

Синтез 2-полифторалкил-2,3-дигидро-1,3,4-тиадиазолов путем региоселективного [3+2]-циклоприсоединения нитрилиминов к амидам полифторалкантиокарбоновых кислот

Сергей С. Михайличенко¹, Надежда В. Пикун¹, Эдуард Б. Русанов¹, Александр Б. Роженко¹, Юрий Г. Шермолович¹*

¹ Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02660, Украина; e-mail: sherm@ioch.kiev.ua

Поступило 18.07.2107 Принято 22.08.2017

 R^1 = Ph, COOEt, C(O)Me; R^F = CF₃, HCF₂CF₂, C₂F₅, C₃F₇

Исследованы реакции [3+2]-циклоприсоединения амидов полифторалкантиокарбоновых кислот с нитрилиминами, генерированными *in situ* путем дегидрохлорирования соответствующих гидразоноилхлоридов при действии триэтиламина. На основе этих реакций предложен новый метод синтеза 2-полифторалкил-2,3-дигидро-1,3,4-тиадиазолов.

Ключевые слова: 2,3-дигидро-1,3,4-тиадиазол, нитрилимин, полифторалкантиокарбоновые кислоты, тиоамид, квантовохимические расчеты, [3+2]-циклоприсоединение.

Среди большого разнообразия гетероциклических соединений, обладающих биологической активностью, значительный интерес вызывают 1,3,4-тиадиазолы.¹⁻³ Соединения, содержащие фрагмент 2,3-дигидро-1,3,4-тиадиазола, проявляют высокую противоопухолевую, противовирусную, антибактериальную и противо-грибковую активность.⁴⁻⁶ Биологическая активность многих гетероциклических соединений существенным образом усиливается или приобретает новые направления в случае введения в их состав атомов фтора или фторсодержащих заместителей. Синтез фторированных гетероциклов в настоящее время стал самостоятельным разделом химии гетероциклических соединений.⁷

В то же время известно лишь весьма ограниченное количество фторсодержащих производных 2,3-дигидро-1,3,4-тиадиазолов. Атомы фтора находятся, как правило, в экзоциклических ароматических заместителях этих гетероциклов.⁸ Лишь недавно были синтезированы 2,3-дигидро-1,3,4-тиадиазолы, содержащие трифторметильную группу непосредственно в положении 5 гетероцикла.⁹

Цель настоящей работы заключается в исследовании возможности синтеза новых 2-полифторалкил-2,3дигидро-1,3,4-тиадиазолов реакцией [3+2]-циклоприсоединения нитрилиминов к амидам полифторалкантиокарбоновых кислот. Ранее мы показали высокую активность фторсодержащих тиоамидов в реакциях [3+2]-циклоприсоединения с такими 1,3-диполями, как азометинилиды.¹⁰ Нитрилимины, используемые в данной работе, генерировали *in situ* путем дегидрохлорирования соответствующих гидразоноилхлоридов при действии триэтиламина.

В рамках работы было обнаружено, что N,N-дизамещенные и N-монозамещенные тиоамиды 1a-f, содержащие различные полифторалкильные заместители (CF₃, HCF₂CF₂, C₂F₅, C₃F₇), реагируют в хлороформе при комнатной температуре с нитрилиминами 3a-c (полученными *in situ* из гидразоноилхлоридов 2a-c) с образованием новых 2-полифторалкил-2,3-дигидро-1,3,4-тиадиазолов (1,3,4-тиадиазолинов) 4a-l (табл. 1). Использование хлороформа в качестве растворителя обусловлено тем, что данная реакция протекает в нем быстрее, чем в таких растворителях, как диэтиловый эфир, бензол или толуол. Реакции незамещенного трифтортиоацетамида с нитрилиминами 3a-c приводили к образованию сложной смеси продуктов.

Важно отметить, что [3+2]-циклоприсоединение нитрилиминов **3а-с** к полифторалкантиоамидам **1а-f**

ъF

$\begin{array}{c} R^{1} ^{CI} \\ N - NH \\ \searrow \\ 2\mathbf{a} - \mathbf{c} \end{array} \xrightarrow{Et_{3}N} \left[\begin{array}{c} R^{1} = \overbrace{N - N}^{\oplus} \\ \\ \mathbf{c} \\ \mathbf$										
Тиоамид	\mathbf{R}^{F}	NR ² R ³	Гидразоноилхлорид	R^1	Продукт	Выход, %				
1a	CF_3	Морфолин-4-ил	2a	Ph	4a	84				
1b	C_3F_7	Морфолин-4-ил	2a	Ph	4b	81				
1c	CF_3	PrNH	2a	Ph	4c	85				
1a	CF_3	Морфолин-4-ил	2b	COOEt	4d	80				
1d	CF ₂ CHF ₂	Пиперидин-1-ил	2b	COOEt	4e	72				
1e	C_2F_5	Морфолин-4-ил	2b	COOEt	4f	80				
1c	CF_3	PrNH	2b	COOEt	4g	78				
1f	CF_3	<i>p</i> -TolNH	2b	COOEt	4h	76				
1a	CF ₃	Морфолин-4-ил	2c	C(O)Me	4i	75				
1d	CF ₂ CHF ₂	Пиперидин-1-ил	2c	C(O)Me	4j	72				
1e	C_2F_5	Морфолин-4-ил	2c	C(O)Me	4k	78				
1c	CF ₃	PrNH	2c	C(O)Me	41	82				

Таблица 1. Синтез 2-полифторалкил-1,3,4-тиадиазолинов 4а-І

происходило полностью региоселективно, в спектрах ЯМР ¹Н и ¹⁹F реакционных смесей после удаления растворителя были обнаружены только наборы сигналов, соответствующие соединениям **4а–1**. Аналогичная региоселективность наблюдалась также в реакциях нефторированных алифатических и ароматических N,N-дизамещенных тиоамидов с нитрилиминами. ^{11–13} Следует отметить, что продукты [3+2]-циклоприсоединения нитрилиминов не были получены в реакциях с участием нефторированных N-монозамещенных и незамещенных тиоамидов. ¹²

Строение соединений **4а–1** подтверждено данными спектроскопии ЯМР ¹H, ¹³C и ¹⁹F, а состав – данными масс-спектрометрии и элементного анализа. В спектрах ЯМР ¹³C 1,3,4-тиадиазолинов **4а–1** сигналы ядер углерода C-2 и эндоциклической связи C=N наблюдаются соответственно при 102.0–109.8 и 140.8–143.3 м. д. В спектрах ЯМР ¹⁹F сигналы ядер фтора групп CF₂ в соединениях **4b,e,f,j,k** проявляются в виде AB систем, что обусловлено наличием асимметрического атома углерода в молекулах 1,3,4-тиадиазолинов.

Строение соединения **4f** подтверждено методом PCA (рис. 1). 1,3,4-Тиадиазолиновый цикл неплоский и принимает конформацию "конверт". Атомы S(1), C(2), N(1) и S(1), C(1), N(2), N(1) (максимальное отклонение атомов из этой плоскости составляет всего лишь 0.0034 Å) образуют плоскости, двугранный угол между которыми составляет 11.5(2)°. Интересно отметить, что валентный угол C(13)–C(12)–C(2) при sp^3 -гибридизованном атоме углерода заметно увеличен (117.56(13)°), что, очевидно, связано со стерическими причинами, поскольку группа CF₃ находится недалеко от плоскости 1,3,4-тиадиазолинового цикла. Длина двойной связи C=N имеет обычное значение (1.278 Å), при этом длины формально одинарных связей C(1)–S(1) и C(2)–S(1) заметно отличаются: в то время как первая суще-

ственно удлинена (1.885 Å в сравнении со стандартным значением для связи Csp^3 –S(2) 1.82 Å в кристаллических органических соединениях¹⁴), вторая заметно укорочена (1.753 Å). Подобная разность в длинах связей обнаруживается и в других ранее исследованных структурно подобных 2,3-дигидро-1,3,4-тиадиазолах.¹⁵

В рамках данного исследования мы предприняли попытку синтеза *N*-Вос-производных 1,3,4-тиадиазолинов (соединение **4m**) с целью получения NH-гетероциклов. Однако оказалось, что *N*-Вос-нитрилимин **3d** не реагировал с тиоамидом **1a** ни при комнатной температуре, ни при кипячении в хлороформе в течение 7 ч (схема 1).

Чтобы выяснить причину столь различного поведения нитрилиминов **3** в реакции [3+2]-циклопри-

Рисунок 1. Молекулярная структура соединения **4f** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Схема 1

Рисунок 2. Структуры 5а-d, рассчитанные в приближении DFT (RI-BP86/TZVP).

соединения, данный процесс исследовали теоретически в рамках теории функционала плотности (DFT). Мы рассчитали в приближении DFT (RI-BP86/TZVP) структуры 5a-d (рис. 2), которые отличаются от соответствующих экспериментальных молекул тем, что морфолиновый фрагмент заменен диметиламиногруппой.

представление оптимизированной Графическое геометрии молекулы 5а, полученное с помощью программы $Jmol_{16,17}^{16,17}$ показано на рис. За. Сравнение энергий Гиббса реакций показывает (табл. 2), что реакции образования соединений 5а-с являются заметно экзергоническими, тогда как рассчитанное для реакции образования молекулы 5d отрицательное значение ΔG достаточно мало и с учетом неточности используемого подхода RI-BP86 близко к нулю. Таким образом, есть основания полагать, что рассматриваемая реакция [3+2]-циклоприсоединения является термодинамически контролируемой. В подтверждение этого утверждения в приближении газовой фазы были локализованы соответствующие структуры переходных состояний (ПС) и

Рисунок 3. Оптимизированные (RI-BP86/TZVP) a) наиболее выгодная конформация соединения 5а и b) структура соответствующего переходного состояния 5а-ПС, выполненные в программе Jmol.^{16,17}

оценены значения энергий активации. Графическое представление структуры ПС в реакции образования соединения 5а представлено на рис. 3b.

Характерной особенностью локализованных структур ПС (табл. 2) являются более короткие расстояния С…S, чем С…N (например, для структуры 5а-ПС они составляют соответственно 2.499 и 3.555 Å), что, вероятно, указывает на асинхронный характер реакции [3+2]-циклоприсоединения в рассматриваемом ряду соединений.

Следует отметить, что в случаях образования соединений 5а-с значения энергий активации близки и достаточно низкие (24.3-25.2 ккал/моль), что согласуется с экспериментальными условиями проведения реакции (комнатная температура). Напротив, активационный барьер для синтеза соединения 5d заметно ниже (21.0 ккал/моль). Это согласуется с предположением, что образовавшаяся циклическая структура 5d при таком значении активационного барьера для обратной реакции (~24 ккал/моль) может распадаться на исходные соединения, которые, очевидно, термодинамически более устойчивы. С другой стороны, для устойчивых молекул 5а-с необходимые значения энергии активации для эндергонической диссоциации до исходного тиоамида и соответствующего нитрилимина значительно выше и составляют приблизительно 34-35 ккал/моль.

Молекулы синтезированных 1,3,4-тиадиазолинов 4а-I содержат различные заместители в положениях 2 и 5, превращения которых могут существенно расширить синтетические возможности этих гетероциклов, прежде всего с точки зрения их связывания с биологически активными соединениями других классов. В рамках

Таблица 2. Рассчитанные в приближении DFT (RI-BP86/TZVP) значения длин связей соединений 5а-d, соответствующих ПС и свободных энергий Гиббса для реакции образования соединений 5a-d

		ΔG^* ,				
Структура	C(2)–S(1)	C(2)–N(3)	C(5)–S(1)	N(3)–N(4)	ккал/моль	
5a	1.949	1.488	1.779	1.348	-9.4	
5а-ПС	2.482	3.277	1.688	1.258	24.9	
5b	1.947	1.490	1.789	1.364	-8.4	
5b-ПС	2.474	3.097	1.686	1.272	25.2	
5c	1.941	1.492	1.777	1.348	-9.5	
5с-ПС	2.660	3.848	1.680	1.256	24.3	
5d	1.917	1.477	1.787	1.383	-3.0	
5d-ПC	2.482	3.277	1.688	1.258	21.0	

* По отношению к сумме свободных энергий Гиббса, рассчитанных для изолированного тиоамида и соответствующих нитрилиминов.

работы было показано, что кетопроизводные 1,3,4-тиадиазолинов **4i**,**j** легко восстанавливаются при действии боргидрида натрия в метаноле при комнатной температуре с образованием вторичных спиртов **6a**,**b** (схема 2).

Соединения **ба,b** были получены с высокими выходами в виде смесей диастереомеров, соотношение которых определяли посредством спектроскопии ЯМР ¹⁹F. Следует отметить, что в литературе описан только один пример восстановления 1,3,4-тиадиазолинов, содержащих кетонную функциональную группу в положении 5, до вторичного спирта.¹⁸

В аналогичных условиях сложный эфир 4d не восстанавливается. Обработку соединения 4d боргидридом натрия проводили в изопропиловом спирте при нагревании при 50 °C в течение 8 ч. В результате данной реакции был выделен первичный спирт 7 с выходом 69% (схема 3). Аналогичные превращения с участием нефторированных 1,3,4-тиадиазолинов, содержащих сложноэфирную группу, в литературе не описаны.

Схема 3

Было установлено, что 1,3,4-тиадиазолины 4a,d,i, содержащие различные заместители в положении 5, реагируют с концентрированной соляной кислотой в тетрагидрофуране при комнатной температуре с образованием соответствующих 2-гидроксипроизводных 8а-с (схема 4). Таким образом, замещение диалкиламиногруппы не сопровождается раскрытием 1,3,4-тиадиазолинового цикла.

Строение соединений **8а-с** подтверждено данными спектроскопии ЯМР ¹H, ¹³C и ¹⁹F, а состав – данными масс-спектрометрии и элементного анализа. В спектрах

Рисунок 4. Молекулярная структура соединения **8с** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

ЯМР ¹³С 2-гидроксипроизводных 1,3,4-тиадиазолинов 8а-с сигналы ядер углерода С-2 и С-5 наблюдаются соответственно при 108.4-109.4 и 139.5-140.8 м. д. Кроме того, строение 1,3,4-тиадиазолина 8с подтверждено методом РСА (рис. 4). 1,3,4-Тиадиазолиновый цикл является практически планарным, максимальное отклонение атомов от среднеквадратической плоскости цикла не превышает 0.0169 Å. Длина двойной связи C=N составляет 1.28 Å, что также наблюдается для структуры 4f. В кристалле соединение 8с образует цепочки водородных ОН…О связей, направленных оси 0b, со следующими вдоль параметрами: O(2)-H 0.84(3), O(2)···O(1a) 2.678(2) Å; O(2)-H…O(1a) 167(2)° (буквой а отмечены атомы кислорода, связанные с базовыми атомами операцией симметрии 0.5 - x, y + 0.5, 1.5 - z).

Необходимо отметить, что замещение *N*,*N*-диалкиламиногруппы на гидроксильную группу не описано для нефторированных 1,3,4-тиадиазолинов. Для сравнения влияния природы углеводородного и полифторалкильного заместителей на протекание процесса гидролиза мы синтезировали 2-фенил-1,3,4-тиадиазолин **10** реакцией тиоамида **9** с нитрилимином **3b**, которую проводили в безводном толуоле (схема 5).

2-Фенил-1,3,4-тиадиазолин **10** оказался гидролитически неустойчивым соединением по сравнению с его фторированными аналогами. Обработка 2-фенил-1,3,4тиадиазолина **10** концентрированной соляной кислотой в тетрагидрофуране при комнатной температуре при-

водит, в отличие от трифторметильных производных 4a,d,i, к образованию сложной смеси продуктов, в которой 2-гидроксипроизводное 11 было идентифицировано методом хромато-масс-спектрометрии (схема 5).

Таким образом, в данной работе предложен новый и доступный метод синтеза 2-полифторалкил-2-алкиламино(диалкиламино)(гидрокси)-3-фенил-1,3,4-тиадиазолинов, которые содержат различные функциональные группы в положении 5.

Экспериментальная часть

Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker Avance-400 (400 МГц), внутренний стандарт ТМС. Спектры ЯМР ¹³С записаны на спектрометре Bruker Avance-500 (125 МГц), химические сдвиги приведены относительно сигналов растворителя: CDCl₃ ($\delta_{\rm C}$ 77.2 м. д.), ДМСО- d_6 ($\delta_{\rm C}$ 39.5 м. д.). Сигналы ядер углерода отнесены с помощью метода АРТ. Спектры ЯМР ¹⁹F зарегистрированы на спектрометре Bruker Avance-400 (376 МГц), внутренний стандарт С₆F₆ (б_г -162.9 м. д.). Масс-спектры ЖХ/МС записаны на приборе Agilent 1100, оснащенном диодно-матричным и масс-селективным детектором Agilent LC/MSD SL, ионизация электрораспылением при атмосферном давлении (70 эВ). Элементный анализ проведен в аналитической лаборатории Института органической химии НАН Украины методом экспресс-гравиметрии (C, H), методом сожжения по Шенигеру (S) и методом Дюма-Прегля (N). Температуры плавления определены на приборе Boetius. Все растворители предварительно высушены и перегнаны согласно стандартным методикам. Тиоамиды **1**а,е,¹⁰ **1**b,d,¹⁹ **1**f,²⁰ **9**²¹ и гидразоноилхлориды 2a, ²² 2b, ²³ 2c, ²⁴ $2d^{25}$ описаны в литературе.

Методики квантово-химических расчетов. Все структуры, соответствующие локальным минимумам энергии, полностью оптимизированы без ограничений симметрии с использованием программного пакета TURBOMOLE 6.04.^{26,27} Для оптимизации геометрии структур 5a-d и соответствующих переходных состояний применяли DFT-функционал BP86.^{28,29} Используемый базисный набор TZVP является модификацией базисов TZV triple-zeta,³⁰ расширенных добавлением поляризационных функций. Для ускорения расчетов применена Процедура RI (Resolution of the Identity^{28,29}), имплементированная в пакет TURBOMOLE. Для оптимизации геометрии использован повышенный критерий сходимости SCF-расчета (SCFConv = 1.0×10^{-8} Хартри) и максимально возможная точность интегрирования (grid 5). Расчеты частот колебаний выполнены аналитически и использованы для проверки соответствия оптимизированных структур реальным минимумам энергии (отсутствие мнимых частот колебаний) и переходным состояниям (одно мнимое колебание вдоль координаты реакции). Полученные при этом значения химического потенциала использованы в качестве поправок к суммарным энергиям для расчета значений ΔG в стандартных условиях (давление 0.1 Па, температура 298.15 К). Графическое представление оптимизированных структур выполнено с помощью программы Jmol.^{16,17}

N-Пропил-2,2,2-трифторэтантиоамид (1c).³¹ Выход 60%, желтая жидкость, т. кип. 86–88 °C (25 мм рт. ст.). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.01 (3H, т, ³*J*_{HH} = 7.4, CH₂C<u>H</u>₃); 1.67–1.83 (2H, м, C<u>H</u>₂CH₃); 3.65 (2H, к, ³*J*_{HH} = 7.4, NCH₂); 7.89 (1H, уш. с, NH). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –71.0 (3F, с, CF₃). Найдено, %: С 35.03; H 4.78; N 8.12; S 18.77. C₅H₈F₃NS. Вычислено, %: С 35.08; H 4.71; N 8.18; S 18.73.

Получение 2-полифторалкил-1,3,4-тиадиазолинов 4а–I (общая методика). К раствору 1.0 ммоль тиоамида 1а–f в 8 мл хлороформа добавляют 1.0 ммоль соответствующего гидразоноилхлорида 2а–с и 0.11 г (1.1 ммоль) триэтиламина. Реакционную смесь перемешивают в течение 36 ч при комнатной температуре. Затем растворитель упаривают при пониженном давлении, а остаток смешивают с 10 мл диэтилового эфира. Осадок гидрохлорида триэтиламина отфильтровывают, фильтрат промывают 8 мл воды. Органическую фазу сушат над Na₂SO₄, растворитель упаривают при пониженном давлении. Соединения **4с**,**g** получают в виде масла. В остальных случаях остаток после упаривания растворителя затирают с изопропиловым спиртом и получают соединения **4а,b,d–f,h–l** в кристаллическом виде.

4-[2-(Трифторметил)-3,5-дифенил-2,3-дигидро-1,3,4тиадиазол-2-ил морфолин (4а). Выход 0.33 г (84%), бесцветные кристаллы, т. пл. 136–137 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 2.60–2.72 (2Н, м) и 2.76–2.86 (2Н, м, CH₂NCH₂); 3.77-3.88 (4Н, м, CH₂OCH₂); 7.08 (1H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.32 (2H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.36-7.46 (3H, м, H Ph); 7.65-7.76 (4H, м, H Ph). Спектр ЯМР ¹³С (CDCl₃), б, м. д. (*J*, Гц): 46.9 (CH₂NCH₂); 66.1 (CH₂OCH₂); 108.5 (κ , ²J_{CF} = 29.9, C–CF₃); 119.6 (2C Ph); 123.2 (κ, ${}^{1}J_{CF}$ = 290.0, CF₃); 123.6 (C-4 Ph); 126.4 (2C Ph); 128.7 (2C Ph); 128.8 (2C Ph); 129.7 (C-4' Ph); 131.0 (C-1 Ph); 139.3 (C-1' Ph); 142.3 (C-5). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -67.5 (3F, с, CF₃). Масс-спектр, *m/z*: 307 [M-O(CH₂CH₂)₂NH]⁺. Найдено, %: С 57.97; Н 4.69; N 10.72; S 8.20. С₁₉Н₁₈F₃N₃OS. Вычислено, %: C 58.00; H 4.61; N 10.68; S 8.15.

4-[2-(Гептафторпропил)-3,5-дифенил-2,3-дигидро-1,3,4-тиадиазол-2-ил морфолин (4b). Выход 0.40 г (81%), бесцветные кристаллы, т. пл. 114-115 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 2.43–2.60 (2H, м) и 2.70–2.88 (2H, м, CH₂NCH₂); 3.64–3.85 (4H, м, CH₂OCH₂); 7.08 (1H, т, ³*J*_{HH} = 7.6, H Ph); 7.21–7.51 (5H, м, H Ph); 7.63-7.83 (4H, м, H Ph). Спектр ЯМР ¹³С (CDCl₃), б, м. д. (*J*, Гц): 46.0 (CH₂NCH₂); 65.9 (CH₂OCH₂); 108.7 (T, ${}^{2}J_{CF}$ = 21.5, <u>C</u>-CF₂); 109.0–119.5 (M, CF₃CF₂CF₂); 117.8 (2C Ph); 122.6 (C-4 Ph); 126.5 (2C Ph); 128.8 (4C Ph); 130.0 (C-4' Ph); 130.7 (C-1 Ph); 140.3 (С-1' Рh); 143.3 (С-5). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д. (*J*, Гц): -81.9 (3F, д. д, ³*J*_{FF} = 16.9, ³*J*_{FF} = 15.4, CF₃); -97.6 (1F, д. м, ²J_{FF} = 272.2) и -106.5 (1F, д. м, ²*J*_{FF} = 272.2, CF₂); -121.9 (1F, д. м, ²*J*_{FF} = 288.5) и -128.6 (1F, д. м, ${}^{2}J_{FF} = 288.5$, CF₂). Масс-спектр, m/z: 407 [M–O (CH₂CH₂)₂NH]⁺. Найдено, %: С 51.15; Н 3.74; N 8.49; S 6.44. С₂₁H₁₈F₇N₃OS. Вычислено, %: С 51.12; Н 3.68; N 8.52; S 6.50.

N-Пропил-2-(трифторметил)-3,5-дифенил-2,3-дигидро-1,3,4-тиадиазол-2-амин (4с). Выход 0.31 г (85%), коричневое масло. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 0.87 (3H, т, ³*J*_{HH} = 7.1, CH₃); 1.40–1.57 (2H, м, CH₂); 2.16 (1H, уш. с, NH); 2.45–2.63 (1H, м) и 2.90– 3.05 (1H, м, NCH₂); 7.10 (1H, т, ³*J*_{HH} = 7.4, H Ph); 7.24– 7.46 (5H, м, H Ph); 7.52–7.60 (2H, м, H Ph); 7.62–7.72 (2H, м, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 11.8 (CH₃); 22.6 (CH₂); 44.7 (NCH₂); 104.8 (к, ²*J*_{CF} = 31.4, <u>C</u>–CF₃); 121.1 (2C Ph); 123.5 (к, ¹*J*_{CF} = 288.4, CF₃); 124.1 (C-4 Ph); 126.4 (2C Ph); 128.6 (2C Ph); 128.7 (2C Ph); 129.7 (C-4' Ph); 131.4 (C-1 Ph); 140.8 (C-1' Ph); 142.4 (C-5). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –78.0 (3F, с, CF₃). Масс-спектр, *m/z*: 307 [M–C₃H₇NH]⁺. Найдено, %: С 59.13; H 5.02; N 11.54; S 8.80. C₁₈H₁₈F₃N₃S. Вычислено, %: С 59.16; H 4.97; N 11.50; S 8.77.

Этил-5-(морфолин-4-ил)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-карбоксилат (4d). Выход 0.31 г (80%), бесцветные кристаллы, т. пл. 130–131 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.39 (3H, т, ³*J*_{HH} = 7.2, CH₃); 2.55–2.67 (2H, м) и 2.73–2.85 (2H, м, CH₂NCH₂); 3.78–3.91 (4H, м, CH₂OCH₂); 4.38 (2H, к, ³*J*_{HH} = 7.2, OC<u>H</u>₂CH₃); 7.17 (1H, т, ³*J*_{HH} = 7.6, H Ph); 7.33 (2H, т, ³*J*_{HH} = 7.6, H Ph); 7.65 (2H, д, ³*J*_{HH} = 7.6, H Ph). Cпектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 14.2 (CH₃); 46.6 (CH₂NCH₂); 62.6 (O<u>C</u>H₂CH₃); 65.9 (CH₂OCH₂); 109.8 (к, ²*J*_{CF} = 30.4, <u>C</u>–CF₃); 120.9 (2C Ph); 122.6 (к, ¹*J*_{CF} = 288.2, CF₃); 125.5 (C-4 Ph); 128.8 (2C Ph); 132.0 (C-1 Ph); 141.0 (C-5); 159.7 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –68.0 (3F, с, CF₃). Масс-спектр, *m/z*: 390 [M+H]⁺. Найдено, %: C 49.38; H 4.71; N 10.83; S 8.20. C₁₆H₁₈F₃N₃O₃S. Вычислено, %: C 49.35; H 4.66; N 10.79; S 8.23.

Этил-5-(пиперидин-1-ил)-5-(1,1,2,2-тетрафторэтил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-карбоксилат (4е). Выход 0.30 г (72%), бесцветные кристаллы, т. пл. 90–91 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 1.39 $(3H, T, {}^{3}J_{HH} = 7.5, CH_{3}); 1.43-1.78 (6H, M, (CH_{2})_{3}); 2.27-$ 2.95 (4H, M, CH₂NCH₂); 4.36 (2H, κ , ³*J*_{HH} = 7.5, OC<u>H₂</u>CH₃); 5.54 (1H, T. T, ²*J*_{HF} = 52.4, ³*J*_{HF} = 6.3, HCF₂); 7.14 (1H, T, ${}^{3}J_{HH} =$ 7.6, H Ph); 7.33 (2H, T, ${}^{3}J_{HH} =$ 7.6, H Ph); 7.69 (2H, ${}_{\rm A}$, ${}^{3}J_{\rm HH} =$ 7.6, H Ph). CHERTP SIMP ${}^{13}{\rm C}$ (CDCl₃), б, м. д. (*J*, Гц): 14.3 (CH₃); 24.0, 24.9 ((CH₂)₃); 47.0 (2С, CH₂NCH₂); 62.6 (О<u>С</u>H₂CH₃); 106.7–117.8 (м, <u>C</u>-CF₂, HCF₂CF₂); 119.9 (2C Ph); 125.0 (C-4 Ph); 129.3 (2C Ph); 133.9 (C-1 Ph); 141.7 (C-5); 159.9 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -108.6 (1F, д. м, ²*J*_{FF} = 264.7) и –113.0 (1F, д. м, ²*J*_{FF} = 264.7, CF₂); -133.8 (1F, д. д. м, ${}^{2}J_{FF} = 296.7$, ${}^{2}J_{FH} = 52.4$) и -136.7 (1F, д. д. м, ${}^{2}J_{\text{FF}} = 296.7$, ${}^{2}J_{\text{FH}} = 52.4$, HCF₂). Масс-спектр, m/z: 335 [M-(CH₂)₅NH]⁺. Найдено, %: С 51.50; Н 5.10; N 9.98; S 7.69. С₁₈H₂₁F₄N₃O₂S. Вычислено, %: С 51.54; H 5.05; N 10.02; S 7.64.

Этил-5-(морфолин-4-ил)-5-(пентафторэтил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-карбоксилат (4f). Выход 0.35 г (80%), бесцветные кристаллы, т. пл. 103 °С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 1.40 (3H, т, ³*J*_{HH} = 7.2, CH₃); 2.39–2.56 (2H, м) и 2.70–2.89 (2H, м, CH₂NCH₂); 3.64–3.87 (4H, м, CH₂OCH₂); 4.38 (2H, к, ³*J*_{HH} = 7.2, OC<u>H₂</u>CH₃); 7.09 (1H, т, ³*J*_{HH} = 7.8, H Ph); 7.30 (2H, т, ³*J*_{HH} = 7.8, H Ph); 7.73 (2H, д, ³*J*_{HH} = 7.8, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 14.2 (CH₃); 46.0 (CH₂NCH₂); 62.8 (O<u>C</u>H₂CH₃); 65.7 (CH₂OCH₂); 109.5 (д. д. ${}^{2}J_{CFa} = 24.4$, ${}^{2}J_{CFb} = 24.2$, <u>C</u>-CF_aF_b); 113.7 (д. д. к. ${}^{1}J_{CFA} = 281.9$, ${}^{1}J_{CFB} = 281.2$, ${}^{2}J_{CF} = 35.5$, CF₃-<u>C</u>F_AF_B); 118.4 (к. т. ${}^{1}J_{CF} = 289.2$, ${}^{2}J_{CF} = 35.3$, CF₃); 118.7 (C Ph); 118.8 (C Ph); 124.3 (C-4 Ph); 128.9 (2C Ph); 133.3 (C-1 Ph); 142.1 (C-5); 159.5 (C=O). Спектр ЯМР 19 F (CDCl₃), δ , м. д. (*J*, Гц): -79.6 (3F, с, CF₃); -101.1 (1F, д, ${}^{2}J_{FF} = 268.1$) и -112.2 (1F, д, ${}^{2}J_{FF} = 268.1$, CF₂). Массспектр, *m*/*z* (*I*_{rel}, %): 462 [M+Na]⁺ (30), 440 [M+H]⁺ (100), 353 [M-O(CH₂CH₂)₂NH]⁺ (50). Найдено, %: C 46.49; H 4.17; N 9.60; S 7.35. C₁₇H₁₈F₅N₃O₃S. Вычислено, %: C 46.47; H 4.13; N 9.56; S 7.30.

Этил-5-(пропиламино)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-карбоксилат (4g). Выход 0.28 г (78%), коричневое масло. Спектр ЯМР ¹H (CDCl₃), δ, м. д. (*J*, Γц): 0.93 (3H, τ, ${}^{3}J_{HH} = 7.4$, CH₂CH₂CH₂CH₃); 1.39 (3H, τ, ${}^{3}J_{HH} = 7.2$, OCH₂CH₂); 1.50–1.63 (2H, м, CH₂CH₂CH₃); 2.22 (1H, уш. с, NH); 2.52–2.65 (1H, м) и 2.94–3.05 (1H, M, NCH₂); 4.38 (2H, κ , ${}^{3}J_{HH} = 7.2$, ОС<u>H</u>₂CH₃); 7.20 (1H, т, ${}^{3}J_{HH} = 7.8$, H Ph); 7.32 (2H, т, ${}^{3}J_{HH} = 7.8$, H Ph); 7.50 (2H, д, ${}^{3}J_{HH} = 7.8$, H Ph). Спектр ЯМР ¹³С (CDCl₃), б, м. д. (*J*, Гц): 11.8 (CH₂CH₂CH₃); 14.3 (OCH2CH3); 22.5 (CH2CH2CH3); 44.6 (NCH2); 62.5 $(O\underline{C}H_2CH_3)$; 105.8 (κ , ² J_{CF} = 31.3, <u>C</u>-CF₃); 122.7 (2C Ph); 122.8 (κ , ${}^{1}J_{CF}$ = 286.9, CF₃); 126.0 (C-4 Ph); 128.8 (2C Ph); 132.3 (С-1 Рh); 140.8 (С-5); 160.0 (С=О). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -77.4 (3F, с, CF₃). Масс-спектр, m/z ($I_{\rm rel}$, %): 384 [M+Na]⁺ (20), 303 [M-C₃H₇NH]⁺ (100), Масс-спектр, *m/z*: 360 [М-Н]⁻. Найдено, %: С 49.89; Н 5.09; N 11.67; S 8.81. С₁₅Н₁₈F₃N₃O₂S. Вычислено, %: C 49.85; H 5.02; N 11.63; S 8.87.

Этил-5-[(4-метилфенил)амино]-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-карбоксилат (4h). Выход 0.31 г (76%), бесцветные кристаллы, т. пл. 153-154 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 1.37 (3H, T, ${}^{3}J_{HH} = 7.2$, OCH₂CH₃); 2.92 (3H, c, CH₃); 4.37 (2H, κ , ${}^{3}J_{HH} = 7.2$, OCH₂CH₃); 4.76 (1H, yui. c, NH); 6.77 (2H, π , ${}^{3}J_{HH} = 8.0$, H Ar); 7.10 (2H, π , ${}^{3}J_{HH} = 8.0$, H Ar); 7.18 (1H, T, ${}^{3}J_{HH} = 7.8$, H Ar); 7.27 (2H, T, ${}^{3}J_{HH} = 7.8$, H Ar); 7.43 (2H, д, ${}^{3}J_{\text{HH}} = 7.8$, H Ar). Спектр ЯМР ${}^{13}\text{C}$ (CDCl₃), б, м. д. (*J*, Гц): 14.3 (ОСН₂<u>С</u>Н₃); 20.7 (СН₃); 62.6 (O<u>C</u>H₂CH₃); 102.0 (κ, ${}^{2}J_{CF}$ = 31.8, <u>C</u>-CF₃); 117.7 (2C Ar); 122.9 (κ, ${}^{1}J_{CF}$ = 289.3, CF₃); 123.7 (2C Ar); 126.0 (C-4 Ar); 128.9 (2C Ar); 130.2 (2C Ar); 131.9 (C-4' Ar); 132.7 (C-1 Ar); 138.0 (C-1' Ar); 140.3 (C-5); 159.7 (C=O). Спектр ЯМР¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -79.8 (3F, с, CF₃). Macc-cnektp, m/z (I_{rel} , %): 410 [M+H]⁺ (20), 303 [M-CH₃C₆H₄NH₂]⁺ (100). Найдено, %: С 55.70; Н 4.49; N 10.29; S 7.80. С₁₉H₁₈F₃N₃O₂S. Вычислено, %: С 55.74; H 4.43; N 10.26; S 7.83.

1-[5-(Морфолин-4-ил)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанон (4i). Выход 0.27 г (75%), бледно-желтые кристаллы, т. пл. 150–152 °С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (*J*, Гц): 2.51 (3H, с, CH₃); 2.53–2.63 (2H, м) и 2.71–2.84 (2H, м, CH₂NCH₂); 3.76–3.90 (4H, м, CH₂OCH₂); 7.20 (1H, т, ³*J*_{HH} = 7.8, H Ph); 7.36 (2H, т, ³*J*_{HH} = 7.8, H Ph); 7.69 (2H, д, ³*J*_{HH} = 7.8, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 25.4 (CH₃); 46.7 (CH₂NCH₂); 65.9 (CH₂OCH₂); 109.7 (к, ²*J*_{CF} = 30.4, <u>C</u>–CF₃); 120.7 (2C Ph); 122.7 (к, ¹*J*_{CF} = 289.1, СГ₃); 125.6 (С-4 Рh); 128.9 (2С Ph); 141.1 (С-1 Ph); 141.5 (С-5); 190.6 (С=О). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д. (*J*, Гц): -68.1 (3F, с, СГ₃). Масс-спектр, *m/z* (*I*_{rel}, %): 360 [М+H]⁺ (100), 273 [М-О(СН₂СН₂)₂NH]⁺ (60). Найдено, %: С 50.16; Н 4.56; N 11.72; S 8.97. С₁₅Н₁₆F₃N₃O₂S. Вычислено, %: С 50.13; Н 4.49; N 11.69; S 8.92.

1-[5-(Пиперидин-1-ил)-5-(1,1,2,2-тетрафторэтил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанон (4j). Выход 0.28 г (72%), желтые кристаллы, т. пл. 152–154 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.35–1.78 (6H, м, (CH₂)₃); 2.28–2.98 (7H, м, CH₃, CH₂NCH₂); 5.57 (1H, т. т. ²*J*_{HF} = 52.0, ³*J*_{HF} = 6.2, HCF₂); 7.18 (1H, т. ³*J*_{HH} = 7.8, H Ph); 7.37 (2H, т. ³*J*_{HH} = 7.8, H Ph); 7.73 (2H, д. ³*J*_{HH} = 7.8, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 24.0 (CH₂); 24.9 (2CH₂); 25.5 (CH₃); 47.0 (CH₂NCH₂); 105.8–118.2 (м, <u>С</u>-СF₂, HCF₂CF₂); 119.7 (2C Ph); 125.1 (C-4 Ph); 129.4 (2C Ph); 141.7 (C-1 Ph); 143.0 (C-5); 190.9 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): -108.5 (1F, д. м, ²*J*_{FF} = 267.3) и -113.6 (1F, д. м, ²*J*_{FF} = 267.3, CF₂); -134.4 (1F, д. д. м, ²*J*_{FF} = 297.0, ²*J*_{FH} = 52.0) и -136.2 (1F, д. д. м, ²*J*_{FF} = 297.0, ²*J*_{FH} = 52.0) и -136.2 (1F, д. д. м, ²*J*_{FF} = 297.0, ²*J*_{FH} = 52.45; H 4.98; N 10.82; S 8.20. C₁₇H₁₉F₄N₃OS. Вычислено, %: C 52.43; H 4.92; N 10.79; S 8.23.

1-[5-(Морфолин-4-ил)-5-(пентафторэтил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанон (4k). Выход 0.32 г (78%), желтые кристаллы, т. пл. 179–180 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.38–2.50 (2H, м, NCH₂); 2.53 (3H, с, CH₃); 2.70–2.86 (2H, м, NCH₂); 3.66–3.85 (4H, м, CH₂OCH₂); 7.13 (1H, т, ³*J*_{HH} = 7.8, H Ph); 7.34 (2H, т, ³*J*_{HH} = 7.8, H Ph); 7.76 (2H, д, ³*J*_{HH} = 7.8, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 25.5 (CH₃); 46.1 (CH₂NCH₂); 65.7 (CH₂OCH₂); 109.5 (д. д, ²*J*_{CFA} = 24.5, ²*J*_{CFB} = 24.2, <u>C</u>–CF_AF_B); 113.4 (д. д. к, ¹*J*_{CFa} = 281.7, ¹*J*_{CFb} = 281.3, ²*J*_{CF} = 35.3, CF₃–<u>C</u>F_AF_B); 118.4 (к. т, ¹*J*_{CFb} = 281.3, ²*J*_{CF} = 35.4, CF₃); 118.7 (2C Ph); 124.5 (C-4 Ph); 129.0 (2C Ph); 142.1 (C-1 Ph); 142.6 (C-5); 190.5 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –79.7 (3F, с, CF₃); –101.2 (1F, д, ²*J*_{FF} = 266.2) и –112.5 (1F, д, ²*J*_{FF} = 266.2, CF₂). Масс-спектр, *m/z*: 410 [M+H]⁺. Найдено, %: C 46.89; H 3.98; N 10.22; S 7.87. C₁₆H₁₆F₅N₃O₂S. Вычислено, %: C 46.94; H 3.94; N 10.26; S 7.83.

1-[5-(Пропиламино)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанон (4I). Выход 0.27 г (82%), желтые кристаллы, т. пл. 103-104 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 0.93 (3Н, т, ${}^{3}J_{\rm HH} = 7.4$, CH₂CH₃); 1.50–1.63 (2H, м, CH₂CH₃); 2.21 (1Н, уш. с, NH); 2.44-2.60 (4Н, м, CH₃, NCH_A); 2.92-3.03 (1H, M, NCH_B); 7.23 (1H, T, ${}^{3}J_{HH} = 7.8$, H Ph); 7.36 (2H, T, ${}^{3}J_{HH} = 7.8$, H Ph); 7.55 (2H, ${}_{\mathcal{A}}, {}^{3}J_{HH} = 7.8$, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Γ ц): 11.8 (CH₂CH₃); 22.5 (СН₂СН₃); 25.3 (СН₃); 44.6 (NCH₂); 105.7 (к, $^{2}J_{CF} = 31.7, \underline{C} - CF_{3}$; 122.2 (2C Ph); 122.9 ($\kappa, {}^{1}J_{CF} = 287.3$, CF₃); 126.0 (C-4 Ph); 128.9 (2C Ph); 140.9 (C-1 Ph); 141.8 (C-5); 191.1 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (J, Гц): -77.5 (3F, с, CF₃). Масс-спектр, *m/z* (*I*_{rel}, %): 332 $[M+H]^+$ (20), 273 $[M-C_3H_7NH]^+$ (100), Macc-cnektrp, m/z: 330 [М-Н]⁻. Найдено, %: С 50.69; Н 4.91; N 12.73; S 9.64. С₁₄Н₁₆F₃N₃OS. Вычислено, %: С 50.75; Н 4.87; N 12.68; S 9.68.

Восстановление кетопроизводных 1,3,4-тиадиазолинов 4i,j (общая методика). К раствору 1 ммоль 1,3,4-тиадиазолина 4i,j в 8 мл этанола добавляют 0.04 г (1 ммоль) боргидрида натрия. Реакционную смесь перемешивают в течение 3 ч при комнатной температуре. Затем растворитель упаривают при пониженном давлении, а остаток смешивают с 8 мл воды. Полученную смесь экстрагируют диэтиловым эфиром (3 × 10 мл), объединенные эфирные фазы промывают насыщенным раствором NaCl. Органическую фазу сушат над Na₂SO₄, растворители упаривают при пониженном давлении досуха.

1-[5-(Морфолин-4-ил)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанол (ба). Выход 0.31 г (86%), бесцветное твердое вещество, т. пл. 109-111 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц) (смесь двух диастереомеров в соотношении 47:53): 1.49-1.57 (3Н, м, СН₃); 2.31 (1H, уш. с, ОН); 2.53–2.67 (2H, м), 2.70– 2.83 (2H, м, NCH₂); 3.73–3.90 (4H, м, CH₂OCH₂); 4.71– 4.83 (1H, M, C<u>H</u>OH); 7.05 (1H, T, ${}^{3}J_{\text{HH}} = 7.6$, H Ph); 7.28 $(2H, T, {}^{3}J_{HH} = 7.6, H Ph); 7.55 (2H, A, {}^{3}J_{HH} = 7.6, H Ph).$ Спектр ЯМР ¹³С (CDCl₃), б, м. д. (*J*, Гц): 22.4 (CH₃); 22.6* (CH₃); 46.7* (CH₂NCH₂); 46.9 (CH₂NCH₂); 66.0** (CH₂OCH₂); 66.5 (CHOH); 66.6* (CHOH); 108.2* (κ , ² J_{CF} = 30.8, <u>C</u>-CF₃); 108.6 (κ , ²*J*_{CF} = 30.4, <u>C</u>-CF₃); 119.28 (2C Ph); 119.33* (2C Ph); 123.2** (κ , ${}^{1}J_{CF}$ = 290.4, CF₃); 123.46 (C-4 Ph); 123.49* (C-4 Ph); 128.7** (2C Ph); 142.1* (C-1 Ph); 142.2 (С-1 Рh); 146.4 (С-5); 146.5* (С-5). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -67.5 (1.41F, с, CF₃); -67.8* (1.59F, с, CF₃). Масс-спектр, *m/z*: 275 [M–O(CH₂CH₂)₂NH]⁺. Найдено, %: С 49.81; Н 5.08; N 11.60; S 8.91. С₁₅Н₁₈F₃N₃O₂S. Вычислено, %: С 49.85; Н 5.02; N 11.63; S 8.87.

1-[5-(Пиперидин-1-ил)-5-(1,1,2,2-тетрафторэтил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанол (6b). Выход 0.35 г (90%), светло-желтое масло. Спектр ЯМР ¹Н $(CDCl_3), \delta, M. д. (J, Гц)$ (смесь двух диастереомеров в соотношении 48:52): 1.40–1.73 (9Н, м, СН₃, (СН₂)₃); 2.21–2.89 (4H, м, CH₂NCH₂); 4.69–4.80 (1H, м, C<u>H</u>OH); 5.63 (1H, τ. м, ${}^{2}J_{HF}$ = 52.4, HCF₂); 7.01 (1H, τ. ${}^{3}J_{HH}$ = 7.6, H Ph); 7.28 (2H, τ. ${}^{3}J_{HH}$ = 7.6, H Ph); 7.58 (2H, д. ${}^{3}J_{HH}$ = 7.6, H Ph). Спектр ЯМР 13 С (CDCl₃), δ, м. д. (*J*, Γц): 22.5 (CH₃); 22.7* (CH₃); 24.1** (CH₂); 24.9** (2CH₂); 46.7** (CH₂NCH₂); 66.6 (CHOH); 66.7* (CHOH); 106.3-115.8** (м, <u>C</u>-CF₂, HCF₂CF₂); 117.9 (С Рh); 117.97 (С Рh); 118.01* (C Ph); 118.05* (C Ph); 122.75 (C-4 Ph); 122.78* (C-4 Ph); 129.1** (2C Ph); 142.7** (C-1 Ph); 148.30 (C-5); 148.33* (С-5). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -107.4 (0.48F, д. м, ²J_{FF} = 260.3) и -112.2 (0.48F, д. м, ²*J*_{FF} = 260.3, CF₂); -107.9* (0.52F, д. м, ²*J*_{FF} = 260.0) и $^{-112.3*}$ (0.52F, $_{\rm A}$. M, $^{2}J_{\rm FF} = 260.0$, CF₂); -133.7 (0.48F, $_{\rm A}$. $_{\rm A}$. $^{2}J_{\rm FF} = 295.1$, $^{2}J_{\rm FH} = 52.4$), -133.9* (0.52F, $_{\rm A}$. $_{\rm A}$. M, $^{2}J_{\rm FF} = 295.1$, $^{2}J_{\rm FH} = 52.4$), -136.2^{**} (1F, $_{\rm A}$. M, $^{2}J_{\rm FF} = 295.1$, $^{2}J_{\rm FH} = 52.4$) $_{\rm H} - 136.2^{**}$ (1F, $_{\rm A}$. M, $^{2}J_{\rm FF} = 295.1$, $^{2}J_{\rm FH} = 52.4$) $_{\rm H} - 136.2^{**}$ (1F, $_{\rm A}$. M, $^{2}J_{\rm FF} = 295.1$), $^{2}J_{\rm FH} = 52.4$) $_{\rm H} - 136.2^{**}$ 295.1, HCF₂). Macc-спектр, m/z: 307 [M-(CH₂)₅NH]⁺. Найдено, %: С 52.13; Н 5.46; N 10.77; S 8.14. С₁₇Н₂₁F₄N₃OS. Вычислено, %: С 52.16; Н 5.41; N 10.74; S 8.19.

[5-(Морфолин-4-ил)-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]метанол (7). К раство-

^{*} Одной звездочкой (*) отмечены сигналы преобладающего изомера, двумя звездочками (**) – сигналы обоих диастереомеров.

ру 1 ммоль 1,3,4-тиадиазолина 4d в 30 мл изопропилового спирта добавляют 0.11 г (3 ммоль) боргидрида натрия. Реакционную смесь перемешивают при 50 °С в течение 8 ч. Затем растворитель упаривают при пониженном давлении, а остаток экстрагируют диэтиловым эфиром (2 × 10 мл). Объединенные эфирные фазы фильтруют через бумажный фильтр, фильтрат упаривают при пониженном давлении досуха. Выход 0.24 г (69%), бесцветное твердое вещество, т. пл. 123-125 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 2.24 (1Н, уш. с, ОН); 2.50-2.63 (2Н, м) и 2.66-2.80 (2Н, м, CH₂NCH₂); 3.70-3.86 (4H, м, CH₂OCH₂); 4.47 (2H, с, CH₂OH); 7.01 (1H, T, ${}^{3}J_{\text{HH}} = 7.8$, H Ph); 7.24 (2H, T, ${}^{3}J_{\text{HH}} = 7.8$, H Ph); 7.51 (2H, ${}^{3}J_{\text{HH}} = 7.8$, H Ph). Cnextp SMP 13 C (ДМСО- d_{6}), δ, м. д. (*J*, Гц): 46.6 (СН₂NCH₂); 58.6 (СН₂OH); 65.1 (CH₂OCH₂); 107.1 (κ , ²J_{CF} = 29.1, <u>C</u>CF₃); 118.6 (2C Ph); 123.0 (C-4 Ph); 123.1 (κ , ¹J_{CF} = 290.6, CF₃); 128.6 (2C Ph); 141.9 (C-1 Ph); 144.2 (C-5). Спектр ЯМР ¹⁹F (CDCl₃), б, м. д. (*J*, Гц): -67.8 (3F, с, CF₃). Масс-спектр, m/z: 279 [M+H-CF₃]⁺. Macc-cnektp, m/z: 277 [M-H-CF₃]⁻. Найдено, %: С 48.45; Н 4.70; N 12.06; S 9.20. С₁₄Н₁₆F₃N₃O₂S. Вычислено, %: С 48.41; Н 4.64; N 12.10; S 9.23.

Гидролиз 1,3,4-тиадиазолинов 4а,d,i (общая методика). К раствору 1 ммоль 1,3,4-тиадиазолина 4a,d,i в 5 мл тетрагидрофурана добавляют 0.20 г (2 ммоль, ρ 1.19 г/мл) концентрированного водного раствора HCl. Реакционную смесь перемешивают в течение 6 ч при комнатной температуре, затем разбавляют 10 мл диэтилового эфира и промывают 8 мл воды. Органическую фазу сушат над Na₂SO₄, растворители упаривают при пониженном давлении, остаток затирают с гексаном.

3,5-Дифенил-2-(трифторметил)-2,3-дигидро-1,3,4тиадиазол-2-ол (8а). Выход 0.21 г (65%), желтые кристаллы, т. пл. 94–95 °С. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 4.07 (1H, уш. с, OH); 7.08–7.85 (10H, м, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ, м. д. (*J*, Гц): 108.4 (к, ²*J*_{CF} = 34.3, <u>C</u>CF₃); 122.1 (к, ¹*J*_{CF} = 286.9, CF₃); 123.4 (2C Ph); 125.9 (C-4 Ph); 126.5 (2C Ph); 128.9 (2C Ph); 129.0 (2C Ph); 130.2 (C-4' Ph); 130.3 (C-1 Ph); 140.3 (C-1' Ph); 140.8 (C-5). Спектр ЯМР ¹⁹F (CDCl₃), δ, м. д. (*J*, Гц): -76.7 (3F, с, CF₃). Масс-спектр, *m/z*: 325 [M+H]⁺, 323 [M–H]⁻. Найдено, %: С 55.53; H 3.46; N 8.67; S 9.85. C₁₅H₁₁F₃N₂OS. Вычислено, %: C 55.55; H 3.42; N 8.64; S 9.89.

Этил-5-гидрокси-5-(трифторметил)-4-фенил-4,5дигидро-1,3,4-тиадиазол-2-карбоксилат (8b). Выход 0.23 г (72%), желтые кристаллы, т. пл. 107–108 °С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д. (J, Гц): 1.37 (3H, т, ³ $J_{HH} = 7.2$, OCH₂C<u>H₃</u>); 4.37 (2H, к, ³ $J_{HH} = 7.2$, OC<u>H₂CH₃</u>); 5.34 (1H, уш. с, OH); 7.17–7.33 (3H, м, H Ph); 7.43 (2H, д, ³ $J_{HH} = 7.8$, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (J, Гц): 14.2 (CH₃); 63.3 (CH₂); 109.4 (к, ² $J_{CF} = 35.1$, <u>CCF₃</u>); 121.6 (к, ¹ $J_{CF} = 286.1$, CF₃); 124.3 (2C Ph); 127.2 (C-4 Ph); 128.8 (2C Ph); 130.4 (C-1 Ph); 139.5 (C-5); 160.5 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (J, Гц): –76.7 (3F, с, CF₃). Масс-спектр, m/z: 343 [M+Na]⁺. Массспектр, m/z: 319 [M–H]⁻. Найдено, %: С 45.03; Н 3.51; N 8.71; S 10.04. C₁₂H₁₁F₃N₂O₃S. Вычислено, %: С 45.00; H 3.46; N 8.75; S 10.01. **1-[5-Гидрокси-5-(трифторметил)-4-фенил-4,5-дигидро-1,3,4-тиадиазол-2-ил]этанон (8с)**. Выход 0.22 г (76%), желтые кристаллы, т. пл. 128–129 °С. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 2.47 (3H, с, CH₃); 5.57 (1H, уш. с, OH); 7.32 (1H, т, ³*J*_{HH} = 7.8, H Ph); 7.40 (2H, т, ³*J*_{HH} = 7.8, H Ph); 7.56 (2H, д, ³*J*_{HH} = 7.8, H Ph). Спектр ЯМР ¹³С (CDCl₃), δ , м. д. (*J*, Гц): 25.3 (CH₃); 109.4 (к, ²*J*_{CF} = 35.6, <u>C</u>CF₃); 121.7 (к, ¹*J*_{CF} = 286.1, CF₃); 124.3 (2C Ph); 127.5 (C-4 Ph); 129.1 (2C Ph); 139.7 (C-1 Ph); 140.2 (C-5); 192.7 (C=O). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д. (*J*, Гц): –77.0 (3F, с, CF₃). Масс-спектр, *m/z*: 291 [M+H]⁺. Масс-спектр, *m/z*: 289 [M–H]⁻. Найдено, %: С 45.50; H 3.16; N 9.69; S 11.02. C₁₁H₉F₃N₂O₂S. Вычислено, %: C 45.52; H 3.13; N 9.65; S 11.05.

Этил-5-(морфолин-4-ил)-4,5-дифенил-4,5-дигидро-1.3.4-тиадиазол-2-карбоксилат (10). К раствору 0.21 г (1.0 ммоль) тиоамида 9 в 8 мл безводного толуола добавляют 0.21 г (1.0 ммоль) гидразоноилхлорида 2b и 0.11 г (1.1 ммоль) триэтиламина. Реакционную смесь перемешивают при 60 °С в течение 30 ч. После охлаждения осадок гидрохлорида триэтиламина отфильтровывают, фильтрат упаривают при пониженном давлении. Продукт кристаллизуют из безводного этанола. Выход 0.28 г (70%), бесцветные кристаллы, т. пл. 155-156 °С. Спектр ЯМР ¹Н (CDCl₃), б, м. д. (*J*, Гц): 1.42 $(3H, T, {}^{3}J_{HH} = 7.2, CH_{3}); 2.69-2.88 (4H, M, CH_2NCH_2);$ 3.81–4.02 (4H, M, CH₂OCH₂); 4.41 (2H, κ , ³ $J_{HH} = 7.2$, OCH₂CH₃); 6.95 (1H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.10 (2H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.15 (1H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.21 (2H, T, ${}^{3}J_{HH} = 7.6$, H Ph); 7.29 (2H, ${}^{3}J_{HH} = 7.6$, H Ph); 7.71 (2H, д, ${}^{3}J_{HH} = 7.6$, H Ph). Спектр ЯМР 13 С (CDCl₃), δ , м. д. (J, Γμ): 14.4 (CH₃); 47.6 (CH₂NCH₂); 62.3 (OCH₂CH₃); 66.4 (CH₂OCH₂); 113.9 (C-2); 121.8 (2C Ph); 124.9 (C-4 Ph); 127.8 (2C Ph); 128.3 (2C Ph); 128.9 (C-4' Ph); 130.0 (2C Ph); 132.6 (C-1 Ph); 136.8 (C-1' Ph); 140.8 (C-5); 160.7 (C=O). Macc-спектр, *m/z*: 311 [M–O(CH₂CH₂)₂NH]⁺. Найдено, %: С 63.41; Н 5.88; N 10.60; S 8.02. С21H23N3O3S. Вычислено, %: 63.45; Н 5.83; N 10.57; S 8.07.

Рентгеноструктурное исследование монокристаллов соединений 4f, 8c. Кристаллы соединения 4f (C₁₇H₁₈F₅N₃O₃S, M 439.4) бесцветные, моноклинные, пространственная группа С2/с; а 27.564(3), b 14.9516(17), c 9.7392(10) Å; β 109.121(4)°; V 3792.3(7) Å³; Z 8; d_{расч} 1.539; µ 0.243 мм⁻¹; F(000) 1808. Рентгеноструктурное исследование монокристалла соединения 4f с линейными размерами 0.1 × 0.21 × 0.37 мм проведено при температуре 173 К на дифрактометре Bruker Smart Apex II (λМоКα-излучение, графитовый монохроматор, $\bar{\theta}_{\text{макс}}$ 25.5°, сегмент сферы $-25 \le h \le 32$, $-18 \le k \le 18, -11 \le l \le 11$). Всего собрано 9322 отражения, из которых 3417 являются независимыми (*R*-фактор усреднения 0.023). Введена коррекция поглощения по программе SADABS³² методом индицирования граней (отношение $T_{\text{мин}}/T_{\text{макс}} = 0.72/0.98$). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ Bruker SHELXTL.³³ В структуре этильная группа разупорядочена по двум позициям А и В с заселенностями 70 и 30% соответственно. Положения атомов водорода рассчитаны

геометрически и уточнены по модели "наездник". В уточнении использовано 3417 независимых отражений, из них 2864 отражения с $I > 2\sigma(I)$ (273 уточняемых параметра, использована весовая схема $\omega = 1/[\sigma^2(Fo^2) + (0.0327P)^2 + 3.9497P]$, где $P = (Fo^2 + 2Fc^2)/3$, отношение максимального(среднего) сдвига к погрешности в последнем цикле 0.002(0.000)). Окончательные значения факторов расходимости $R_1(F)$ 0.0328, $wR_2(F^2)$ 0.0752 по отражениям с $I > 2\sigma(I)$, $R_1(F)$ 0.0426, $wR_2(F^2)$ 0.0788, GOF 1.03 по всем независимым отражениям. Остаточная электронная плотность из разностного ряда Фурье после последнего цикла уточнения 0.33 и -0.24 е/Å³.

Кристаллы соединения 8с (С₁₁Н₉F₃N₂O₂S, *M* 290.26) желтые, моноклинные, пространственная группа $P2_1/n$; $a 9.7194(14), b 11.2743(16), c 12.307(2) \text{ Å}; \beta 113.143(4)^\circ;$ V 1240.1(3) Å³; Z 4; d_{расч} 1.555; µ 0.298 мм⁻¹; F(000) 592. Рентгеноструктурное исследование монокристалла соединения 8с с линейными размерами $0.15 \times 0.42 \times 0.55$ мм проведено при температуре 173 К на дифрактометре Bruker Smart Apex II (\lambda MoKa-излучение, графитовый монохроматор, $\theta_{\text{макс}}$ 26.44°, сегмент сферы $-12 \le h \le 12$, $-13 \le k \le 14, -14 \le l \le 15$). Всего собрано 8693 отражения, из которых 2528 являются независимыми (*R*-фактор усреднения 0.029). Введена коррекция поглощения по программе SADABS³² методом индицирования граней (отношение $T_{\text{мин}}/T_{\text{макс}} = 0.82/0.96$). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ Bruker SHELXTL. Положения всех атомов водорода, связанных с углеродными атомами, рассчитаны геометрически и уточнены по модели "наездник", положение атома водорода гидроксильной группы выявлено из разностного фурье-синтеза электронной плотности и уточнено изотропно. В уточнении использовано 2528 независимых отражений, из них 2008 отражений с $I > 2\sigma(I)$ (273 уточняемых параметра, использована весовая схема $\omega = 1/[s^2(Fo^2) + (0.0483P)^2 + 0.6017P]$, где $P = (Fo^2 + 2Fc^2)/3$, отношение максимального(среднего) сдвига к погрешности в последнем цикле 0.013(0.001)). Окончательные значения факторов расходимости $R_1(F)$ 0.0372, $wR_2(F^2)$ 0.0919 по 2008 отражениям с $I > 2\sigma(I), R_1(F) 0.0515, wR_2(F^2) 0.1027, GOF 1.029$ по всем независимым отражениям. Остаточная электронная плотность из разностного ряда Фурье после последнего цикла уточнения 0.33 и -0.33 е/Å³. Полные кристаллографические данные соединений 4f и 8c депонированы в Кембриджском банке структурных данных (депоненты ССDС 1557035 и ССDС 1557036 соответственно).

Список литературы

- 1. Li, Y.; Geng J.; Liu, Y.; Yu, S.; Zhao, G. ChemMedChem 2013, 8, 27.
- Jain, A. K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R. K. Chem. Biol. Drug Des. 2013, 81, 557.
- Mehta, D.; Taya, P.; Neetu Int. J. Pharm. Pharm. Sci. 2015, 7(4), 39.
- 4. Sekkak, H.; Mojahidi, S.; Rakib, E.-M.; Abouricha, S.; Kerbal, A.; Aiello, C.; Viale, M. Lett. Drug Des. Discovery 2010, 7, 743.

- 5. Abouricha, S.; Rakib, E.-M.; Benchat, N.; Alaoui, M.; Allouchi, H.; El Bali, B. Synth. Commun. 2005, 35, 2213.
- Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M. K.; Gülen, D. *Bioorg. Med. Chem.* 2002, 10, 2893.
- (a) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; Petrov, V. A., Ed.; John Wiley & Sons: Hoboken, 2009. (b) Shermolovich, Yu. G.; Pazenok, S. V. Top. Heterocycl. Chem. 2012, 27, 101.
 (c) Gakh, A. A.; Shermolovich, Yu. G. Curr. Top. Med. Chem. 2014, 14, 952. (d) Fluorine in Heterocyclic Chemistry; Nenajdenko, V. G., Ed.; Springer: Heidelberg, 2014.
- Molteni, V.; Li, X.; Nabakka, J.; Liang, F.; Wityak, J.; Koder, A.; Vargas, L.; Romeo, R.; Mitro, N.; Mak, P. A.; Seidel, H. M.; Haslam, J. A.; Chow, D.; Tuntland, T.; Spalding, T. A.; Brock, A.; Bradley, M.; Castrillo, A.; Tontonoz, P.; Saez, E. *J. Med. Chem.* 2007, *50*, 4255.
- Mlostoń, G.; Urbaniak, K.; Utecht, G.; Lentz, D.; Jasiński, M. J. Fluorine Chem. 2016, 192, 147.
- 10. Mykhaylychenko, S. S.; Siryi, S. A.; Pikun, N. V.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. **2015**, *51*, 861. [Химия гетероцикл. соединений **2015**, *51*, 861.]
- Huisgen, R.; Grashey, R.; Seidel, M; Knupfer, H.; Schmidt, R. Liebigs Ann. Chem. 1962, 658, 169.
- (a) Wolkoff, P.; Hammerum, S. Acta Chem. Scand., Ser. B 1976, 30, 831. (b) Wolkoff, P.; Hammerum, S. Acta Chem. Scand., Ser. B 1976, 30, 837.
- Petrov, M. L.; Abramov, M. A. Phosphorus, Sulfur Silicon Relat. Elem. 1998, 134/135, 331.
- 14. *Handbook of Chemistry and Physics*; Lide, D. R., Ed.; CRC Press LLC: Boca Raton, 2003, 84th ed.
- 15. Абрамов, М. А.; Петров, М. Л.; Джафаров, М. Х.; Бацанов, А. С.; Потехин, К. А.; Стручков, Ю. Т. Журн. общ. химии **1994**, *64*, 2018.
- Canepa, P.; Hanson, R. M.; Ugliengo, P.; Alfredsson, M. J. Appl. Crystallogr. 2011, 44, 225.
- 17. Jmol: an Open-Source Java Viewer for Chemical Structures in 3D. http://jmol.sourceforge.net/.
- Benincori, T.; Brenna, E.; Sannicolo, F.; Trimarco, L.; Pilati, T. Gazz. Chim. Ital. 1993, 123, 531.
- 19. Mykhaylychenko, S. S.; Bouillon, J.-P.; Shermolovich, Yu. G. J. Fluorine Chem. 2009, 130, 878.
- Mikhailichenko, S. S.; Rudnichenko, A. V.; Timoshenko, V. M.; Chernega, A. N.; Shermolovich, Yu. G.; Grellepois, F.; Portella, C. J. Fluorine. Chem. 2007, 128, 703.
- 21. Guntreddi, T.; Vanjari, R.; Singh, K. N. Tetrahedron 2014, 70, 3887.
- 22. Garve, L. K. B.; Petzold, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2016, 18, 564.
- 23. Shawali, A. S.; Albar, H. A. Can. J. Chem. 1986, 64, 871.
- 24. El-Abadelah, M. M.; Hussein, A. Q.; Thaher, B. A. *Heterocycles* **1991**, *32*, 1879.
- Debnath, K.; Pathak, S.; Pramanik, A. *Tetrahedron Lett.* 2013, 54, 896.
- Ahlrichs, R.; Arnim, M. V. In *Methods and Techniques in Computational Chemistry: MET ECC-95*; Clementi, E.; Corongiu, G., Eds.; STEF: Cagliari, 1995, p. 509.
- Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Chem. Phys. Lett. 1989, 162, 165.
- 28. Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- 29. Perdew, J. Phys. Rev. B 1986, 33, 8822.
- Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
- 31. Pikun, N. V.; Mykhaylychenko, S. S.; Kulik, I. B.; Shermolovich, Yu. G. J. Fluorine Chem. 2016, 185, 86.
- 32. Sheldrick, G. M. SADABS Program for Scaling and Correction of Area Detector Data; University of Göttingen, 1996.
- 33. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.