15 ммоль) тетрафторбората 1-бензил-2-метилбензо[*cd*]индолия и 81 мг (0.15 ммоль) соединения 7 в 3 мл пиридина кипятят в течение 2–3 мин, затем добавляют 1 мл Et₃N и продолжают нагревать, пока не начинает образовываться осадок (2–3 мин). Осадок отфильтровывают, промывают ацетоном (3 × 5 мл). Выход 50 мг (75%), чёрный с зелёным блеском порошок, т. пл. >270 °С (Ру). R_f 0.31. Спектр ЯМР ¹H (ДМСО-d₆), δ, м. д. (J, Γ ц): 5.35 (2H, c, NC<u>H</u>₂Ph); 6.54 (1H, д, J = 12.0, H-1'); 6.99 (1H, τ, J = 12.3, H-3'); 7.03 (1H, д, J = 6.4, H Ar); 7.22–7.55 (6H, м, H-2', H Ar); 7.62 (1H, τ, J = 12.0, H-4'); 7.72–7.89 (2H, м, H Ar); 7.93–8.05 (3H, м, H-5', H Ar); 8.28 (1H, д, J = 6.4, H Ar); 8.49 (1H, д, J = 12.0, H-6'); 8.65 (2H, c, H Ar); 9.30 (2H, c, H Ar). Найдено, %: C 66.43; H 3.28; N 10.19. C₃₇H₂₃N₅O₈. Вычислено, %: C 66.77; H 3.48; N 10.52.

2,6-Дифенил-4-[2-(2,4,5,7-тетранитро-9*Н***-флуорен-9-илиден)этилиден]-4***Н***-пиран (14). Раствор 33 мг (0.1 ммоль) тетрафторбората 4-метил-2,6-дифенилпирилия и 42 мг (0.1 ммоль) 9-(этоксиметилен)-2,4,5,7-тетранитро-9***Н***-флуорена (5) в 3 мл пиридина с 0.5 мл пиперидина кипятят в течение 2–3 мин. При остывании из реакционной смеси выпадает осадок, который отфильтровывают, промывают ЕtOH и горячим ацетоном. Выход 30 мг (50%), зелёный с бронзовым блеском порошок, т. пл. >270 °C (Ру). R_f 0.39. Спектр ЯМР ¹H (D₂SO₄), \delta, м. д. (***J***, Гц): 4.11 (1H, с, H-1'); 6.86– 7.11 (6H, м, H Ar); 7.38–7.59 (4H, м, H Ar); 7.62 (2H, с, H Ar); 8.21 (1H, с, H Ar); 8.29 (1H, с, H Ar); 8.44 (1H, д.** *J* **= 12.9, H-2'); 9.92 (2H, с, H Ar). Найдено, %: С 63.53; H 2.88; N 9.01. C_{32}H_{18}N_4O_9. Вычислено, %: С 63.79; H 3.01; N 9.30.**

2,6-Дифенил-4-[(2*E***)-4-(2,4,5,7-тетранитро-9***H***-флуорен-9-илиден)бут-2-енилиден]-4***H***-пиран (15). Смесь 33 мг (0.1 ммоль) тетрафторбората 4-метил-2,6-дифенилпирилия и 52 мг (0.1 ммоль) соединения 6 в 2–3 мл пиридина с 1 мл Еt₃N кипятят в течение 3–4 мин. Образовавшийся осадок отфильтровывают, промывают ацетоном (3 × 5 мл). Выход 40 мг (63%), чёрный с зелёным блеском порошок, т. пл. >270 °С (Ру). R_{\rm f} 0.44. Спектр ЯМР ¹H (ДМСО-d₆), \delta, м. д. (***J***, Гц): 6.58 (1H, д,** *J* **= 12.8, H-1'); 7.53 (1H, т,** *J* **= 13.2, H-2'); 7.55–7.71 (6H, м, H Ar); 7.95–8.14 (6H, м, H Ar); 8.32 (1H, т,** *J* **= 12.2, H-3'); 8.51 (1H, д,** *J* **= 12.8, H-4'); 8.62 (2H, с, H Ar); 9.27 (2H, с, H Ar). Найдено, %: С 64.73; H 3.04; N 8.77. С₃₄H₂₀N₄O₉. Вычислено, %: С 64.97; H 3.21; N 8.91.**

2,6-Дифенил-4-[(2*E*,4*E*)-6-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)гекса-**2,4-диенилиден]-4***H***-пиран (16)**. Раствор 34 мг (0.1 ммоль) тетрафторбората 4-метил-2,6-дифенилпирилия и 54 мг (0.1 ммоль) соединения 7 в 3 мл пиридина кипятят в течение 3 мин, затем добавляют 1 мл Et_3N . Образовавшийся осадок отфильтровывают, промывают пиридином и ацетоном. Выход 12 мг (18%), чёрный с зелёным блеском порошок, т. пл. >270 °C (Ру). R_f 0.41. Найдено, %: С 65.83; H 3.12; N 8.41. $C_{36}H_{22}N_4O_9$. Вычислено, %: С 66.06; H 3.39; N 8.56.

2,6-Ди-*трет*-бутил-4-[(2*E*,4*E*)-6-(2,4,5,7-тетранитро-9*H*-флуорен-9-илиден)гекса-2,4-диенилиден]-4*H*-пиран (17). Раствор 31 мг (0.1 ммоль) перхлората 4-метил-2,6-ди-*трет*-бутилпирилия и 54 мг (0.1 ммоль) соединения 7 в 3 мл пиридина кипятят в течение 3 мин, затем добавляют 1 мл Et₃N. Образовавшийся осадок отфильтровывают, промывают пиридином и ацетоном. Выход 50 мг (81%), чёрный с бронзовым блеском порошок, т. пл. >270 °С (Ру). R_f 0.56. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.25 (9H, с, С(CH₃)₃); 1.31 (9H, с, С(CH₃)₃); 5.82 (1H, д, *J* = 12.6, H-1'); 5.98 (1H, д, *J* = 1.5, H Ar); 6.39 (1H, д, *J* = 1.5, H Ar); 6.59 (1H, т, *J* = 12.3, H-2'); 7.28–7.35 (2H, м, H-3',4'); 7.89 (1H, т, *J* = 12.6, H-5'); 8.72 (1H, д, *J* = 1.5, H Ar); Найдено, %: С 62.17; H 4.48; N 8.99. С₃₂H₃₀N₄O₉. Вычислено, %: С 62.54; H 4.92; N 9.12.

Работа выполнена с использованием вычислительных ресурсов объединённого вычислительного кластера НТК "Институт монокристаллов" и Института сцинтилляционных материалов НАН Украины в составе Украинского национального грида.

СПИСОК ЛИТЕРАТУРЫ

- I. F. Perepichka, D. F. Perepichka, M. R. Bryce, L. M. Goldenberg, L. G. Kuz'mina, A. F. Popov, A. Chesney, A. J. Moore, J. A. K. Howard, N. I. Sokolov, *Chem. Commun.*, 819 (1998).
- D. D. Mysyk, I. F. Perepichka, D. F. Perepichka, M. R. Bryce, A. F. Popov, L. M. Goldenberg, A. J. Moore, *J. Org. Chem.*, 64, 6937 (1999).

- D. F. Perepichka, I. F. Perepichka, M. R. Bryce, N. I. Sokolov, A. J. Moore, J. Mater. Chem., 11, 1772 (2001).
- P. J. Skabara, I. M. Serebryakov, I. F. Perepichka, J. Chem. Soc., Perkin Trans. 2., 505 (1999).
- P. J. Skabara, I. M. Serebryakov, I. F. Perepichka, N. S. Sariciftci, H. Neugebauer, A. Cravino, *Macromolecules*, 34, 2232 (2001).
- 6. Ю. П. Гетьманчук, И. И. Давиденко, Н. А. Давиденко, Е. В. Мокринская, Д. Д. Мысык, Р. Д. Мысык, *Теорет. эксперим. химия*, **40**, 7 (2004). [*Theor. Exp. Chem.*, **40**, 7 (2004).]
- Н. А. Давиденко, Н. А. Деревянко, А. А. Ищенко, Н. Г. Кувшинский, А. В. Кулинич, О. Я. Нейланд, М. В. Плотниеце, *Изв. АН, Сер. хим.*, 1611 (2004). [*Russ. Chem. Bull.*, 53, 1674 (2004).]
- И. В. Курдюкова, А. А. Ищенко, Успехи химии, 81, 258 (2012). [Russ. Chem. Rev., 81, 258 (2012).]
- D. F. Perepichka, I. F. Perepichka, A. F. Popov, M. R. Bryce, A. S. Batsanov, A. Chesney, J. A. K. Howard, N. I. Sokolov, *J. Organomet. Chem.*, 637–639, 445 (2001).
- D. F. Perepichka, M. R. Bryce, I. F. Perepichka, S. B. Lyubchik, C. A. Christensen, N. Godbert, A. S. Batsanov, E. Levillain, E. J. L. McInnes, J. P. Zhao, *J. Am. Chem.* Soc., 124, 14227 (2002).
- 11. D. F. Perepichka, M. R. Bryce, Angew. Chem., Int. Ed., 44, 5370 (2005).
- 12. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, *Chem. Rev.*, 100, 1973 (2000).
- 13. А. В. Кулинич, А. А. Ищенко, *Успехи химии*, **78**, 151 (2009). [*Russ. Chem. Rev.*, **78**, 141 (2009).]
- 14. И. В. Курдюкова, Н. А. Деревянко, А. А. Ищенко, Д. Д. Мысык, Журн. общ. химии, 82, 617 (2012). [Russ. J. Gen. Chem., 82, 703 (2012).]
- 15. П. И. Демьянов, Г. В. Федорова, В. С. Петросян, О. А. Реутов, Изв. АН СССР, Сер. хим., 2403 (1984). [Russ. Chem. Bull., **33**, 2196 (1984).]
- 16. И. В. Курдюкова, Н. А. Деревянко, А. А. Ищенко, Д. Д. Мысык, Изв. АН, Сер. хим., 287 (2012). [Russ. Chem. Bull., 61, 287 (2012).]
- 17. A. V. Kulinich, N. A. Derevyanko, A. A. Ishchenko, J. Photochem. Photobiol., A, 188, 207 (2007).
- 18. А. А. Ищенко, Строение и спектрально-люминесцентные свойства полиметиновых красителей, Наукова думка, Киев, 1994, с. 73.
- 19. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1976.

¹ Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02094, Украина e-mail: alexish@i.com.ua Поступило 27.07.2012

² Донецкий национальный технический университет, ул. Артема, 58, Донецк 83000, Украина e-mail: mysyk@yandex.ru